Improving Image Similarity With Vectors of Locally Aggregated Tensors (VLAT)

Size: px
Start display at page:

Download "Improving Image Similarity With Vectors of Locally Aggregated Tensors (VLAT)"

Transcription

1 Improving Image Similarity With Vectors of Locally Aggregated Tensors (VLAT) David Picard and Philippe-Henri Gosselin ETIS / ENSEA - University of Cergy-Pontoise - CNRS UMR 8051 F Cergy-Pontoise Cedex, France 12 September 2011

2 Visual Object Classification Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

3 Plan 1 Vector representations using codebooks 2 Kernels on Bags 3 Vectors of Locally Aggregated Tensors 4 Experiments 5 Conclusion Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

4 Plan 1 Vector representations using codebooks 2 Kernels on Bags 3 Vectors of Locally Aggregated Tensors 4 Experiments 5 Conclusion Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

5 Codebooks Kernels on Bags VLAT Experiments Conclusion Descriptors Bags of Descriptors 1 Extraction of Zones of Interest Regions, Keypoints,... 2 Description of Zones of Interest Colors, Textures HoG, SIFT,... 3 Bag of Descriptors Bi = {bri }r bri D : descriptor r of image i Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

6 Vector representations using codebook Vector representations using codebook 1 Build a code book K-Means, Gaussian Mixture Models,... 2 Project Bags of Descriptors on the codebook Hard assignment Soft assignment... 3 Vector representation w i R m, with m words w ri R : weight of word r of image i Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

7 Vector representations using codebook Vector representations using codebook Advantages Small representation Low memory consumption Fast similarities Compatible with usual classifiers (knn, SVM,...) Drawbacks Performance depends on the codebook A lot of words are required (from 1k to 100k) Codebook computation in high dimensional spaces is difficult and unstable Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

8 Plan 1 Vector representations using codebooks 2 Kernels on Bags 3 Vectors of Locally Aggregated Tensors 4 Experiments 5 Conclusion Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

9 Kernels on Bags Change initial space Work directly on Bags of Descriptors B i = {b ri } r, b ri D Perform matching computations in a new space H Use a mapping function φ : D H D : visual space (where descriptors are) H : induced space (where matching is performed) Vector representation φ(b ri ) in the induced space H High dimension vectors (sometimes infinite) Matching is easier in large spaces Implicit use of induced space H using a kernel function : k(b ri, b sj ) = φ(b ri ), φ(b sj ) Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

10 Kernels on Bags Soft maximum (Shawe-Taylor) K softmax (B i, B j ) = b ri B i b sj B j k(b ri, b sj ) k kernel function K softmax kernel function Compare barycenters of bags : Φ(B i ) = φ(b ri ) b ri B i K softmax (B i, B j ) = Φ(B i ), Φ(B j ) = b ri B i b sj B j φ(b ri ), φ(b sj )) Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

11 Kernels on Bags Kernels on Bags Advantages As efficient as vote-based systems No large codebook Stable Easy parameter tuning Compatible with usual classifiers (knn, SVM,...) Drawbacks High computational complexity Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

12 Plan 1 Vector representations using codebooks 2 Kernels on Bags 3 Vectors of Locally Aggregated Tensors 4 Experiments 5 Conclusion Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

13 First idea : Approximation of Gaussian Kernel on Bags Taylor expansion : K (B i, B j ) = r,s = r,s e 2 2<b ri,b sj > σ 2 e σ 2 α p (< b ri, b sj >) p p Vectorization with Tensors : K (B i, B j ) = α p < p b ri, p b sj > r,s p = α p < p b ri, p b sj > p r s Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

14 Vectors of Locally Aggregated Tensors Second idea : Divide and center Inspired from Vectors of Locally Aggregated Descriptors (VLAD) method : Divide descriptor space in a few partition (from 16 to 64) Kernels on Bags are more efficient with smaller bags Clustering in high dimension spaces with few words is easy and stable Center descriptors in each cluster Relative comparisons are more accurate (cf Fisher kernels) Perform a matching in each cluster Sum up the matching results Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

15 Vectors of Locally Aggregated Tensors Proposed method Descriptor computation for order p : 1 Compute a small codebook and get centers c n 2 For each image i Compute tensor for each center c n Tn p (B i ) = p (b ri c n ) b ri such that NN(b ri )=c n 3 Concatenate : T p (B i ) = (T p 1 (B i)... T p m(b i )) 4 Normalize : ˆT p (B i ) = T p (B i )/ T p (B i ) L2 Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

