M E M P H I S, T E N N., S A T U E D A Y, OCTOBER 8, 1870.
|
|
- Sylvia Hawkins
- 3 years ago
- Views:
Transcription
1 5 L V 8 5 x - L : L Q ) L - \ \ Q Q - V 84 z < L L 4 Y z ( ( <z8 Y Y Y - VLV Y L x L - L - : L [ L - 0 ] - : 4-6 L : x: 29 : 2 q z - z ( - z 2 4 L - x ( 5 ) ( - - z { L : z L - 2 L L L 4 - L ( - z z ) / - L : L x z q q LY L \ L x L ( L q ) x L : L - x \ q L - x \ 6 L : Y - q L q Q L / - - ( - : L \ - x - / : x : - - L : 6 x: x: 6 L L : : 6 : 2 L : 262 L - 0 L L : x- :4 z xx z - \ L -\ L x x 2 ( ) q - L Y q x 2 L q x -6 : / x L L q - V L z x / < q () z z L - L 6 20 x xx - Y : x ( ) : ) x - L (Q - [ VL : - 8 ) $ Y - - z (< ( : (z L 26) / - L - ( 2 L ( 4) ) L ( - L ) 6- - L L L : x x 6< - < - <{8 < - q - x <8 / z L : L q - - # V - 8 L - - 4
2 z - x x - ] - / 8 - z x - ] z -q - q V x z : / q z - L z 4 ( L: z : ( x - z L - V - x z q L ( ) x- ( L - q - q- - q - x 869 : q x - q q L- - x x ] ( ) - x 5 % Q : L x x x x 9 LL - L: z V L L 80 ~ [ q] - ]) - L } q- -) - L - - L 69 : : x / - L L q L - L : z - -2 Y : x : x- L : - V Yz - q x : < x Lx - V L L L Yz - x < L: x - L x x - z ( q L q) L : < - - q x - () --Y-_ L z: L x q x z z z L z L z x - - q ~ x L () () - % z Q z - L L \ x - - x Y _ x - < ( : : 280 < x q : $ : L L : : - q < - : 4 : L 88-4 x: 48 Q Q] ] x - z xx: 20) Q< : 29 L ( 24) x: 2 x: 2 L : 4 (2 : 2) L 2 5 q q ( : 2 ( QL : V : x: L2 : 4 VL / x: < ( 8 x 2 4 : 6
3 : 8 [ Q L x [ } # ) L x 4 L L x < / - x - ( V : Q< 5 () \ q V - ( () x L x x q - - x x < q ( V) Z ) 8( - < < x -x - { - L q L : 0-20 : - : 4 8 : - 8- x q L L : - - L q V - : q L ) x L L 9 L L L xx 6 L L : : - L : : 2: : YL : - L V Q : - q L xx 6 L : - L - V - </ x x L q L 2 : - L q 8 z - ( - q 4 L x 6- L V 6 x - - : 4: : 6 - : x ( ) - - L 8 : x 2 : - L x 8-4 x: 48 4 : x{ % Q - L z q L L - V x - z V V ( xz: 20) - x : 29 L L : L - V 0 xx z x x L ( 24) x L - x: L x: 2 x: 26 - L L L L : YL) 2 : 2) : - q L x 2 : 5 - V Y L : LL q - - z 28 x Y - L -4 q q Y q : 6 x- (: 4) V : ( : 4) x - L : 2 - ( : 8) 2 : 8 x - - / L Y L : ZZ - QLY L q q ) x 5 / x 0 - x: 2 x- - 0 x : ) : 0 2 : $ ) : L - 50 () L - - L L -- ( - x - q x -L x- -4 x : -x : q ) - }- x - Q Q 0L x # L - V 4 - $ L _ 4-- x <{49}Q 6 V Q Q Y x - V x L Y : : -
4 / Y-L 852 x $ z - x Y 5 5 z ~ $ : z L $ 8 80 q - z z (L 54 55) Z z L (L L 68-6) L - x z - z $ : Q L L x 2 - x - - zz x- - V zz - L x z L z - V z z - z x x - - ) L x ( xx 8 z z Z x 0) L 5 0 q L L q L z z q Q - z - : Q L - V L L z - L x x : L L - \- x x [ ] : : x q: < - L - - : x x - q q : - q - - q - V q - : 6 % - : - z - : x - () q- xx 5-9 x : - : L x x - L : % x) - ( x) -q - z L - L L $26 < - L : L L L - - : - 2 L Q -V : - - _ Q - - L x Y V q - : xl < : L 2 z L - 4) $0 $20 - x : : q - x x L - q x x Z #0 - Q - $ : ( ) : Y $4 : q 860 L 80 - q q- $0 $0 L q - % - - : : $ 25 z 80 L Q q - - x ( - : $ - - z: L L L: q // L - x L % q) x Y- ( ) x ] - L [ ) L L - ( ) 5 - _ q
5 - z L ] ( z- x -- Q : L L - } - L- < L : [ 0 ( L V x : L - x L Q : ~ : : L 9(% 6 % 80 L - - LLLY : q- Q : < - - < 0 : - / x q \< : - 4 } < V - L - : - z V - V - x - 50 ( z x - -- ( q x -) x < L V L - L - z < -- x - - Lx V - : - x - Q : - - V < : - q L L x ) q x V : - Y - x q L - - z q - q : L - - q - z : Y x - Y: Y - LL 2 0 z L V :Y - VL 4 8 x - Y q - : : 8 q Y : L - V L x - q Y Y LY z - L x q Y - ( - LL ) - z - V - Y - q - V - - V Y z : Y L -V x : $2 $ 8 0 $2 z - - { ( x _ ) - x - : \ x LY x - z z - L z Y ) L 60 L L L - L ( 2) -- _ L : - L [) Y VL 4 2 ( xx) _ : Y Y L L L LL - L V - Y : L - L L- - x Y ( Y ( xx 2) ) x 4 x L 6 x- - z Y : L z V L x - z V: - - Y - x < - x- - - : < - - x < : - : - L Y x / : L - : (-: - x - 5 YY x - [ ] 26 L - Q x $ ) V- - q xy V - : - L x : L x ] L - x 5 z L L-Y 8 VL < - L 5 80 q () 8 - : 5 z q q - L -- Q L L -
