Entropy-stable discontinuous Galerkin nite element method with streamline diusion and shock-capturing

Size: px
Start display at page:

Download "Entropy-stable discontinuous Galerkin nite element method with streamline diusion and shock-capturing"

Transcription

1 Entropy-stable discontinuous Galerkin nite element method with streamline diusion and shock-capturing Siddhartha Mishra Seminar for Applied Mathematics ETH Zurich

2 Goal Find a numerical scheme for conservation laws u t + i= which d f i (u) i = is arbitrarily high-order accurate is entropy stable satises a maimum principle (bound in L ) converges for scalar conservation laws is multidimensional is reasonably ecient

3 Avoid oscillations and too much diusion neither nor

4 Avoid oscillations and too much diusion II but rather

5 Outline Introduction 2 Method 3 Implementation 4 Results 5 Conclusions

6 Derivation of the entropy stable DG FEM Start with the conservation law u t + f (u) = Multiply with a test function w (smooth) u t w + f (u) w =

7 Derivation of the entropy stable DG FEM II t t n+ I n t n j /2 j+/2 T j Integrate over the elements N n= j J I n T j (u t w + f (u) w) ddt =

8 Derivation of the entropy stable DG FEM III Integrate by parts N n= j J + + ( I n (u w t + f (u) w ) ddt T j u(t n+ T j I n f n+ ) w(t T )d u(t+) n w(t+)d n j ( ) ( ) ) u w( j+/2 j+/2 I )dt f u + w( + n j /2 j /2 )dt =

9 Numerical ues Replace the u at the boundary by numerical ues that depend on states on both sides of the boundary N n= j J + + T j U I n F I n F ( I n (u w t + f (u) w ) ddt T j (u(t n+ ), u(t n+ + )) w(t n+ )d T j U ( ) u, j+/2 u+ w( j+/2 j+/2 )dt ( ) ) u, j /2 u+ w( + j /2 j /2 )dt = For the numerical u U we use the upwind u, ( U u(t ), n u(t+) ) n = u(t ) n ( u(t n ), u(t n +) ) w(t n +)d only this allows to do time stepping

10 Entropy stability Choose entropy function S(u) and an associated u Q(u) Want a discrete analogon of the entropy inequality S t + Q variable transformation: (entropy symmetrisation) u = u(v) where v = S u are the entropy variables. Discretize v instead of u. 2 entropy stable numerical u: ([Tad87]) F (a, b) = F (a, b) D (v(b) v(a)) 2 F : an entropy conservative u. It has to full a certain condition ( unique in scalar case). D: Diusion matri. Can be anything, as long as it is positive semidenite.

11 Complete description Choose the space of ansatz functions V (piecewise polynomials). Then the description is complete: Find v in V, such that N n= j J + + ( I n u(v(t n+ T j I n F I n F for all w in V. More compactly T j (u(v) w t + f (u(v)) w ) ddt n+ )) w(t T )d u(v(t )) n w(t+)d n j ) (u(v j+/2 ), u(v +j+/2 ) w( j+/2 )dt ) ) (u(v j /2 ), u(v +j+/2 ) w( + j /2 )dt = B DG (v, w) =

12 Properties This leads to entropy stability (use w = v, suitable boundary conditions): S N d = S d T j J j T j J j D(v + v ) j+/2,t, v + v 2 2 D(v + v ) j /2,t, v + v 2 2,n 2 S uu(θ n )(u u + ), u u + S d T j J j However, at discontinuities (shocks) this still leads to oscillations. That is why we introduce the streamline diusion / shock capturing.

13 Streamline Diusion ([JS87]; [JSH9]) Add the term B SD (v, w) = N n= j J I n SD (u v w t + f (u) v w ) D (u t + f (u) ) ddt T j B DG (v, w) + B SD (v, w) = with D SD = O( ) and D SD positive semidenite. Leads to additional diusion proportional to (u v v t + f (u) v v ) D(u t + f (u) ) = (u t + f (u) ) D SD (u t + f (u) )

14 Shock-capturing (Barth) Idea: at shocks the residual is big (is it?) add (homogeneous) diusion proportional to the residual B SC (v, w) = N n= j J I n T j ɛ n j (u t w t + u w ) ddt B DG (v, w) + B SD (v, w) + B SC (v, w) = (C α i R n + /2 β C ɛ n i,j b R n b,j j = I n (v T t j u v v t + v u v v ) ddt + R n i,j = I n (u t + f (u) ) u v (u t + f (u) )ddt T j ) parameter values: C i =, α =, C b =

15 Properties - Goals revisited formally arbitrarily high-order accurate entropy stable (without/with SD or SC) (global) maimum principle for the scalar case (using a logarithmic entropy) convergence for the scalar case? multidimensional reasonably ecient?

16 Implementation currently in MATLAB quite slow For each time interval we have to solve a non-linear system for the dofs associated to it. currently: mostly by a damped Newton method ( we have to compute the Jacobian) planned: Newton-Krylov method ( we have to compute only the multiplication with the Jacobian) preconditioner?