16 Plan 1 Vector representations using codebooks 2 Kernels on Bags 3 Vectors of Locally Aggregated Tensors 4 Experiments 5 Conclusion Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

17 Image classification experiments Visual Object Classes Challenge 2007 Pascal Network Network of Excellence 9,963 images 20 categories SIFT descriptors Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

18 Image classification experiments Evaluation Protocol SVM Classifier Triangle kernel with L 2 distance Training on official train+val sets (5011 images) Testing on official test set (4952 images) Performance evaluation with official tool (Average Precision) Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

19 BOF VLAD VLAT Category 4k aeroplane ,2 61,0 62,0 64,6 65,9 66,1 bicycle ,3 38,6 40,3 45,3 47,2 49,2 bird ,7 34,6 35,1 38,1 39,6 39,5 boat ,7 55,8 55,3 57,4 59,5 58,7 bottle ,9 16,0 17,2 17,2 18,5 19,1 bus ,0 44,8 47,6 46,8 48,3 48,9 car ,8 68,3 69,2 70,5 71,1 71,0 cat ,2 37,9 40,9 40,8 41,1 43,1 chair ,2 40,2 40,4 41,3 43,1 42,8 cow ,7 22,7 25,3 25,2 26,9 27,3 diningtable ,3 25,9 28,3 25,7 30,4 30,4 dog ,1 32,4 34,0 36,6 37,0 37,3 horse ,8 65,2 66,7 70,7 70,6 70,8 motorbike ,2 47,2 49,2 49,6 51,1 51,3 person ,6 77,4 78,0 79,4 80,1 79,9 pottedplant ,9 14,4 17,0 14,9 15,8 16,7 sheep ,2 26,1 28,6 23,1 28,2 28,2 sofa ,3 36,2 35,0 39,4 39,7 38,9 train ,7 64,6 64,3 66,1 66,3 65,3 tvmonitor ,3 34,9 38,3 38,1 42,3 42,4 all ,4 42,2 43,6 44,5 46,1 46,4 Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

20 Image search experiments Holidays database BoW HE VLAD VLAT linear metric no no yes yes BoW = Bags of Words HE = Hamming Embedding VLAD = Vectors of Locally Aggregated Vectors VLAT = Vectors of Locally Aggregated Tensors (proposed) Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

21 Plan 1 Vector representations using codebooks 2 Kernels on Bags 3 Vectors of Locally Aggregated Tensors 4 Experiments 5 Conclusion Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

22 Conclusion Vectors of Locally Aggregated Tensors (VLAT) Vectorization of Kernels on Bags Faster than Kernels on Bags Easier tuning than Bag of Words State of the art performance Object classification Image search New framework, many more to come! Vectors of Locally Aggregated Tensors (VLAT) D. Picard & P.H. Gosselin 12 September / 22

Kai Yu NEC Laboratories America, Cupertino, California, USA

Kai Yu NEC Laboratories America, Cupertino, California, USA Kai Yu NEC Laboratories America, Cupertino, California, USA Joint work with Jinjun Wang, Fengjun Lv, Wei Xu, Yihong Gong Xi Zhou, Jianchao Yang, Thomas Huang, Tong Zhang Chen Wu NEC Laboratories America

More information

Analyzing the Performance of Multilayer Neural Networks for Object Recognition

Analyzing the Performance of Multilayer Neural Networks for Object Recognition Analyzing the Performance of Multilayer Neural Networks for Object Recognition Pulkit Agrawal, Ross Girshick, Jitendra Malik {pulkitag,rbg,malik}@eecs.berkeley.edu University of California Berkeley Supplementary

More information

Kernel Methods in Computer Vision

Kernel Methods in Computer Vision Kernel Methods in Computer Vision Christoph Lampert Max Planck Institute for Biological Cybernetics, Tübingen Matthew Blaschko MPI Tübingen and University of Oxford June 2, 29 Overview... 14: 15: Introduction

More information

A Discriminatively Trained, Multiscale, Deformable Part Model

A Discriminatively Trained, Multiscale, Deformable Part Model A Discriminatively Trained, Multiscale, Deformable Part Model P. Felzenszwalb, D. McAllester, and D. Ramanan Edward Hsiao 16-721 Learning Based Methods in Vision February 16, 2009 Images taken from P.