6 Q Q L 5<4- : x = Z Z 8 80 V - V ( x V : 5 -- : / 0L L 9 _<~ q -q : / 0 9 V <] }< ) xxlxx - x q < V5 q ±5L - -- V V _ - : L x - V 0 V L L L L 0 LL -q - 0 L x x-xx q { q - - V - - q - L\ V V L -: } - / L L L L8 Q L V q - x ::: xx 60 V LY ::: - - ~ (< q V L - V L V ) - -L 5 V - 4-_ 6 z 6 0 \ V - _:_ : L LL - < 5 0 ) Z Z:5 L L V Z2Z - - / _ 0 - : 0 - : 22 5 x x x)-l - -V - -- L V 80 L Q : - x L 2 Q - ZZZZZ - L L : x V- L V L L : - L x - Q < 05 V 4 - ~ ( ) : \ - - L 4 ( ) - Y L x 0 ) 5 L LV : : <0 ( ) LL -- = x ) x L {- L ZL - L Z Z Lz L Y L L L L 6- - \ Q Y 5 5 V- 52 V 5 L L - V L L - ( 5 Z:: x L : 4- L L - - : 5 - < V - L L L V/ x - Z 4 = < - V -- -V _L- V - : - -- L Y Y : 80 50L 5 L 5<24 LL x ] L < L 9 ) L V L ( : ) x << - < : < q <] - - z < - L x { < -- /} ( < - VV < V - - ( 4 L - < - - < _ x < ] - (Q : 4 V ) 4<< L5 / < < - z ] ( <- x\ (( x { L: ( <20 : < 4 - V 6 ] \ L ( \ (( 0 : 4 z L V - - : < - q < - <6 L <( - :: ] < < -< - ~ < ( - x - V
7 : LL - - LL 8 0 x V L L < VL z x LL L L L L L L L 4 L Y Y VLLZ Z5 V L : V LY V L } x- L Z Y x 4 x - } x L L (x V L x x 5 L {- - 4 Y L L L - Y L x] xx x - ( L - - : 5- : L - - ) - : : - - ( ) < < x V 289 [ 2] -: < - / x- ] (: = - << )( :<- - q { - 5 : -: - <- x - < z < z - = / - x ) V V /</ / -- / x : - <~ x L L L - << < < 5 -: < - : < V / ( -:( : - x - - ( 5 <-- - [- ( - (]: -- V \ 5) : L -< V x q - L L V: \ x : } x - - V Y 0 Y \- _ - Z V - : /< Y L : < ] - < ( V q 9 2- L <- - 2 # L L 60 - \LL = 5-\- \ L 02 - Y LL x { --- x - L L L - ( QL L L V < -Z- - L L L L L L L 0 ( ) < ( - L ) \: q - < x ::- 42 V - - q V: Q - L L5 <-< ( 8 / < < x V L L Y LL LL Y L L () ) : - xx - < L : - x <- 4 zx 05 Y --{ - V -q V V ( LL 0YL x 48 x < L\ V / Q x -QV : x x<- : 25 : ) ~ Y V L - V -} LY VL _ L Y < < < ) LY V - L V z ( z - V z z q V q 60 2 : ) - - ): ( : - - x L q x L x - - : - x / : < : \ - -- LL - : _ < <- 0 ] ] Y Y VVL ( <- x - Y 82 LL x << <- x - - ( ) - { ( ( : - L < - ( = L L 8) x < q < Y Y ] - L ( x - - \<4 - L 5 L V - x 4 ( } - # x Q L L L _ ) Z - ( % - x - - q / L Y (V QL x ( < V- ] - - ( ( LV L x - xl LL ) 4 L L L L - [ 6- V - x = - [ Q: 90 VL Z 5 _ x ) L 2 V 4 -z_ 0 - L _ < - <_ z Q 5 x< L L x L L6 -z- Z: Vx ) :~ / V L-0 : - /( - 4: 6- L -- : - - LL L LY L VL Y V V - L Y LL L L x L V x q - -/- - 9 ( - ~ V LL x - L L L L L 02( 0 z
8 -:z- : V L L L 9 z q x L V x Q LY - V - _ 84 V] L - 50 Y ] 20 x V - 8 V )-/ L V -20--x Y L - x x - ) x x - -x x LY 5 [-2-q xx \- Q - V 4( - - Lx { Q - V (-4 Q 5 z - x x - - (- x q Q <-< : x x - x x x <- - L x - L Y L 8 ] -4 z x - x - < x L x L - \ - x x x 4 x x L x x x xq x x x L LL -L x - - x q x x V q 9 x z Y L 5 L L L L x L ) 5 : L L L 5 Y L - (- Y 0 x q <- - - ( ~< < L z -- -( -- : \ V <- -2- = Z : :: - - x -6- L LY --- L L : L x - L- ) { : 5 -- L Q - -VV 9 V : - V V-L LL ( x) L Q q : - Y L V VL L 2 - x x - x- x - YLL : L x $0 x - \L- x Y $0 - L L < L - V// x q - V - x - 9 x V LV L \ - L V x Q - q - ( LL ) < L \ LVLL Y - V x V L V L - (Q V 5V ) x L / ] z %< x L L 4 -x L- L < L - - Q - 40 : x < < - L L L \ (V- L 9 -: 6 0 ( ) 5 L ZL 4 ) x - L \ - xz Y : _ ( 82 4 _ V 9 L - Q xx xxx LL L _ 5 x: LY 5 x -< - V - - <- ( } ( ) z L x x 8 ~ 84 Z - LV L L L Y -- - x- 4 Y L V L LL LL - L _ ) x L L VL 5 L V 09 x L L L x L L L x -- L Y x < Q L L 0 - LL V L - 8 ~ L 0 8 Y L L 0 - :: ] L - -- L V _ 5 < Y 5 ( ) x ) -x- L : V < 4 z ) L x LL : _ 5 - -% ( L L -x - ]4 5 _ { L V V 4< _ - - L: - q x Q) 4 xx L 5 x { ( x - L z : - LL L % z LV 60 <L < x L x8 x - Z 8 05 L % L # ( --V L -x 5 L - L L $ x % x # 4 < V L L L L0-9 - z LY ) - % 225 ) x ( - : 0 0 Q x( L _ --- < V L L x \ - - < z ) L z LY 4 x( ] x x : ] 4 ] x V : [ ] ] < ] q <
OWELL WEEKLY JOURNAL
Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --
Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.