17 Wave equation (smooth initial data) h t + cm = m t + ch = relative L error deg= deg=, no SD/SC deg=, SD deg=, SD+SC deg=2, no SD/SC deg=2, SD deg=2, SD+SC deg=3, no SD/SC deg=3, SD deg=3, SD+SC number of cells

18 Burgers' equation u t + (u 2 /2) = relative L error 2 deg= deg=, no SD/SC deg=, SD deg=, SD+SC deg=2, no SD/SC deg=2, SD deg=2, SD+SC deg=3, no SD/SC deg=3, SD deg=3, SD+SC deg=4, no SD/SC deg=4, SD deg=4, SD+SC number of cells

19 Burgers' equation deg = 2, N = no SD/SC SD SD+SC eact u

20 Burgers' equation SD + SC, N = 8.2 u deg= deg= deg=2 deg=3 deg=4 eact

21 ρ u Euler equations - Sod shock tube no SD/SC SD SD+SC eact.8.6 no SD/SC SD SD+SC eact no SD/SC SD SD+SC eact p.6.4 N = 8, deg =

22 Euler equations - Sod shock tube N = 8, deg = no SD/SC SD SD+SC eact ρ

23 Euler equations - Sod shock tube N = 8, SD+SC deg= deg= deg=2 deg=3 eact ρ

24 ρ u Euler equations - La shock tube no SD/SC SD SD+SC eact no SD/SC SD SD+SC eact p no SD/SC SD SD+SC eact N = 8, deg = 2 5 5

25 Euler equations - La shock tube N = 8, deg = no SD/SC SD SD+SC eact ρ

26 Euler equations - shock-entropy wave interaction N = 32, SD+SC ρ deg= deg= deg=2 reference.5 5 5

27 Introduction Method Implementation Results Conclusions Euler equations in 2D - Sod shock tube no SD/SC SD.5.5 ρ ρ y 2 5 SD+SC y ρ.5 Nc = 288, deg = y 2 5

28 Euler equations in 2D - Sod shock tube SD+SC, N c = 288, deg = 2.5 ρ.5 2 y 2 5 5

29 Introduction Method Implementation Results Conclusions Euler equations in 2D - Sod shock tube deg = deg =.5.8 ρ ρ y 2 deg = 2 5 y ρ Nc = 288, SD+SC y 2 5

30 Conclusions we get an entropy-stable DG FE method by: discretizing entropy variables using entropy stable numerical ues the solution is quite oscillatory at discontinuities by streamline diusion and shock-capturing we get a much less oscillatory solution, but it is quite diusive at contact discontinuities parameters and eact form of shock-capturing? convergence proofs? implementation: ecient solution of the non-linear systems?

31 Bibliography Claes Johnson and Anders Szepessy. On the convergence of a nite element method for a nonlinear hyperbolic conservation law. Mathematics of Computation, 49(8):427444, 987. Claes Johnson, Andres Szepessy, and Peter Hansbo. On the convergence of shock-capturing streamline diusion nite element methods for hyperbolic conservation laws. Mathematics of computation, 54(89):729, 99. Eitan Tadmor. The numerical viscosity of entropy stable schemes for systems of conservation laws. i. Mathematics of Computation, 49(79):93, 987.

32 Appendi SC - boundary residual Linear Advection Euler Sod shock tube Euler La shock tube Linear Advection in 2D Burgers'/Advection in 2D Wave in 2D Euler Sod shock tube in 2D

33 SC - boundary residual R n = b,j ( ( ) ( u n + u n u u n v + u ) n d T j ) ) + (F (u j+/2, u+j+/2 ) f (u j+/2 ) u (F (u j+/2, u+j+/2 ) f (u j+/2 ) dt v I n ) ) ) + (F (u j /2, u+j /2 ) f (u+j /2 ) u (F (u j /2, u+j /2 ) f (u+j /2 ) 2 dt v I n

34 Linear advection u t + au = relative L error deg= deg=, no SD/SC deg=, SD deg=, SD+SC deg=2, no SD/SC deg=2, SD deg=2, SD+SC deg=3, no SD/SC deg=3, SD deg=3, SD+SC deg=4, no SD/SC deg=4, SD deg=4, SD+SC 2 3 number of cells

35 Linear advection equation in 2D u t + au + bu y = relative L error 2 3 deg= deg=, no SD/SC deg=, SD deg=, SD+SC deg=2, no SD/SC deg=2, SD deg=2, SD+SC deg=3, no SD/SC deg=3, SD deg=3, SD+SC 4 2 h

36 Burgers'/Advection equation in 2D u t + au + (u 2 /2) y = relative L error deg= deg=, no SD/SC deg=, SD deg=, SD+SC deg=2, no SD/SC deg=2, SD deg=2, SD+SC deg=3, no SD/SC deg=3, SD deg=3, SD+SC 2 2 h

37 u u Burgers'/Advection equation in 2D deg = deg = deg = 2 y y N c = 84, SD+SC

38 Burgers'/Advection equation in 2D deg = 2, N c = 84, SD+SC

39 Burgers'/Advection equation in 2D no SD/SC SD SD+SC N c = 84, deg = 2

40 Burgers'/Advection equation in 2D SD+SC, N c = 84, deg = 2

41 Wave equation in 2D h t + cm + cn y = m t + ch = n t + ch y = relative L error deg= deg=, no SD/SC deg=, SD deg=, SD+SC deg=2, no SD/SC deg=2, SD deg=2, SD+SC deg=3, no SD/SC deg=3, SD deg=3, SD+SC 5 2 h