More information

Fisher Vector image representation

Fisher Vector image representation Fisher Vector image representation Machine Learning and Category Representation 2014-2015 Jakob Verbeek, January 9, 2015 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15 A brief recap on kernel

More information

One-Class Slab Support Vector Machine

One-Class Slab Support Vector Machine One-Class Slab Support Vector Machine Victor Fragoso Walter Scheirer Joao Hespanha Matthew Turk West Virginia University University of Notre Dame University of California, Santa Barbara victor.fragoso@mail.wvu.edu

More information

One-Class Slab Support Vector Machine

One-Class Slab Support Vector Machine One-Class Slab Support Vector Machine Victor Fragoso Walter Scheirer Joao Hespanha Matthew Turk West Virginia University University of Notre Dame University of California, Santa Barbara victor.fragoso@mail.wvu.edu

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Category Representation 2012-2013 Jakob Verbeek, ovember 23, 2012 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.12.13

More information

Lec 12 Review of Part I: (Hand-crafted) Features and Classifiers in Image Classification

Lec 12 Review of Part I: (Hand-crafted) Features and Classifiers in Image Classification Image Analysis & Retrieval Spring 2017: Image Analysis Lec 12 Review of Part I: (Hand-crafted) Features and Classifiers in Image Classification Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu,

More information

Compressed Fisher vectors for LSVR

Compressed Fisher vectors for LSVR XRCE@ILSVRC2011 Compressed Fisher vectors for LSVR Florent Perronnin and Jorge Sánchez* Xerox Research Centre Europe (XRCE) *Now with CIII, Cordoba University, Argentina Our system in a nutshell High-dimensional

More information

Discriminative part-based models. Many slides based on P. Felzenszwalb

Discriminative part-based models. Many slides based on P. Felzenszwalb More sliding window detection: ti Discriminative part-based models Many slides based on P. Felzenszwalb Challenge: Generic object detection Pedestrian detection Features: Histograms of oriented gradients

More information

38 1 Vol. 38, No ACTA AUTOMATICA SINICA January, Bag-of-phrases.. Image Representation Using Bag-of-phrases

38 1 Vol. 38, No ACTA AUTOMATICA SINICA January, Bag-of-phrases.. Image Representation Using Bag-of-phrases 38 1 Vol. 38, No. 1 2012 1 ACTA AUTOMATICA SINICA January, 2012 Bag-of-phrases 1, 2 1 1 1, Bag-of-words,,, Bag-of-words, Bag-of-phrases, Bag-of-words DOI,, Bag-of-words, Bag-of-phrases, SIFT 10.3724/SP.J.1004.2012.00046

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV KOGS Image Processing 1 IP1 Bildverarbeitung 1 Lecture : Object Recognition Winter Semester 015/16 Slides: Prof. Bernd Neumann Slightly revised

More information

arxiv: v1 [stat.ml] 26 May 2016

arxiv: v1 [stat.ml] 26 May 2016 Discovering Causal Signals in Images David Lopez-Paz Facebook AI Research dlp@fb.com Robert Nishihara UC Berkeley rkn@eecs.berkeley.edu Soumith Chintala Facebook AI Research soumith@fb.com arxiv:605.0879v

More information

Higher-order Statistical Modeling based Deep CNNs (Part-I)

Higher-order Statistical Modeling based Deep CNNs (Part-I) Higher-order Statistical Modeling based Deep CNNs (Part-I) Classical Methods & From Shallow to Deep Qilong Wang 2018-11-23 Context 1 2 3 4 Higher-order Statistics in Bag-of-Visual-Words (BoVW) Higher-order

More information

Learning non-maximum suppression Supplementary material

Learning non-maximum suppression Supplementary material Learning non-maximum suppression Supplementary material Jan Hosang Rodrigo Benenson Max Planck Institut für Informatik Saarbrücken, Germany firstname.lastname@mpi-inf.mpg.de Bernt Schiele 1. Content This

More information

Kernel Learning for Multi-modal Recognition Tasks

Kernel Learning for Multi-modal Recognition Tasks Kernel Learning for Multi-modal Recognition Tasks J. Saketha Nath CSE, IIT-B IBM Workshop J. Saketha Nath (IIT-B) IBM Workshop 23-Sep-09 1 / 15 Multi-modal Learning Tasks Multiple views or descriptions

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM BY DAVID LOWE

SIFT: SCALE INVARIANT FEATURE TRANSFORM BY DAVID LOWE SIFT: SCALE INVARIANT FEATURE TRANSFORM BY DAVID LOWE Overview Motivation of Work Overview of Algorithm Scale Space and Difference of Gaussian Keypoint Localization Orientation Assignment Descriptor Building

More information

Image retrieval, vector quantization and nearest neighbor search

Image retrieval, vector quantization and nearest neighbor search Image retrieval, vector quantization and nearest neighbor search Yannis Avrithis National Technical University of Athens Rennes, October 2014 Part I: Image retrieval Particular object retrieval Match images