» ~ $ ) 7 x X ) / ( 8 2 X 39 ««x» ««! «! / x? \» «({? «» q «(? (?? x! «? 8? ( z x x q? ) «q q q ) x z x 69 7( X X ( 3»«! ( ~«x ««x ) (» «8 4 X «4 «4 «8 X «x «(» X) ()»» «X «97 X X X 4 ( 86) x) ( ) z z
MANY BILLS OF CONCERN TO PUBLIC
- 6 8 9-6 8 9 6 9 XXX 4 > -? - 8 9 x 4 z ) - -! x - x - - X - - - - - x 00 - - - - - x z - - - x x - x - - - - - ) x - - - - - - 0 > - 000-90 - - 4 0 x 00 - -? z 8 & x - - 8? > 9 - - - - 64 49 9 x - -
LOWELL WEEKI.Y JOURINAL
/ $ 8) 2 {!»!» X ( (!!!?! () ~ x 8» x /»!! $?» 8! ) ( ) 8 X x /! / x 9 ( 2 2! z»!!»! ) / x»! ( (»»!» [ ~!! 8 X / Q X x» ( (!»! Q ) X x X!! (? ( ()» 9 X»/ Q ( (X )!» / )! X» x / 6!»! }? ( q ( ) / X! 8 x»
LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort
- 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [
A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any
Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»
A. H. Hall, 33, 35 &37, Lendoi
7 X x > - z Z - ----»»x - % x x» [> Q - ) < % - - 7»- -Q 9 Q # 5 - z -> Q x > z»- ~» - x " < z Q q»» > X»? Q ~ - - % % < - < - - 7 - x -X - -- 6 97 9
Q SON,' (ESTABLISHED 1879L
( < 5(? Q 5 9 7 00 9 0 < 6 z 97 ( # ) $ x 6 < ( ) ( ( 6( ( ) ( $ z 0 z z 0 ) { ( % 69% ( ) x 7 97 z ) 7 ) ( ) 6 0 0 97 )( 0 x 7 97 5 6 ( ) 0 6 ) 5 ) 0 ) 9%5 z» 0 97 «6 6» 96? 0 96 5 0 ( ) ( ) 0 x 6 0
LOWELL, MICHIGAN, NOVEMBER 27, Enroute to Dominican Republic
LDG L G L Y Y LLL G 7 94 D z G L D! G G! L $ q D L! x 9 94 G L L L L L q G! 94 D 94 L L z # D = 4 L ( 4 Q ( > G D > L 94 9 D G z ] z ) q 49 4 L [ ( D x ] LY z! q x x < G 7 ( L! x! / / > ( [ x L G q x!