42 ρ u Euler equations - Sod shock tube deg= deg= deg=2 deg=3 eact.8.6 deg= deg= deg=2 deg=3 eact deg= deg= deg=2 deg=3 eact p.6.4 N = 8, SD+SC.2 5 5

43 Euler equations - Sod shock tube N = 8, SD+SC deg= deg= deg=2 deg=3 eact ρ

44 ρ u Euler equations - La shock tube deg= deg= deg=2 deg=3 eact deg= deg= deg=2 deg=3 eact p deg= deg= deg=2 deg=3 eact N = 8, SD+SC.5 5 5

45 Euler equations - La shock tube N = 8, SD+SC deg= deg= deg=2 deg=3 eact ρ

46 Euler equations in 2D - Sod shock tube relative L error deg= deg=, no SD/SC deg=, SD deg=, SD+SC deg=2, no SD/SC deg=2, SD deg=2, SD+SC deg=3, no SD/SC deg=3, SD deg=3, SD+SC 2 h

H. L. Atkins* NASA Langley Research Center. Hampton, VA either limiters or added dissipation when applied to

H. L. Atkins* NASA Langley Research Center. Hampton, VA either limiters or added dissipation when applied to Local Analysis of Shock Capturing Using Discontinuous Galerkin Methodology H. L. Atkins* NASA Langley Research Center Hampton, A 68- Abstract The compact form of the discontinuous Galerkin method allows

More information

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws Zhengfu Xu, Jinchao Xu and Chi-Wang Shu 0th April 010 Abstract In this note, we apply the h-adaptive streamline

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan Hyperbolic Systems of Conservation Laws in One Space Dimension II - Solutions to the Cauchy problem Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 Global

More information

c 2012 Society for Industrial and Applied Mathematics

c 2012 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 5, No., pp. 544 573 c Society for Industrial and Applied Mathematics ARBITRARILY HIGH-ORDER ACCURATE ENTROPY STABLE ESSENTIALLY NONOSCILLATORY SCHEMES FOR SYSTEMS OF CONSERVATION

More information

The RAMSES code and related techniques I. Hydro solvers

The RAMSES code and related techniques I. Hydro solvers The RAMSES code and related techniques I. Hydro solvers Outline - The Euler equations - Systems of conservation laws - The Riemann problem - The Godunov Method - Riemann solvers - 2D Godunov schemes -

More information

ICES REPORT A Multilevel-WENO Technique for Solving Nonlinear Conservation Laws

ICES REPORT A Multilevel-WENO Technique for Solving Nonlinear Conservation Laws ICES REPORT 7- August 7 A Multilevel-WENO Technique for Solving Nonlinear Conservation Laws by Todd Arbogast, Chieh-Sen Huang, and Xikai Zhao The Institute for Computational Engineering and Sciences The

More information

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A. A. I. Peer a,, A. Gopaul a, M. Z. Dauhoo a, M. Bhuruth a, a Department of Mathematics, University of Mauritius, Reduit,

More information

Weighted ENO Schemes

Weighted ENO Schemes Xiaolei Chen Advisor: Prof. Xiaolin Li Department of Applied Mathematics and Statistics Stony Brook University, The State University of New York February 7, 014 1 3 Mapped WENO-Z Scheme 1D Scalar Hyperbolic

More information

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

Stable Numerical Scheme for the Magnetic Induction Equation with Hall Effect

Stable Numerical Scheme for the Magnetic Induction Equation with Hall Effect Stable Numerical Scheme for the Magnetic Induction Equation with Hall Effect Paolo Corti joint work with Siddhartha Mishra ETH Zurich, Seminar for Applied Mathematics 17-19th August 2011, Pro*Doc Retreat,

More information

ALGEBRAIC FLUX CORRECTION FOR FINITE ELEMENT DISCRETIZATIONS OF COUPLED SYSTEMS

ALGEBRAIC FLUX CORRECTION FOR FINITE ELEMENT DISCRETIZATIONS OF COUPLED SYSTEMS Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering COUPLED PROBLEMS 2007 M. Papadrakakis, E. Oñate and B. Schrefler (Eds) c CIMNE, Barcelona, 2007 ALGEBRAIC FLUX CORRECTION

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

Rening the submesh strategy in the two-level nite element method: application to the advection diusion equation

Rening the submesh strategy in the two-level nite element method: application to the advection diusion equation INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2002; 39:161 187 (DOI: 10.1002/d.219) Rening the submesh strategy in the two-level nite element method: application to

More information

Hyperbolic Systems of Conservation Laws. I - Basic Concepts

Hyperbolic Systems of Conservation Laws. I - Basic Concepts Hyperbolic Systems of Conservation Laws I - Basic Concepts Alberto Bressan Mathematics Department, Penn State University Alberto Bressan (Penn State) Hyperbolic Systems of Conservation Laws 1 / 27 The

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

Entropy stable high order discontinuous Galerkin methods. for hyperbolic conservation laws

Entropy stable high order discontinuous Galerkin methods. for hyperbolic conservation laws Entropy stable high order discontinuous Galerkin methods for hyperbolic conservation laws Chi-Wang Shu Division of Applied Mathematics Brown University Joint work with Tianheng Chen, and with Yong Liu