More information

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion Tutorial on Methods for Interpreting and Understanding Deep Neural Networks W. Samek, G. Montavon, K.-R. Müller Part 3: Applications & Discussion ICASSP 2017 Tutorial W. Samek, G. Montavon & K.-R. Müller

More information

FAemb: a function approximation-based embedding method for image retrieval

FAemb: a function approximation-based embedding method for image retrieval FAemb: a function approximation-based embedding method for image retrieval Thanh-Toan Do Quang D Tran Ngai-Man Cheung Singapore University of Technology and Design {thanhtoan do, quang tran, ngaiman cheung}@sutdedusg

More information

Large-scale classification of traffic signs under real-world conditions

Large-scale classification of traffic signs under real-world conditions Large-scale classification of traffic signs under real-world conditions Lykele Hazelhoff a,b, Ivo Creusen a,b, Dennis van de Wouw a,b and Peter H.N. de With a,b a CycloMedia Technology B.V., Achterweg

More information

Wavelet-based Salient Points with Scale Information for Classification

Wavelet-based Salient Points with Scale Information for Classification Wavelet-based Salient Points with Scale Information for Classification Alexandra Teynor and Hans Burkhardt Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Germany {teynor, Hans.Burkhardt}@informatik.uni-freiburg.de

More information

Kronecker Decomposition for Image Classification

Kronecker Decomposition for Image Classification university of innsbruck institute of computer science intelligent and interactive systems Kronecker Decomposition for Image Classification Sabrina Fontanella 1,2, Antonio Rodríguez-Sánchez 1, Justus Piater

More information

Object Recognition Using Local Characterisation and Zernike Moments

Object Recognition Using Local Characterisation and Zernike Moments Object Recognition Using Local Characterisation and Zernike Moments A. Choksuriwong, H. Laurent, C. Rosenberger, and C. Maaoui Laboratoire Vision et Robotique - UPRES EA 2078, ENSI de Bourges - Université

More information

Loss Functions and Optimization. Lecture 3-1

Loss Functions and Optimization. Lecture 3-1 Lecture 3: Loss Functions and Optimization Lecture 3-1 Administrative Assignment 1 is released: http://cs231n.github.io/assignments2017/assignment1/ Due Thursday April 20, 11:59pm on Canvas (Extending

More information

Interpreting Deep Classifiers

Interpreting Deep Classifiers Ruprecht-Karls-University Heidelberg Faculty of Mathematics and Computer Science Seminar: Explainable Machine Learning Interpreting Deep Classifiers by Visual Distillation of Dark Knowledge Author: Daniela

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

Academic Editors: Andreas Holzinger, Adom Giffin and Kevin H. Knuth Received: 26 February 2016; Accepted: 16 August 2016; Published: 24 August 2016

Academic Editors: Andreas Holzinger, Adom Giffin and Kevin H. Knuth Received: 26 February 2016; Accepted: 16 August 2016; Published: 24 August 2016 entropy Article Distribution Entropy Boosted VLAD for Image Retrieval Qiuzhan Zhou 1,2,3, *, Cheng Wang 2, Pingping Liu 4,5,6, Qingliang Li 4, Yeran Wang 4 and Shuozhang Chen 2 1 State Key Laboratory of

More information

Global Scene Representations. Tilke Judd

Global Scene Representations. Tilke Judd Global Scene Representations Tilke Judd Papers Oliva and Torralba [2001] Fei Fei and Perona [2005] Labzebnik, Schmid and Ponce [2006] Commonalities Goal: Recognize natural scene categories Extract features

More information

The state of the art and beyond

The state of the art and beyond Feature Detectors and Descriptors The state of the art and beyond Local covariant detectors and descriptors have been successful in many applications Registration Stereo vision Motion estimation Matching

More information

Use Bin-Ratio Information for Category and Scene Classification

Use Bin-Ratio Information for Category and Scene Classification Use Bin-Ratio Information for Category and Scene Classification Nianhua Xie 1,2, Haibin Ling 2, Weiming Hu 1, Xiaoqin Zhang 1 1 National Laboratory of Pattern Recognition, Institute of Automation, CAS,

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron 1,2, Stéphane Girard 1, and Cordelia Schmid 2 1 LMC IMAG, BP 53, Université Grenoble 1, 38041 Grenoble cedex 9 France (e-mail: charles.bouveyron@imag.fr,