LOWELL WEEKLY JOURNAL
Y -» $ 5 Y 7 Y Y -Y- Q x Q» 75»»/ q } # ]»\ - - $ { Q» / X x»»- 3 q $ 9 ) Y q - 5 5 3 3 3 7 Q q - - Q _»»/Q Y - 9 - - - )- [ X 7» -» - )»? / /? Q Y»» # X Q» - -?» Q ) Q \ Q - - - 3? 7» -? #»»» 7 - / Q
II&Ij <Md Tmlaiiiiiit, aad once in Ihe y a w Teataa m i, the vmb thatalmta oot Uiaapirit world. into as abode or wotld by them- CooTBOtioa
382 4 7 q X
LOWELL WEEKLY JOURNAL
: Y J G V $ 5 V V G Y 2 25 Y 2» 5 X # VG q q q 6 6 X J 6 $3 ( 6 2 6 2 6 25 3 2 6 Y q 2 25: JJ JJ < X Q V J J Y J Q V (» Y V X Y? G # V Y J J J G J»Y ) J J / J Y Y X ({ G #? J Y ~» 9? ) < ( J VY Y J G (
For H. S. Athletes. 49 Boy Scouts Initiated Here
LD B V L LY L L ( 700 v v v * x Dv L v v B v «v U B v z v v- - - v v v 0 v D U v v v v B X v x v v U v v 0000 v 0000 v x v v U ) YU > v v v v YD L Y x v q -z : v v v v v x v v B L L Y-D LLL Y X L DD UDY
Two Posts to Fill On School Board
Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83
PanHomc'r I'rui;* :".>r '.a'' W"»' I'fltolt. 'j'l :. r... Jnfii<on. Kslaiaaac. <.T i.. %.. 1 >
5 28 (x / &» )»(»»» Q ( 3 Q» (» ( (3 5» ( q 2 5 q 2 5 5 8) 5 2 2 ) ~ ( / x {» /»»»»» (»»» ( 3 ) / & Q ) X ] Q & X X X x» 8 ( &» 2 & % X ) 8 x & X ( #»»q 3 ( ) & X 3 / Q X»»» %» ( z 22 (»» 2» }» / & 2 X
' Liberty and Umou Ono and Inseparablo "
3 5? #< q 8 2 / / ) 9 ) 2 ) > < _ / ] > ) 2 ) ) 5 > x > [ < > < ) > _ ] ]? <
d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation
) - 5 929 XXX - $ 83 25 5 25 $ ( 2 2 z 52 $9285)9 7 - - 2 72 - - 2 3 zz - 9 86 - - - - 88 - q 2 882 q 88 - - - - - - ( 89 < - Q - 857-888 - - - & - - q - { q 7 - - - - q - - - - - - q - - - - 929 93 q
N e w S t u d e n t. C o u n c i l M e n
ZV. XX L GG L 3 942. 25 J b D b v D G... j z U 6 b Y DY. j b D.. L......&. v b v. z " 6 D". " v b b bv D v.... v z b.. k."... 92... G b 92. b v v b v b D ( 6) z v 27 b b v " z". v b L G. b. v.. v v. D
i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER
N k Q2 90 k ( < 5 q v k 3X3 0 2 3 Q :: Y? X k 3 : \ N 2 6 3 N > v N z( > > :}9 [ ( k v >63 < vq 9 > k k x k k v 6> v k XN Y k >> k < v Y X X X NN Y 2083 00 N > N Y Y N 0 \ 9>95 z {Q ]k3 Q k x k k z x X
Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.
- - - 0 x ] - ) ) -? - Q - - z 0 x 8 - #? ) 80 0 0 Q ) - 8-8 - ) x ) - ) -] ) Q x?- x - - / - - x - - - x / /- Q ] 8 Q x / / - 0-0 0 x 8 ] ) / - - /- - / /? x ) x x Q ) 8 x q q q )- 8-0 0? - Q - - x?-
LOWELL WEEKLY JOURNAL
G $ G 2 G ««2 ««q ) q «\ { q «««/ 6 «««««q «] «q 6 ««Z q «««Q \ Q «q «X ««G X G ««? G Q / Q Q X ««/«X X «««Q X\ «q «X \ / X G XX «««X «x «X «x X G X 29 2 ««Q G G «) 22 G XXX GG G G G G G X «x G Q «) «G
oenofc : COXT&IBCTOEU. AU skaacst sftwer thsa4 aafcekr will be ehat«s«ai Bi. C. W. JUBSSOS. PERFECT THBOUGH SDFFEBISG. our
x V - --- < x x 35 V? 3?/ -V 3 - ) - - [ Z8 - & Z - - - - - x 0-35 - 3 75 3 33 09 33 5 \ - - 300 0 ( -? 9 { - - - -- - < - V 3 < < - - Z 7 - z 3 - [ } & _ 3 < 3 ( 5 7< ( % --- /? - / 4-4 - & - % 4 V 2
UP and ENTRIES. Farmers and WivUs to Hold Old-Fashioned Meeting Here
LD : g C L K C Y Y 4 L LLL C 7 944 v g 8 C g 85 Y K D L gv 7 88[ L C 94 : 8 g Cg x C? g v g 5 g g / /»» > v g g :! v! $ g D C v g g g 9 ; v g ] v v v g L v g g 6 g (; C g C C g! v g gg gv v v 8 g g q»v
Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles, Illinois, August 1994, vol. 3, pp. 227{ Hanan Samet
P. 23 Il. C. Plll P, S. Cl, Ill, 1994, vl. 3,. 227{234 1 DT-PRE SPTI JOI GORITHMS Ek G. Hl y Gy Dv B C W, D.C. 20233 H S C S D C R I v C S Uvy Myl Cll Pk, Myl 20742 { E -lll l j l R-, l,. T l l (.., B
P A L A C E P IE R, S T. L E O N A R D S. R a n n o w, q u a r r y. W WALTER CR O TC H, Esq., Local Chairman. E. CO O PER EVANS, Esq.,.
? ( # [ ( 8? [ > 3 Q [ ««> » 9 Q { «33 Q> 8 \ \ 3 3 3> Q»«9 Q ««« 3 8 3 8 X \ [ 3 ( ( Z ( Z 3( 9 9 > < < > >? 8 98 ««3 ( 98 < # # Q 3 98? 98 > > 3 8 9 9 ««««> 3 «>
ACCEPTS HUGE FLORAL KEY TO LOWELL. Mrs, Walter Laid to Rest Yesterday
$ j < < < > XXX Y 928 23 Y Y 4% Y 6 -- Q 5 9 2 5 Z 48 25 )»-- [ Y Y Y & 4 j q - Y & Y 7 - -- - j \ -2 -- j j -2 - - - - [ - - / - ) ) - - / j Y 72 - ) 85 88 - / X - j ) \ 7 9 Y Y 2 3» - ««> Y 2 5 35 Y
LOWELL WEEKLY JOURNAL
Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G
a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?
? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (
and A L T O S O L O LOWELL, MICHIGAN, THURSDAY, OCTCBER Mrs. Thomas' Young Men Good Bye 66 Long Illness Have Sport in
5 7 8 x z!! Y! [! 2 &>3 x «882 z 89 q!!! 2 Y 66 Y $ Y 99 6 x x 93 x 7 8 9 x 5$ 4 Y q Q 22 5 3 Z 2 5 > 2 52 2 $ 8» Z >!? «z???? q > + 66 + + ) ( x 4 ~ Y Y»» x ( «/ ] x ! «z x( ) x Y 8! < 6 x x 8 \ 4\
LOWELL. MICHIGAN, OCTOBER morning for Owen J. Howard, M last Friday in Blodpett hospital.
G GG Y G 9 Y- Y 77 8 Q / x -! -} 77 - - # - - - - 0 G? x? x - - V - x - -? : : - q -8 : : - 8 - q x V - - - )?- X - - 87 X - ::! x - - -- - - x -- - - - )0 0 0 7 - - 0 q - V -
Governor Green Triumphs Over Mudslinging
; XXX 6 928 - x 22 5 Q 0 x 2- Q- & & x 30 - x 93000000 95000000 50 000 x 0:30 7 7 2 x q 9 0 0:30 2;00 7:30 9 ( 9 & ( ( - ( - 225000 x ( ( 800 ) - 70000 200000 - x ; 200-0: 3333 0850; 778: 5-38 090; 002;
1871. twadaa t, 30 cta. pat Haa;fe,ttaw Spiritism. From Uis luport of tie vision, and in U e n i e h t i a d i W A C h r f i
V < > X Q x X > >! 5> V3 23 3 - - - : -- { - -- (!! - - - -! :- 4 -- : -- -5--4 X -
ud 6u?1nx bdbo , t t,o r i - - n--- asunly{trlturlerlmunr:riaufloarilaun:vryu{udrj:vriu lpiud #ur.j:yolfinr*rilfi, rsurl:yolfinu'r
lk^./?x l OUUUU vlul UU. Uvv' l l'l. Cmpy T C UU 'l?.mllll?.l ylylll'. ll l..l m. w?uyl U?l ' xy [l [lyns. U l."?[. Cmpy T CT lv < l'll ' ll lylllmllvyv lp #.yll lyl' q.
A WORD To V eteran Spiritualists.
%U g U v L ^ ; ^ g )! v ^ L 7 Y 3 393 8 & d z ^ k ^ dv g d d kd d g - d dx d d dd d - ~ ---------- v g g d - v d U g d d d Q v g - k g g vg d d g g g g g d g U j k g d k q g g v d - d g d! v g d g d d
County Council Named for Kent
\ Y Y 8 9 69 6» > 69 ««] 6 : 8 «V z 9 8 x 9 8 8 8?? 9 V q» :: q;; 8 x () «; 8 x ( z x 9 7 ; x >«\ 8 8 ; 7 z x [ q z «z : > ; ; ; ( 76 x ; x z «7 8 z ; 89 9 z > q _ x 9 : ; 6? ; ( 9 [ ) 89 _ ;»» «; x V
2.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS. differential equations with the initial values y(x 0. ; l.
Numerical Methods II UNIT.1 NUMERICAL SOLUTION OF SIMULTANEOUS FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS.1.1 Runge-Kutta Method of Fourth Order 1. Let = f x,y,z, = gx,y,z be the simultaneous first order
r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.
$ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -
W i n t e r r e m e m b e r t h e W O O L L E N S. W rite to the M anageress RIDGE LAUNDRY, ST. H E LE N S. A uction Sale.
> 7? 8 «> ««0? [ -! ««! > - ««>« ------------ - 7 7 7 = - Q9 8 7 ) [ } Q ««
.1 "patedl-righl" timti tame.nto our oai.c iii C. W.Fiak&Co. She ftowtt outnal,
J 2 X Y J Y 3 : > Y 6? ) Q Y x J Y Y // 6 : : \ x J 2 J Q J Z 3 Y 7 2 > 3 [6 2 : x z (7 :J 7 > J : 7 (J 2 J < ( q / 3 6 q J $3 2 6:J : 3 q 2 6 3 2 2 J > 2 :2 : J J 2 2 J 7 J 7 J \ : q 2 J J Y q x ( ) 3:
HASSELL DEPARTMENT FOR INFRASTRUCTURE JERSEY FUTURE HOSPITAL (JFH) THE PARADE, ST HELIER, JERSEY JE1_3QS
L V L M L Z 3 6 1:75 L Z. M V. LL M MLLM L. LL M LL VF F. LL LL F F Y. M J LL LV, F. Y F V LL. 218 LL. L. L Y. L. L F F L VLM. VLY 1 (F ) L VL 6 5 4 3 2 1 L V L Y, L L Y, M X F 17/3/18 2/3/18 V 23/7/18
Homework 1/Solutions. Graded Exercises
MTH 310-3 Abstract Algebra I and Number Theory S18 Homework 1/Solutions Graded Exercises Exercise 1. Below are parts of the addition table and parts of the multiplication table of a ring. Complete both
Skills Practice. Multiplying and Dividing.Rational Expressions. Simplify each expression x2y ab----~3 25a2b x 2-4 2x-6 (x-2)(x+ 1)
NAME DATE PERID Skills Practice Multiplying and Dividing.Rational Expressions Simplify each expression. 1. 14x2y 2 2. 5ab----~3 25a2b 2 18 x 2-4 2x-6 (x-2)(x+ 1) 3a 2-24a 3m n 3 7. 8. 3a 2 + 12a 2n 6 9.