More information

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy

AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy AProofoftheStabilityoftheSpectral Difference Method For All Orders of Accuracy Antony Jameson 1 1 Thomas V. Jones Professor of Engineering Department of Aeronautics and Astronautics Stanford University

More information

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Dedicated to Todd F. Dupont on the occasion of his 65th birthday Yingjie Liu, Chi-Wang Shu and Zhiliang

More information

Residual Distribution. basics, recents developments, relations with other techniques

Residual Distribution. basics, recents developments, relations with other techniques Residual Distribution basics, recents developments, relations with other techniques MARIO RICCHIUTO July 19, 2012 INTRODUCTION with historical perspective t u+ F(u) = 0 In the 80 s numerical techniques

More information

2 Introduction T(,t) = = L Figure..: Geometry of the prismatical rod of Eample... T = u(,t) = L T Figure..2: Geometry of the taut string of Eample..2.

2 Introduction T(,t) = = L Figure..: Geometry of the prismatical rod of Eample... T = u(,t) = L T Figure..2: Geometry of the taut string of Eample..2. Chapter Introduction. Problems Leading to Partial Dierential Equations Many problems in science and engineering are modeled and analyzed using systems of partial dierential equations. Realistic models

More information

Enhanced Accuracy by Post-processing for Finite Element Methods for Hyperbolic Equations

Enhanced Accuracy by Post-processing for Finite Element Methods for Hyperbolic Equations NASA/CR-2-21625 ICASE Report No. 2-47 Enhanced Accuracy by Post-processing for Finite Element Methods for Hyperbolic Equations Bernardo Cockburn and Mitchell Luskin University of Minnesota, Minneapolis,

More information

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux Introduction to Finite Volume projection methods On Interfaces with non-zero mass flux Rupert Klein Mathematik & Informatik, Freie Universität Berlin Summerschool SPP 1506 Darmstadt, July 09, 2010 Introduction

More information

Fourier analysis for discontinuous Galerkin and related methods. Abstract

Fourier analysis for discontinuous Galerkin and related methods. Abstract Fourier analysis for discontinuous Galerkin and related methods Mengping Zhang and Chi-Wang Shu Abstract In this paper we review a series of recent work on using a Fourier analysis technique to study the

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

Entropy and Relative Entropy

Entropy and Relative Entropy Entropy and Relative Entropy Joshua Ballew University of Maryland October 24, 2012 Outline Hyperbolic PDEs Entropy/Entropy Flux Pairs Relative Entropy Weak-Strong Uniqueness Weak-Strong Uniqueness for

More information

Strong Stability-Preserving (SSP) High-Order Time Discretization Methods

Strong Stability-Preserving (SSP) High-Order Time Discretization Methods Strong Stability-Preserving (SSP) High-Order Time Discretization Methods Xinghui Zhong 12/09/ 2009 Outline 1 Introduction Why SSP methods Idea History/main reference 2 Explicit SSP Runge-Kutta Methods

More information

CapSel Roe Roe solver.

CapSel Roe Roe solver. CapSel Roe - 01 Roe solver keppens@rijnh.nl modern high resolution, shock-capturing schemes for Euler capitalize on known solution of the Riemann problem originally developed by Godunov always use conservative

More information

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow Outline Scalar nonlinear conservation laws Traffic flow Shocks and rarefaction waves Burgers equation Rankine-Hugoniot conditions Importance of conservation form Weak solutions Reading: Chapter, 2 R.J.

More information

Computational Fluid Dynamics-1(CFDI)

Computational Fluid Dynamics-1(CFDI) بسمه تعالی درس دینامیک سیالات محاسباتی 1 دوره کارشناسی ارشد دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیر الدین طوسی Computational Fluid Dynamics-1(CFDI) Course outlines: Part I A brief introduction to

More information

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes Math 660-Lecture 3: Gudonov s method and some theories for FVM schemes 1 The idea of FVM (You can refer to Chapter 4 in the book Finite volume methods for hyperbolic problems ) Consider the box [x 1/,

More information

Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations 1

Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations 1 Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations Feng Zheng, Chi-Wang Shu 3 and Jianian Qiu 4 Abstract In this paper, a new type of finite difference Hermite weighted essentially

More information

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method

Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Implicit Solution of Viscous Aerodynamic Flows using the Discontinuous Galerkin Method Per-Olof Persson and Jaime Peraire Massachusetts Institute of Technology 7th World Congress on Computational Mechanics

More information

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows:

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows: Topic 7 Fluid Dynamics Lecture The Riemann Problem and Shock Tube Problem A simple one dimensional model of a gas was introduced by G.A. Sod, J. Computational Physics 7, 1 (1978), to test various algorithms

More information

Entropy stable schemes for compressible flows on unstructured meshes

Entropy stable schemes for compressible flows on unstructured meshes Entropy stable schemes for compressible flows on unstructured meshes Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore deep@math.tifrbng.res.in http://math.tifrbng.res.in/

More information

Notes: Outline. Diffusive flux. Notes: Notes: Advection-diffusion

Notes: Outline. Diffusive flux. Notes: Notes: Advection-diffusion Outline This lecture Diffusion and advection-diffusion Riemann problem for advection Diagonalization of hyperbolic system, reduction to advection equations Characteristics and Riemann problem for acoustics