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Category Representation 2014-2015 Jakob Verbeek, ovember 21, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Majority Vote of Diverse Classifiers for Late Fusion

Majority Vote of Diverse Classifiers for Late Fusion Majority Vote of Diverse Classifiers for Late Fusion Emilie Morvant, Amaury Habrard, Stéphane Ayache To cite this version: Emilie Morvant, Amaury Habrard, Stéphane Ayache Majority Vote of Diverse Classifiers

More information

A New Space for Comparing Graphs

A New Space for Comparing Graphs A New Space for Comparing Graphs Anshumali Shrivastava and Ping Li Cornell University and Rutgers University August 18th 2014 Anshumali Shrivastava and Ping Li ASONAM 2014 August 18th 2014 1 / 38 Main

More information

Composite Quantization for Approximate Nearest Neighbor Search

Composite Quantization for Approximate Nearest Neighbor Search Composite Quantization for Approximate Nearest Neighbor Search Jingdong Wang Lead Researcher Microsoft Research http://research.microsoft.com/~jingdw ICML 104, joint work with my interns Ting Zhang from

More information

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017

Deep Learning for Natural Language Processing. Sidharth Mudgal April 4, 2017 Deep Learning for Natural Language Processing Sidharth Mudgal April 4, 2017 Table of contents 1. Intro 2. Word Vectors 3. Word2Vec 4. Char Level Word Embeddings 5. Application: Entity Matching 6. Conclusion

More information

Clustering with k-means and Gaussian mixture distributions

Clustering with k-means and Gaussian mixture distributions Clustering with k-means and Gaussian mixture distributions Machine Learning and Object Recognition 2017-2018 Jakob Verbeek Clustering Finding a group structure in the data Data in one cluster similar to

More information

arxiv: v2 [cs.cv] 15 Jul 2018

arxiv: v2 [cs.cv] 15 Jul 2018 Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation arxiv:17.07321v2 [cs.cv] 15 Jul 2018 Gui-Song Xia 1, Xin-Yi Tong 1, Fan Hu 2, Yanfei Zhong 1, Mihai Datcu 3, Liangpei

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

TRAFFIC SCENE RECOGNITION BASED ON DEEP CNN AND VLAD SPATIAL PYRAMIDS

TRAFFIC SCENE RECOGNITION BASED ON DEEP CNN AND VLAD SPATIAL PYRAMIDS TRAFFIC SCENE RECOGNITION BASED ON DEEP CNN AND VLAD SPATIAL PYRAMIDS FANG-YU WU 1, SHI-YANG YAN 1, JEREMY S. SMITH 2, BAI-LING ZHANG 1 1 Department of Computer Science and Software Engineering, Xi an

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2015 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Locality-Sensitive Hashing for Chi2 Distance

Locality-Sensitive Hashing for Chi2 Distance IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXXX, NO. XXX, JUNE 010 1 Locality-Sensitive Hashing for Chi Distance David Gorisse, Matthieu Cord, and Frederic Precioso Abstract In

More information

Recognition and Classification in Images and Video

Recognition and Classification in Images and Video Recognition and Classification in Images and Video 203.4780 http://www.cs.haifa.ac.il/~rita/visual_recog_course/visual%20recognition%20spring%202014.htm Introduction The course is based on UT-Austin course:

More information

LoG Blob Finding and Scale. Scale Selection. Blobs (and scale selection) Achieving scale covariance. Blob detection in 2D. Blob detection in 2D

LoG Blob Finding and Scale. Scale Selection. Blobs (and scale selection) Achieving scale covariance. Blob detection in 2D. Blob detection in 2D Achieving scale covariance Blobs (and scale selection) Goal: independently detect corresponding regions in scaled versions of the same image Need scale selection mechanism for finding characteristic region

More information

Infinite Ensemble Learning with Support Vector Machinery

Infinite Ensemble Learning with Support Vector Machinery Infinite Ensemble Learning with Support Vector Machinery Hsuan-Tien Lin and Ling Li Learning Systems Group, California Institute of Technology ECML/PKDD, October 4, 2005 H.-T. Lin and L. Li (Learning Systems

More information

Machine Learning : Support Vector Machines

Machine Learning : Support Vector Machines Machine Learning Support Vector Machines 05/01/2014 Machine Learning : Support Vector Machines Linear Classifiers (recap) A building block for almost all a mapping, a partitioning of the input space into

More information

Photo Tourism and im2gps: 3D Reconstruction and Geolocation of Internet Photo Collections Part II