LOWELL WEEKLY JOURNAL
KY Y 872 K & q $ < 9 2 q 4 8 «7 K K K «> 2 26 8 5 4 4 7»» 2 & K q 4 [«5 «$6 q X «K «8K K88 K 7 ««$25 K Q ««q 8 K K Y & 7K /> Y 8«#»«Y 87 8 Y 4 KY «7««X & Y» K ) K K 5 KK K > K» Y Y 8 «KK > /» >» 8 K X
i.ea IE !e e sv?f 'il i+x3p \r= v * 5,?: S i- co i, ==:= SOrq) Xgs'iY # oo .9 9 PE * v E=S s->'d =ar4lq 5,n =.9 '{nl a':1 t F #l *r C\ t-e
fl ) 2 ;;:i c.l l) ( # =S >' 5 ^'R 1? l.y i.i.9 9 P * v ,>f { e e v? 'il v * 5,?: S 'V i: :i (g Y 1,Y iv cg G J :< >,c Z^ /^ c..l Cl i l 1 3 11 5 (' \ h 9 J :'i g > _ ^ j, \= f{ '{l #l * C\? 0l = 5,
LOWELL WEEKLY JOURNAL.
> LLL KLY L L x L L L L G K Y F 7 2 K LKL Y K «F «««««q 5 $ ) / «2 K) ««) 74 «G > x «LY K «! «KL K K K K K! ««x > x K! K ) 2 K «X! «K LK >> < >«««) «< >>«K«KLK < «4! «««#> ««!
1 Stress and Strain. Introduction
1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may
T k b p M r will so ordered by Ike one who quits squuv. fe2m per year, or year, jo ad vaoce. Pleaie and THE ALTO SOLO
q q P XXX F Y > F P Y ~ Y P Y P F q > ##- F F - 5 F F?? 5 7? F P P?? - - F - F F - P 7 - F P - F F % P - % % > P F 9 P 86 F F F F F > X7 F?? F P Y? F F F P F F
Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule
Derivatives in 2D James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Derivatives in 2D! Chain Rule Let s go back to
LOWELL. MICHIGAN. WEDNESDAY, FEBRUARY NUMllEE 33, Chicago. >::»«ad 0:30am, " 16.n«l w 00 ptn Jaekten,.'''4snd4:4(>a tii, ijilwopa
4/X6 X 896 & # 98 # 4 $2 q $ 8 8 $ 8 6 8 2 8 8 2 2 4 2 4 X q q!< Q 48 8 8 X 4 # 8 & q 4 ) / X & & & Q!! & & )! 2 ) & / / ;) Q & & 8 )
LB 220 Homework 4 Solutions
LB 220 Homework 4 Solutions Section 11.4, # 40: This problem was solved in class on Feb. 03. Section 11.4, # 42: This problem was also solved in class on Feb. 03. Section 11.4, # 43: Also solved in class
LOWELL WEEKLY JOURNAL.
Y 5 ; ) : Y 3 7 22 2 F $ 7 2 F Q 3 q q 6 2 3 6 2 5 25 2 2 3 $2 25: 75 5 $6 Y q 7 Y Y # \ x Y : { Y Y Y : ( \ _ Y ( ( Y F [ F F ; x Y : ( : G ( ; ( ~ x F G Y ; \ Q ) ( F \ Q / F F \ Y () ( \ G Y ( ) \F
Sect Least Common Denominator
4 Sect.3 - Least Common Denominator Concept #1 Writing Equivalent Rational Expressions Two fractions are equivalent if they are equal. In other words, they are equivalent if they both reduce to the same
A Memorial. Death Crash Branch Out. Symbol The. at Crossing Flaming Poppy. in Belding
- G Y Y 8 9 XXX G - Y - Q 5 8 G Y G Y - - * Y G G G G 9 - G - - : - G - - ) G G- Y G G q G G : Q G Y G 5) Y : z 6 86 ) ; - ) z; G ) 875 ; ) ; G -- ) ; Y; ) G 8 879 99 G 9 65 q 99 7 G : - G G Y ; - G 8
Factorisation. Learn and Remember. Sol. Let the duration of each period be x. Period 8 9. Duration of period 45 x (min.)
246 MATHEMATICS-I Sol. Let the duration of each period be x. Period 8 9 Duration of period 45 x (min.) If the period increases then the duration of period decreases. So, it is a case of inverse proportion...
' '-'in.-i 1 'iritt in \ rrivfi pr' 1 p. ru
V X X Y Y 7 VY Y Y F # < F V 6 7»< V q q $ $» q & V 7» Q F Y Q 6 Q Y F & Q &» & V V» Y V Y [ & Y V» & VV & F > V } & F Q \ Q \» Y / 7 F F V 7 7 x» > QX < #» > X >» < F & V F» > > # < q V 6 & Y Y q < &
an;'. Union One aud lnsopftrabls.'' LOWELL. MICflTGAN, WKDM SDAV, MAY I I is: LOW.NATIONAL 1>AXK ullv tn , ,800.