More information

Conservation Laws and Finite Volume Methods

Conservation Laws and Finite Volume Methods Conservation Laws and Finite Volume Methods AMath 574 Winter Quarter, 2017 Randall J. LeVeque Applied Mathematics University of Washington January 4, 2017 http://faculty.washington.edu/rjl/classes/am574w2017

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 31 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Linearization and Characteristic Relations 1 / 31 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

More information

Antony Jameson. AIAA 18 th Computational Fluid Dynamics Conference

Antony Jameson. AIAA 18 th Computational Fluid Dynamics Conference Energy Estimates for Nonlinear Conservation Laws with Applications to Solutions of the Burgers Equation and One-Dimensional Viscous Flow in a Shock Tube by Central Difference Schemes Antony Jameson AIAA

More information

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws Mehdi Dehghan, Rooholah Jazlanian Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University

More information

Space-time XFEM for two-phase mass transport

Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Christoph Lehrenfeld joint work with Arnold Reusken EFEF, Prague, June 5-6th 2015 Christoph Lehrenfeld EFEF, Prague,

More information

Computation of entropic measure-valued solutions for Euler equations

Computation of entropic measure-valued solutions for Euler equations Computation of entropic measure-valued solutions for Euler equations Eitan Tadmor Center for Scientific Computation and Mathematical Modeling (CSCAMM) Department of Mathematics, Institute for Physical

More information

1e N

1e N Spectral schemes on triangular elements by Wilhelm Heinrichs and Birgit I. Loch Abstract The Poisson problem with homogeneous Dirichlet boundary conditions is considered on a triangle. The mapping between

More information

Entropy stable schemes for degenerate convection-diffusion equations

Entropy stable schemes for degenerate convection-diffusion equations Entropy stable schemes for degenerate convection-diffusion equations Silvia Jerez 1 Carlos Parés 2 ModCompShock, Paris 6-8 Decmber 216 1 CIMAT, Guanajuato, Mexico. 2 University of Malaga, Málaga, Spain.

More information

Équation de Burgers avec particule ponctuelle

Équation de Burgers avec particule ponctuelle Équation de Burgers avec particule ponctuelle Nicolas Seguin Laboratoire J.-L. Lions, UPMC Paris 6, France 7 juin 2010 En collaboration avec B. Andreianov, F. Lagoutière et T. Takahashi Nicolas Seguin

More information

Design of optimal Runge-Kutta methods

Design of optimal Runge-Kutta methods Design of optimal Runge-Kutta methods David I. Ketcheson King Abdullah University of Science & Technology (KAUST) D. Ketcheson (KAUST) 1 / 36 Acknowledgments Some parts of this are joint work with: Aron

More information

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically

Lecture 1. Finite difference and finite element methods. Partial differential equations (PDEs) Solving the heat equation numerically Finite difference and finite element methods Lecture 1 Scope of the course Analysis and implementation of numerical methods for pricing options. Models: Black-Scholes, stochastic volatility, exponential

More information

Space-time sparse discretization of linear parabolic equations

Space-time sparse discretization of linear parabolic equations Space-time sparse discretization of linear parabolic equations Roman Andreev August 2, 200 Seminar for Applied Mathematics, ETH Zürich, Switzerland Support by SNF Grant No. PDFMP2-27034/ Part of PhD thesis

More information

A Finite Volume Code for 1D Gas Dynamics

A Finite Volume Code for 1D Gas Dynamics A Finite Volume Code for 1D Gas Dynamics Michael Lavell Department of Applied Mathematics and Statistics 1 Introduction A finite volume code is constructed to solve conservative systems, such as Euler

More information

A Stable Spectral Difference Method for Triangles

A Stable Spectral Difference Method for Triangles A Stable Spectral Difference Method for Triangles Aravind Balan 1, Georg May 1, and Joachim Schöberl 2 1 AICES Graduate School, RWTH Aachen, Germany 2 Institute for Analysis and Scientific Computing, Vienna

More information

An Improved Non-linear Weights for Seventh-Order WENO Scheme

An Improved Non-linear Weights for Seventh-Order WENO Scheme An Improved Non-linear Weights for Seventh-Order WENO Scheme arxiv:6.06755v [math.na] Nov 06 Samala Rathan, G Naga Raju Department of Mathematics, Visvesvaraya National Institute of Technology, Nagpur,

More information

A numerical study of SSP time integration methods for hyperbolic conservation laws

A numerical study of SSP time integration methods for hyperbolic conservation laws MATHEMATICAL COMMUNICATIONS 613 Math. Commun., Vol. 15, No., pp. 613-633 (010) A numerical study of SSP time integration methods for hyperbolic conservation laws Nelida Črnjarić Žic1,, Bojan Crnković 1

More information

Entropic Schemes for Conservation Laws

Entropic Schemes for Conservation Laws CONSTRUCTVE FUNCTON THEORY, Varna 2002 (B. Bojanov, Ed.), DARBA, Sofia, 2002, pp. 1-6. Entropic Schemes for Conservation Laws Bojan Popov A new class of Godunov-type numerical methods (called here entropic)