Photo Tourism and im2gps: 3D Reconstruction and Geolocation of Internet Photo Collections Part II Photo Tourism and im2gps: 3D Reconstruction and Geolocation of Internet Photo Collections Part II Noah Snavely Cornell James Hays CMU MIT (Fall 2009) Brown (Spring 2010 ) Complexity of the Visual World

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Image Analysis & Retrieval Lec 13 - Feature Dimension Reduction

Image Analysis & Retrieval Lec 13 - Feature Dimension Reduction CS/EE 5590 / ENG 401 Special Topics, Spring 2018 Image Analysis & Retrieval Lec 13 - Feature Dimension Reduction Zhu Li Dept of CSEE, UMKC http://l.web.umkc.edu/lizhu Office Hour: Tue/Thr 2:30-4pm@FH560E,

More information

Chapter 6: Classification

Chapter 6: Classification Chapter 6: Classification 1) Introduction Classification problem, evaluation of classifiers, prediction 2) Bayesian Classifiers Bayes classifier, naive Bayes classifier, applications 3) Linear discriminant

More information

Low Bias Bagged Support Vector Machines

Low Bias Bagged Support Vector Machines Low Bias Bagged Support Vector Machines Giorgio Valentini Dipartimento di Scienze dell Informazione Università degli Studi di Milano, Italy valentini@dsi.unimi.it Thomas G. Dietterich Department of Computer

More information

FPGA Implementation of a HOG-based Pedestrian Recognition System

FPGA Implementation of a HOG-based Pedestrian Recognition System MPC Workshop Karlsruhe 10/7/2009 FPGA Implementation of a HOG-based Pedestrian Recognition System Sebastian Bauer sebastian.bauer@fh-aschaffenburg.de Laboratory for Pattern Recognition and Computational

More information

Nonlinear Classification

Nonlinear Classification Nonlinear Classification INFO-4604, Applied Machine Learning University of Colorado Boulder October 5-10, 2017 Prof. Michael Paul Linear Classification Most classifiers we ve seen use linear functions

More information

Shared Segmentation of Natural Scenes. Dependent Pitman-Yor Processes

Shared Segmentation of Natural Scenes. Dependent Pitman-Yor Processes Shared Segmentation of Natural Scenes using Dependent Pitman-Yor Processes Erik Sudderth & Michael Jordan University of California, Berkeley Parsing Visual Scenes sky skyscraper sky dome buildings trees

More information

Achieving scale covariance

Achieving scale covariance Achieving scale covariance Goal: independently detect corresponding regions in scaled versions of the same image Need scale selection mechanism for finding characteristic region size that is covariant

More information

Maximally Stable Local Description for Scale Selection

Maximally Stable Local Description for Scale Selection Maximally Stable Local Description for Scale Selection Gyuri Dorkó and Cordelia Schmid INRIA Rhône-Alpes, 655 Avenue de l Europe, 38334 Montbonnot, France {gyuri.dorko,cordelia.schmid}@inrialpes.fr Abstract.

More information

Loss Functions and Optimization. Lecture 3-1

Loss Functions and Optimization. Lecture 3-1 Lecture 3: Loss Functions and Optimization Lecture 3-1 Administrative: Live Questions We ll use Zoom to take questions from remote students live-streaming the lecture Check Piazza for instructions and

More information

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines CS4495/6495 Introduction to Computer Vision 8C-L3 Support Vector Machines Discriminative classifiers Discriminative classifiers find a division (surface) in feature space that separates the classes Several

More information

Modeling Complex Temporal Composition of Actionlets for Activity Prediction

Modeling Complex Temporal Composition of Actionlets for Activity Prediction Modeling Complex Temporal Composition of Actionlets for Activity Prediction ECCV 2012 Activity Recognition Reading Group Framework of activity prediction What is an Actionlet To segment a long sequence

More information

Riemannian Metric Learning for Symmetric Positive Definite Matrices

Riemannian Metric Learning for Symmetric Positive Definite Matrices CMSC 88J: Linear Subspaces and Manifolds for Computer Vision and Machine Learning Riemannian Metric Learning for Symmetric Positive Definite Matrices Raviteja Vemulapalli Guide: Professor David W. Jacobs

More information

Least Absolute Shrinkage is Equivalent to Quadratic Penalization

Least Absolute Shrinkage is Equivalent to Quadratic Penalization Least Absolute Shrinkage is Equivalent to Quadratic Penalization Yves Grandvalet Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne, BP 20.529, 60205 Compiègne Cedex, France Yves.Grandvalet@hds.utc.fr

More information

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems 1 Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems V. Estivill-Castro 2 Perception Concepts Vision Chapter 4 (textbook) Sections 4.3 to 4.5 What is the course