Y v N Y Y \\ «\ v R v R F RN «x vv 2 R F RN N # Z qr $ $ $2 2 2 X R 2 2
. ffflffluary 7, 1855.
x B B - Y 8 B > ) - ( vv B ( v v v (B/ x< / Y 8 8 > [ x v 6 ) > ( - ) - x ( < v x { > v v q < 8 - - - 4 B ( v - / v x [ - - B v B --------- v v ( v < v v v q B v B B v?8 Y X $ v x B ( B B B B ) ( - v -
AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1
AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01
ELECTRIC SUN NEW JERSEY'S OLDEST WEEKLY NEWSPAPER EST :30-5:30 DAILY SAT. 10>00-5:30 OPEN TILL 9:00 P.M. THURS. "A Unisex Boutique*'
G Y Y 9 ] v- j $ G - v $ F v F v v - v G / $ v z - -! v - )v - v ( -! - - j---- - - - v v- - - - -! / j v - v G -
. ^e Traveler in taesnok. i the IHilty.-^ifStiiart. BbUaaoa aad WalL.""ras 'crossing a mountain»h ch w e are A«ply inteiwted. Add
x 8[ x [qqq xq F x & R FX G NR F XN R X ( F R Y
MATH 19520/51 Class 5
MATH 19520/51 Class 5 Minh-Tam Trinh University of Chicago 2017-10-04 1 Definition of partial derivatives. 2 Geometry of partial derivatives. 3 Higher derivatives. 4 Definition of a partial differential
Realizations of Loops and Groups defined by short identities
Comment.Math.Univ.Carolin. 50,3(2009) 373 383 373 Realizations of Loops and Groups defined by short identities A.D. Keedwell Abstract. In a recent paper, those quasigroup identities involving at most three
LOWELL WEEKLY JOURNAL
W WY R G «( 5 R 5 Y q YG R ««W G WY Y 7 W \(\ 5 R ( W R R W ) W «W W W W< W ) W 53 R R Y 4 RR \ \ ( q ) W W X R R RY \ 73 «\ 2 «W R RG ( «q ) )[ 5 7 G ««R q ] 6 ) X 5 5 x / ( 2 3 4 W «(«\Y W Q RY G G )
UP TUB G. R. & I. Wo took tho train at EALERS ID Uragi.PatentKtdloinei.Psrlumtry
LLL NL G B- L - 60 VL V LLL GN NY Y 3 NB NY BL VY LLL Y- NNG -- K G B F BN: F x «5 $00 F VN L q L B K B B- - 3 6 L» q $00 $300 $00 $00 00 F q 600 00-00 900 L 500 00 500 000 5 0 BK Nx 00 500 50 3000 000
THE I Establiifrad June, 1893
89 : 8 Y Y 2 96 6 - - : - 2 q - 26 6 - - q 2 2 2 4 6 4«4 ' V () 8 () 6 64-4 '2" () 6 ( ) * 'V ( 4 ) 94-4 q ( / ) K ( x- 6% j 9*V 2'%" 222 27 q - - K 79-29 - K x 2 2 j - -% K 4% 2% 6% ' K - 2 47 x - - j
LOWELL/ JOURNAL. crew of the schooner Reuben Doud, swept by the West India hurricane I Capt William Lennon alone on the
LELL/ UL V 9 X 9 LELL E UU 3 893 L E UY V E L x Y VEEL L E Y 5 E E X 6 UV 5 Y 6 x E 8U U L L 5 U 9 L Q V z z EE UY V E L E Y V 9 L ) U x E Y 6 V L U x z x Y E U 6 x z L V 8 ( EVY LL Y 8 L L L < 9 & L LLE
13. LECTURE 13. Objectives
13. LECTURE 13 Objectives I can use Clairaut s Theorem to make my calculations easier. I can take higher derivatives. I can check if a function is a solution to a partial differential equation. Higher
M5 Simple Beam Theory (continued)
M5 Simple Beam Theory (continued) Reading: Crandall, Dahl and Lardner 7.-7.6 In the previous lecture we had reached the point of obtaining 5 equations, 5 unknowns by application of equations of elasticity
Chapter 7: Exponents
Chapter 7: Exponents Algebra 1 Chapter 7 Notes Name: Algebra Homework: Chapter 7 (Homework is listed by date assigned; homework is due the following class period) HW# Date In-Class Homework Section 7.:
R for beginners. 2 The few things to know before st. 8 Index 31
; & & & 8 * ( 0 " & 9 1 R f Eu l 1 W R? 3 T fw kw f 5 3-4.1 T
12. Stresses and Strains
12. Stresses and Strains Finite Element Method Differential Equation Weak Formulation Approximating Functions Weighted Residuals FEM - Formulation Classification of Problems Scalar Vector 1-D T(x) u(x)
CHAPTER 2 BOOLEAN ALGEBRA
CHAPTER 2 BOOLEAN ALGEBRA This chapter in the book includes: Objectives Study Guide 2.1 Introduction 2.2 Basic Operations 2.3 Boolean Expressions and Truth Tables 2.4 Basic Theorems 2.5 Commutative, Associative,
2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7.