More information

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS

A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS A NUMERICAL STUDY FOR THE PERFORMANCE OF THE RUNGE-KUTTA FINITE DIFFERENCE METHOD BASED ON DIFFERENT NUMERICAL HAMILTONIANS HASEENA AHMED AND HAILIANG LIU Abstract. High resolution finite difference methods

More information

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework

Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Math 7824 Spring 2010 Numerical solution of partial differential equations Classroom notes and homework Jan Mandel University of Colorado Denver May 12, 2010 1/20/09: Sec. 1.1, 1.2. Hw 1 due 1/27: problems

More information

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Dedicated to Todd F. Dupont on the occasion of his 65th birthday Yingjie Liu, Chi-Wang Shu and Zhiliang

More information

A discontinuous Galerkin finite element method for directly solving the Hamilton Jacobi equations

A discontinuous Galerkin finite element method for directly solving the Hamilton Jacobi equations Journal of Computational Physics 3 (7) 39 415 www.elsevier.com/locate/jcp A discontinuous Galerkin finite element method for directly solving the Hamilton Jacobi equations Yingda Cheng, Chi-Wang Shu *

More information

Solving the Euler Equations!

Solving the Euler Equations! http://www.nd.edu/~gtryggva/cfd-course/! Solving the Euler Equations! Grétar Tryggvason! Spring 0! The Euler equations for D flow:! where! Define! Ideal Gas:! ρ ρu ρu + ρu + p = 0 t x ( / ) ρe ρu E + p

More information

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs Basic Principles of Weak Galerkin Finite Element Methods for PDEs Junping Wang Computational Mathematics Division of Mathematical Sciences National Science Foundation Arlington, VA 22230 Polytopal Element

More information

ENO and WENO schemes. Further topics and time Integration

ENO and WENO schemes. Further topics and time Integration ENO and WENO schemes. Further topics and time Integration Tefa Kaisara CASA Seminar 29 November, 2006 Outline 1 Short review ENO/WENO 2 Further topics Subcell resolution Other building blocks 3 Time Integration

More information

CDS 101: Lecture 4.1 Linear Systems

CDS 101: Lecture 4.1 Linear Systems CDS : Lecture 4. Linear Systems Richard M. Murray 8 October 4 Goals: Describe linear system models: properties, eamples, and tools Characterize stability and performance of linear systems in terms of eigenvalues

More information

Solving PDEs with freefem++

Solving PDEs with freefem++ Solving PDEs with freefem++ Tutorials at Basque Center BCA Olivier Pironneau 1 with Frederic Hecht, LJLL-University of Paris VI 1 March 13, 2011 Do not forget That everything about freefem++ is at www.freefem.org

More information

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations Ch. Altmann, G. Gassner, F. Lörcher, C.-D. Munz Numerical Flow Models for Controlled

More information

High Order Hermite and Sobolev Discontinuous Galerkin Methods for Hyperbolic Partial Differential Equations

High Order Hermite and Sobolev Discontinuous Galerkin Methods for Hyperbolic Partial Differential Equations University of New Mexico UNM Digital Repository Mathematics & Statistics ETDs Electronic Theses and Dissertations Summer 7-17-2017 High Order Hermite and Sobolev Discontinuous Galerkin Methods for Hyperbolic

More information

SECOND ORDER ALL SPEED METHOD FOR THE ISENTROPIC EULER EQUATIONS. Min Tang. (Communicated by the associate editor name)

SECOND ORDER ALL SPEED METHOD FOR THE ISENTROPIC EULER EQUATIONS. Min Tang. (Communicated by the associate editor name) Manuscript submitted to AIMS Journals Volume X, Number X, XX 2X Website: http://aimsciences.org pp. X XX SECOND ORDER ALL SPEED METHOD FOR THE ISENTROPIC EULER EQUATIONS Min Tang Department of Mathematics

More information

On the Dependence of Euler Equations on Physical Parameters

On the Dependence of Euler Equations on Physical Parameters On the Dependence of Euler Equations on Physical Parameters Cleopatra Christoforou Department of Mathematics, University of Houston Joint Work with: Gui-Qiang Chen, Northwestern University Yongqian Zhang,

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University Hyperbolic Systems of Conservation Laws in One Space Dimension I - Basic concepts Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 The Scalar Conservation

More information

Some notes about PDEs. -Bill Green Nov. 2015

Some notes about PDEs. -Bill Green Nov. 2015 Some notes about PDEs -Bill Green Nov. 2015 Partial differential equations (PDEs) are all BVPs, with the same issues about specifying boundary conditions etc. Because they are multi-dimensional, they can

More information

Info. No lecture on Thursday in a week (March 17) PSet back tonight

Info. No lecture on Thursday in a week (March 17) PSet back tonight Lecture 0 8.086 Info No lecture on Thursday in a week (March 7) PSet back tonight Nonlinear transport & conservation laws What if transport becomes nonlinear? Remember: Nonlinear transport A first attempt

More information

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Romain Teyssier CEA Saclay Romain Teyssier 1 Outline - Euler equations, MHD, waves, hyperbolic

More information

First, Second, and Third Order Finite-Volume Schemes for Diffusion

First, Second, and Third Order Finite-Volume Schemes for Diffusion First, Second, and Third Order Finite-Volume Schemes for Diffusion Hiro Nishikawa 51st AIAA Aerospace Sciences Meeting, January 10, 2013 Supported by ARO (PM: Dr. Frederick Ferguson), NASA, Software Cradle.