More information

The Lovász Hinge: A Novel Convex Surrogate for Submodular Losses

The Lovász Hinge: A Novel Convex Surrogate for Submodular Losses The Lovász Hinge: A Novel Convex Surrogate for Submodular Losses Jiaqian u, Matthew Blaschko To cite this version: Jiaqian u, Matthew Blaschko. The Lovász Hinge: A Novel Convex Surrogate for Submodular

More information

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

Feature detectors and descriptors. Fei-Fei Li

Feature detectors and descriptors. Fei-Fei Li Feature detectors and descriptors Fei-Fei Li Feature Detection e.g. DoG detected points (~300) coordinates, neighbourhoods Feature Description e.g. SIFT local descriptors (invariant) vectors database of

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /9/17 3/9/7 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/9/7 Perceptron as a neural

More information

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Linear classifier Which classifier? x 2 x 1 2 Linear classifier Margin concept x 2

More information

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT)

Metric Embedding of Task-Specific Similarity. joint work with Trevor Darrell (MIT) Metric Embedding of Task-Specific Similarity Greg Shakhnarovich Brown University joint work with Trevor Darrell (MIT) August 9, 2006 Task-specific similarity A toy example: Task-specific similarity A toy

More information

Multi-Category Classification by Soft-Max Combination of Binary Classifiers

Multi-Category Classification by Soft-Max Combination of Binary Classifiers Multi-Category Classification by Soft-Max Combination of Binary Classifiers K. Duan, S. S. Keerthi, W. Chu, S. K. Shevade, A. N. Poo Department of Mechanical Engineering, National University of Singapore

More information

Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time

Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time Experiment presentation for CS3710:Visual Recognition Presenter: Zitao Liu University of Pittsburgh ztliu@cs.pitt.edu

More information

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation.

Sparse vectors recap. ANLP Lecture 22 Lexical Semantics with Dense Vectors. Before density, another approach to normalisation. ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Previous lectures: Sparse vectors recap How to represent

More information

ANLP Lecture 22 Lexical Semantics with Dense Vectors

ANLP Lecture 22 Lexical Semantics with Dense Vectors ANLP Lecture 22 Lexical Semantics with Dense Vectors Henry S. Thompson Based on slides by Jurafsky & Martin, some via Dorota Glowacka 5 November 2018 Henry S. Thompson ANLP Lecture 22 5 November 2018 Previous

More information

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract Scale-Invariance of Support Vector Machines based on the Triangular Kernel François Fleuret Hichem Sahbi IMEDIA Research Group INRIA Domaine de Voluceau 78150 Le Chesnay, France Abstract This paper focuses

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

Histogram of multi-directional Gabor filter bank for motion trajectory feature extraction

Histogram of multi-directional Gabor filter bank for motion trajectory feature extraction Histogram of multi-directional Gabor filter bank for motion trajectory feature extraction NGOC NAM BUI, TAN DAT TRINH, MIN KYUNG PARK, JIN YOUNG KIM Dept. of Electronics and Computer Engineering Chonnam

More information

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier Machine Learning 10-701/15 701/15-781, 781, Spring 2008 Theory of Classification and Nonparametric Classifier Eric Xing Lecture 2, January 16, 2006 Reading: Chap. 2,5 CB and handouts Outline What is theoretically

More information

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University Heeyoul (Henry) Choi Dept. of Computer Science Texas A&M University hchoi@cs.tamu.edu Introduction Speaker Adaptation Eigenvoice Comparison with others MAP, MLLR, EMAP, RMP, CAT, RSW Experiments Future

More information

OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES

OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES THEORY AND PRACTICE Bogustaw Cyganek AGH University of Science and Technology, Poland WILEY A John Wiley &. Sons, Ltd., Publication Contents Preface Acknowledgements

More information

Stat 502X Exam 2 Spring 2014

Stat 502X Exam 2 Spring 2014 Stat 502X Exam 2 Spring 2014 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed This exam consists of 12 parts. I'll score it at 10 points per problem/part

More information

Kernel Methods. Barnabás Póczos

Kernel Methods. Barnabás Póczos Kernel Methods Barnabás Póczos Outline Quick Introduction Feature space Perceptron in the feature space Kernels Mercer s theorem Finite domain Arbitrary domain Kernel families Constructing new kernels

More information

SIFT keypoint detection. D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV 60 (2), pp , 2004.