Homework 8 Solutions, November 007. (1 We calculate some derivatives: f x = f y = x (x + y + 1 y (x + y + 1 x = (x + y + 1 4x (x + y + 1 4 y = (x + y + 1 4y (x + y + 1 4 x y = 4xy (x + y + 1 4 Substituting
Amphenol RNJ LOW PROFILE. Harsh Environment Rack & Panel Cylindrical Connectors
ol O O vo & l yll oo O O
Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA
Manipulator Dynamics 2 Forward Dynamics Problem Given: Joint torques and links geometry, mass, inertia, friction Compute: Angular acceleration of the links (solve differential equations) Solution Dynamic
A Study on Numerical Solution to the Incompressible Navier-Stokes Equation
A Study on Numerical Solution to the Incompressible Navier-Stokes Equation Zipeng Zhao May 2014 1 Introduction 1.1 Motivation One of the most important applications of finite differences lies in the field
Unit IV State of stress in Three Dimensions
Unit IV State of stress in Three Dimensions State of stress in Three Dimensions References Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength
CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer
CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Monday October 3: Discussion Assignment
bounty Herald Times THURSDAY,- SEPTEMBER!7, 1925
420 J 925 UU L 875 L 0 U «OJJ U U J OUU U ««J =» V ULU»» L U 4; J O O ] ; F < L < L V VV J 29 840 3 9 2 5 85 5 V U U»2 U U L L O OU F O OV O; X F O U «] ; U (JOVV q O ; < (» 4 V 50 26 U 7 925 UU OQ ; F
IOAN ŞERDEAN, DANIEL SITARU
Romanian Mathematical Magazine Web: http://www.ssmrmh.ro The Author: This article is published with open access. TRIGONOMETRIC SUBSTITUTIONS IN PROBLEM SOLVING PART IOAN ŞERDEAN, DANIEL SITARU Abstract.
LOWELL WEEKLY JOURNAL.
Y $ Y Y 7 27 Y 2» x 7»» 2» q» ~ [ } q q $ $ 6 2 2 2 2 2 2 7 q > Y» Y >» / Y» ) Y» < Y»» _»» < Y > Y Y < )»» >» > ) >» >> >Y x x )»» > Y Y >>»» }> ) Y < >» /» Y x» > / x /»»»»» >» >» >»» > > >» < Y /~ >
Complex Variables. Chapter 2. Analytic Functions Section Harmonic Functions Proofs of Theorems. March 19, 2017
Complex Variables Chapter 2. Analytic Functions Section 2.26. Harmonic Functions Proofs of Theorems March 19, 2017 () Complex Variables March 19, 2017 1 / 5 Table of contents 1 Theorem 2.26.1. 2 Theorem
Module 2: First-Order Partial Differential Equations
Module 2: First-Order Partial Differential Equations The mathematical formulations of many problems in science and engineering reduce to study of first-order PDEs. For instance, the study of first-order
Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch.
HOMEWORK From Dieter -3, -4, 3-7 Module #3 Transformation of stresses in 3-D READING LIST DIETER: Ch., pp. 7-36 Ch. 3 in Roesler Ch. in McClintock and Argon Ch. 7 in Edelglass The Stress Tensor z z x O
Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:
Polynomials Monomials: 10, 5x, 3x 2, x 3, 4x 2 y 6, or 5xyz 2. A monomial is a product of quantities some of which are unknown. Polynomials: 10 + 5x 3x 2 + x 3, or 4x 2 y 6 + 5xyz 2. A polynomial is a
INNER DERIVATIONS OF NON-ASSOCIATIVE ALGEBRAS
INNER DERIVATIONS OF NON-ASSOCIATIVE ALGEBRAS R. D. SCHAFER In this note we propose a definition of inner derivation for nonassociative algebras. This definition coincides with the usual one for Lie algebras,
Exercise 1: Inertia moment of a simple pendulum
Exercise : Inertia moment of a simple pendulum A simple pendulum is represented in Figure. Three reference frames are introduced: R is the fixed/inertial RF, with origin in the rotation center and i along
CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer
CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer Jürgen P. Schulze, Ph.D. University of California, San Diego Spring Quarter 2016 Announcements Project 1 due next Friday at
L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank
G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y
1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e.,
Abstract Hilbert Space Results We have learned a little about the Hilbert spaces L U and and we have at least defined H 1 U and the scale of Hilbert spaces H p U. Now we are going to develop additional
Unit 13 Review of Simple Beam Theory
MIT - 16.0 Fall, 00 Unit 13 Review of Simple Beam Theory Readings: Review Unified Engineering notes on Beam Theory BMP 3.8, 3.9, 3.10 T & G 10-15 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics
review To find the coefficient of all the terms in 15ab + 60bc 17ca: Coefficient of ab = 15 Coefficient of bc = 60 Coefficient of ca = -17
1. Revision Recall basic terms of algebraic expressions like Variable, Constant, Term, Coefficient, Polynomial etc. The coefficients of the terms in 4x 2 5xy + 6y 2 are Coefficient of 4x 2 is 4 Coefficient
Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI
Lecture 8 Analyzing the diffusion weighted signal Room CSB 272 this week! Please install AFNI http://afni.nimh.nih.gov/afni/ Next lecture, DTI For this lecture, think in terms of a single voxel We re still
BELMAR, N E W JERSEY, FRIDAY, JANUARY 11,1935. Mayor Herbert. Insists on Facts. Newly Appointed Officials. Must Report Periodically on Conditions
" ;;
B coorbercrbvu c flopx4rcorvr npobeaehnfl focyaapcrneusofr uroroeofr alreerarjvrvr iro o6pasonarejrbhbrm nporpammam. cpeahero o6nlelo o6pasonauua,
MTPCTPCTB PBTVl W [PTK^ Y{ PMCKT KPl D 09.0.0 C?l09 Slllel{ Mec pe"ctpllu Mec KMel C pey'bttm u'l'b cell u.xce l. yuuxcl BbycK{KB pllbx e l eppup_uu epx Kpl B 0 0[8 y'eu y B cbecbu c lpxc pbeel cypceu
Summer 2017 MATH Solution to Exercise 5
Summer 07 MATH00 Solution to Exercise 5. Find the partial derivatives of the following functions: (a (xy 5z/( + x, (b x/ x + y, (c arctan y/x, (d log((t + 3 + ts, (e sin(xy z 3, (f x α, x = (x,, x n. (a