More information

ACCURATE NUMERICAL SCHEMES FOR APPROXIMATING INITIAL-BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF CONSERVATION LAWS.

ACCURATE NUMERICAL SCHEMES FOR APPROXIMATING INITIAL-BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF CONSERVATION LAWS. ACCURATE NUMERICAL SCHEMES FOR APPROXIMATING INITIAL-BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF CONSERVATION LAWS. SIDDHARTHA MISHRA AND LAURA V. SPINOLO Abstract. Solutions of initial-boundary value problems

More information

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler:

Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: Lecture 7 18.086 Last time: Diffusion - Numerical scheme (FD) Heat equation is dissipative, so why not try Forward Euler: U j,n+1 t U j,n = U j+1,n 2U j,n + U j 1,n x 2 Expected accuracy: O(Δt) in time,

More information

Finite Elements for Nonlinear Problems

Finite Elements for Nonlinear Problems Finite Elements for Nonlinear Problems Computer Lab 2 In this computer lab we apply finite element method to nonlinear model problems and study two of the most common techniques for solving the resulting

More information

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller Algebraic flux correction and its application to convection-dominated flow Matthias Möller matthias.moeller@math.uni-dortmund.de Institute of Applied Mathematics (LS III) University of Dortmund, Germany

More information

Sung-Ik Sohn and Jun Yong Shin

Sung-Ik Sohn and Jun Yong Shin Commun. Korean Math. Soc. 17 (2002), No. 1, pp. 103 120 A SECOND ORDER UPWIND METHOD FOR LINEAR HYPERBOLIC SYSTEMS Sung-Ik Sohn and Jun Yong Shin Abstract. A second order upwind method for linear hyperbolic

More information

Efficient FEM-multigrid solver for granular material

Efficient FEM-multigrid solver for granular material Efficient FEM-multigrid solver for granular material S. Mandal, A. Ouazzi, S. Turek Chair for Applied Mathematics and Numerics (LSIII), TU Dortmund STW user committee meeting Enschede, 25th September,

More information

Semi-Discrete Central-Upwind Schemes with Reduced Dissipation for Hamilton-Jacobi Equations

Semi-Discrete Central-Upwind Schemes with Reduced Dissipation for Hamilton-Jacobi Equations Semi-Discrete Central-Upwind Schemes with Reduced Dissipation for Hamilton-Jacobi Equations Steve Bryson, Aleander Kurganov, Doron Levy and Guergana Petrova Abstract We introduce a new family of Godunov-type

More information

arxiv: v1 [math.na] 22 Nov 2018

arxiv: v1 [math.na] 22 Nov 2018 Asymptotic preserving Deferred Correction Residual Distribution schemes Rémi Abgrall and Davide Torlo arxiv:1811.09284v1 [math.na] 22 Nov 2018 Abstract This work aims to extend the residual distribution

More information

k=6, t=100π, solid line: exact solution; dashed line / squares: numerical solution

k=6, t=100π, solid line: exact solution; dashed line / squares: numerical solution DIFFERENT FORMULATIONS OF THE DISCONTINUOUS GALERKIN METHOD FOR THE VISCOUS TERMS CHI-WANG SHU y Abstract. Discontinuous Galerkin method is a nite element method using completely discontinuous piecewise

More information

c1992 Society for Industrial and Applied Mathematics THE CONVERGENCE RATE OF APPROXIMATE SOLUTIONS FOR NONLINEAR SCALAR CONSERVATION LAWS

c1992 Society for Industrial and Applied Mathematics THE CONVERGENCE RATE OF APPROXIMATE SOLUTIONS FOR NONLINEAR SCALAR CONSERVATION LAWS SIAM J. NUMER. ANAL. Vol. 9, No.6, pp. 505-59, December 99 c99 Society for Industrial and Applied Mathematics 00 THE CONVERGENCE RATE OF APPROXIMATE SOLUTIONS FOR NONLINEAR SCALAR CONSERVATION LAWS HAIM

More information

NUMERICAL CONSERVATION PROPERTIES OF H(DIV )-CONFORMING LEAST-SQUARES FINITE ELEMENT METHODS FOR THE BURGERS EQUATION

NUMERICAL CONSERVATION PROPERTIES OF H(DIV )-CONFORMING LEAST-SQUARES FINITE ELEMENT METHODS FOR THE BURGERS EQUATION SIAM JOURNAL ON SCIENTIFIC COMPUTING, SUBMITTED JUNE 23, ACCEPTED JUNE 24 NUMERICAL CONSERVATION PROPERTIES OF H(DIV )-CONFORMING LEAST-SQUARES FINITE ELEMENT METHODS FOR THE BURGERS EQUATION H. DE STERCK,

More information

In Proc. of the V European Conf. on Computational Fluid Dynamics (ECFD), Preprint

In Proc. of the V European Conf. on Computational Fluid Dynamics (ECFD), Preprint V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira and A. Sequeira (Eds) Lisbon, Portugal, 14 17 June 2010 THE HIGH ORDER FINITE ELEMENT METHOD FOR STEADY CONVECTION-DIFFUSION-REACTION