SIFT keypoint detection. D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV 60 (2), pp , 2004. SIFT keypoint detection D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV 60 (), pp. 91-110, 004. Keypoint detection with scale selection We want to extract keypoints with characteristic

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2010 Lecture 22: Nearest Neighbors, Kernels 4/18/2011 Pieter Abbeel UC Berkeley Slides adapted from Dan Klein Announcements On-going: contest (optional and FUN!)

More information

Ensemble Methods. NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan

Ensemble Methods. NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan Ensemble Methods NLP ML Web! Fall 2013! Andrew Rosenberg! TA/Grader: David Guy Brizan How do you make a decision? What do you want for lunch today?! What did you have last night?! What are your favorite

More information

DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION

DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION DISCRIMINATIVE DECORELATION FOR CLUSTERING AND CLASSIFICATION ECCV 12 Bharath Hariharan, Jitandra Malik, and Deva Ramanan MOTIVATION State-of-the-art Object Detection HOG Linear SVM Dalal&Triggs Histograms

More information

Automatic localization of tombs in aerial imagery: application to the digital archiving of cemetery heritage

Automatic localization of tombs in aerial imagery: application to the digital archiving of cemetery heritage Automatic localization of tombs in aerial imagery: application to the digital archiving of cemetery heritage M. Chaumont 1,2, L. Tribouillard 2, G. Subsol 2, F. Courtade 2, J. Pasquet 2, M. Derras 3 (1)

More information

Distinguish between different types of scenes. Matching human perception Understanding the environment

Distinguish between different types of scenes. Matching human perception Understanding the environment Scene Recognition Adriana Kovashka UTCS, PhD student Problem Statement Distinguish between different types of scenes Applications Matching human perception Understanding the environment Indexing of images

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Learning Graph Laplacian for Image Segmentation

Learning Graph Laplacian for Image Segmentation Learning Graph Laplacian for Image Segmentation EN4: Image processing Sergey Milyaev Radiophysics Department Voronezh State University, Voronezh, Russia sergey.milyaev@gmail.com Olga Barinova Department

More information

INTEREST POINTS AT DIFFERENT SCALES

INTEREST POINTS AT DIFFERENT SCALES INTEREST POINTS AT DIFFERENT SCALES Thank you for the slides. They come mostly from the following sources. Dan Huttenlocher Cornell U David Lowe U. of British Columbia Martial Hebert CMU Intuitively, junctions

More information

Invariant Scattering Convolution Networks

Invariant Scattering Convolution Networks Invariant Scattering Convolution Networks Joan Bruna and Stephane Mallat Submitted to PAMI, Feb. 2012 Presented by Bo Chen Other important related papers: [1] S. Mallat, A Theory for Multiresolution Signal

More information

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lessons 6 10 Jan 2017 Outline Perceptrons and Support Vector machines Notation... 2 Perceptrons... 3 History...3

More information

Neural networks and optimization

Neural networks and optimization Neural networks and optimization Nicolas Le Roux Criteo 18/05/15 Nicolas Le Roux (Criteo) Neural networks and optimization 18/05/15 1 / 85 1 Introduction 2 Deep networks 3 Optimization 4 Convolutional

More information

Kernel Density Topic Models: Visual Topics Without Visual Words

Kernel Density Topic Models: Visual Topics Without Visual Words Kernel Density Topic Models: Visual Topics Without Visual Words Konstantinos Rematas K.U. Leuven ESAT-iMinds krematas@esat.kuleuven.be Mario Fritz Max Planck Institute for Informatics mfrtiz@mpi-inf.mpg.de

More information

Speed ( v ) is the distance an object travels during a given time interval divided by the time interval.

Speed ( v ) is the distance an object travels during a given time interval divided by the time interval. v 8.2 Average Velocity Speed ( v ) is the distance an object travels during a given time interval divided by the time interval. Speed is a scalar quantity. The SI unit for speed is metres per second (m/s).

More information

Machine Learning. Kernels. Fall (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang. (Chap. 12 of CIML)

Machine Learning. Kernels. Fall (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang. (Chap. 12 of CIML) Machine Learning Fall 2017 Kernels (Kernels, Kernelized Perceptron and SVM) Professor Liang Huang (Chap. 12 of CIML) Nonlinear Features x4: -1 x1: +1 x3: +1 x2: -1 Concatenated (combined) features XOR:

More information

Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data

Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data Spectral and Spatial Methods for the Classification of Urban Remote Sensing Data Mathieu Fauvel gipsa-lab/dis, Grenoble Institute of Technology - INPG - FRANCE Department of Electrical and Computer Engineering,

More information