More information

Positivity-preserving high order schemes for convection dominated equations

Positivity-preserving high order schemes for convection dominated equations Positivity-preserving high order schemes for convection dominated equations Chi-Wang Shu Division of Applied Mathematics Brown University Joint work with Xiangxiong Zhang; Yinhua Xia; Yulong Xing; Cheng

More information

Chapter 3 Burgers Equation

Chapter 3 Burgers Equation Chapter 3 Burgers Equation One of the major challenges in the field of comple systems is a thorough understanding of the phenomenon of turbulence. Direct numerical simulations (DNS) have substantially

More information

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Alexander Chesnokov Lavrentyev Institute of Hydrodynamics Novosibirsk, Russia chesnokov@hydro.nsc.ru July 14,

More information

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni Relaxation methods and finite element schemes for the equations of visco-elastodynamics Chiara Simeoni Department of Information Engineering, Computer Science and Mathematics University of L Aquila (Italy)

More information

HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS

HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS 1 / 36 HYPERSONIC AERO-THERMO-DYNAMIC HEATING PREDICTION WITH HIGH-ORDER DISCONTINOUS GALERKIN SPECTRAL ELEMENT METHODS Jesús Garicano Mena, E. Valero Sánchez, G. Rubio Calzado, E. Ferrer Vaccarezza Universidad

More information

Multigrid solvers for equations arising in implicit MHD simulations

Multigrid solvers for equations arising in implicit MHD simulations Multigrid solvers for equations arising in implicit MHD simulations smoothing Finest Grid Mark F. Adams Department of Applied Physics & Applied Mathematics Columbia University Ravi Samtaney PPPL Achi Brandt

More information

Math 660-Lecture 15: Finite element spaces (I)

Math 660-Lecture 15: Finite element spaces (I) Math 660-Lecture 15: Finite element spaces (I) (Chapter 3, 4.2, 4.3) Before we introduce the concrete spaces, let s first of all introduce the following important lemma. Theorem 1. Let V h consists of

More information

ENO RECONSTRUCTION AND ENO INTERPOLATION ARE STABLE. Communicated by Nira Dyn

ENO RECONSTRUCTION AND ENO INTERPOLATION ARE STABLE. Communicated by Nira Dyn ENO RECONSTRUCTION AND ENO INTERPOLATION ARE STABLE ULRIK S. FJORDHOLM, SIDDHARTHA MISHRA, AND EITAN TADMOR Communicated by Nira Dyn ABSTRACT. We prove that the ENO reconstruction and ENO interpolation

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

A Sobolev trust-region method for numerical solution of the Ginz

A Sobolev trust-region method for numerical solution of the Ginz A Sobolev trust-region method for numerical solution of the Ginzburg-Landau equations Robert J. Renka Parimah Kazemi Department of Computer Science & Engineering University of North Texas June 6, 2012

More information

Finite difference method for solving Advection-Diffusion Problem in 1D

Finite difference method for solving Advection-Diffusion Problem in 1D Finite difference method for solving Advection-Diffusion Problem in 1D Author : Osei K. Tweneboah MATH 5370: Final Project Outline 1 Advection-Diffusion Problem Stationary Advection-Diffusion Problem in

More information

J. Liou Tulsa Research Center Amoco Production Company Tulsa, OK 74102, USA. Received 23 August 1990 Revised manuscript received 24 October 1990

J. Liou Tulsa Research Center Amoco Production Company Tulsa, OK 74102, USA. Received 23 August 1990 Revised manuscript received 24 October 1990 Computer Methods in Applied Mechanics and Engineering, 94 (1992) 339 351 1 A NEW STRATEGY FOR FINITE ELEMENT COMPUTATIONS INVOLVING MOVING BOUNDARIES AND INTERFACES THE DEFORMING-SPATIAL-DOMAIN/SPACE-TIME

More information

MATH 220 solution to homework 1

MATH 220 solution to homework 1 MATH solution to homework Problem. Define z(s = u( + s, y + s, then z (s = u u ( + s, y + s + y ( + s, y + s = e y, z( y = u( y, = f( y, u(, y = z( = z( y + y If we prescribe the data u(, = f(, then z

More information

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant Anti-diffusive finite difference WENO methods for shallow water with transport of pollutant Zhengfu Xu 1 and Chi-Wang Shu 2 Dedicated to Professor Qun Lin on the occasion of his 70th birthday Abstract

More information

RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS

RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS RECENT DEVELOPMENTS IN COMPUTATIONAL REACTOR ANALYSIS Dean Wang April 30, 2015 24.505 Nuclear Reactor Physics Outline 2 Introduction and Background Coupled T-H/Neutronics Safety Analysis Numerical schemes

More information

Numerical Mathematics and Advanced Applications 2009

Numerical Mathematics and Advanced Applications 2009 Gunilla Kreiss Per Lötstedt Axel Målqvist Maya Neytcheva Editors Numerical Mathematics and Advanced Applications 2009 Proceedings of ENUMATH 2009, the 8th European Conference on Numerical Mathematics and

More information

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov Numerical Methods for Modern Traffic Flow Models Alexander Kurganov Tulane University Mathematics Department www.math.tulane.edu/ kurganov joint work with Pierre Degond, Université Paul Sabatier, Toulouse

More information