Transforms. Convergence of probability generating functions. Convergence of characteristic functions functions

Size: px
Start display at page:

Download "Transforms. Convergence of probability generating functions. Convergence of characteristic functions functions"

Transcription

1 Transforms For non-negative integer value ranom variables, let the probability generating function g X : [0, 1] [0, 1] be efine by g X (t) = E(t X ). The moment generating function ψ X (t) = E(e tx ) is efine as long this expectation is efine an there exists h > 0 such that E(e tx ) < for all t [ h, h]. The characteristic function is given by ϕ X (t) = E(e itx ) = E(cos[tX ]) + ie(sin[tx ]) an is efine for all ranom variables. We will use these transforms for proving convergence results. In particular, we will investigate which conitions are neee for equivalence between convergence in istribution an convergence of the transforms. Convergence of probability generating functions All convergence results are for n. Theorem (4.1) Let X, X 1, X 2, be non-negative integer value ranom variables, an suppose that g Xn (t) g X (t) for 0 t 1, then X n X Exercise: prove that if X is almost surely finite, then X n X implies g Xn (t) g X (t) for 0 t 1. Convergence of moment generating functions Theorem (4.2) Let X 1, X 2, be ranom variables, such that the moment generating function ψ Xn (t) exists for t h for some h > 0 an all n. Suppose further that X is a ranom variable, for which ψ X (t) exists for t h 1 < h for some h 1 > 0 an that ψ Xn (t) ψ X (t) for t h 1, then X n X Convergence of characteristic functions functions Theorem (4.3) Let X, X 1, X 2, be ranom variables an suppose that ϕ Xn (t) ϕ X (t) for t R, then X n X. We can relax the assumptions. If ϕ Xn (t) ϕ(t) for some ϕ(t) which is continuous in t = 0, then ϕ(t) is the characteristic function of some ranom variable X an X n X It is also true that if X n X then ϕxn (t) ϕ X (t) for t R. Since transforms are transforming istributions, the convergence results are only about convergence in istribution, not about almost sure convergence, convergence in probability or r-th mean.

2 Proof of X n X ϕxn (t) ϕ X (t) Consequence Let h(x) = 1(a < x b), where a an b are points of continuity of F X. Then E(h(X n )) = P(a < X n b) = F Xn (b) F Xn (a) F X (b) F X (a) = E(h(X )) Approximate e itx by m w kh k (x) where w k C an h k (x) = 1(a k < x b k ) for points of continuity a k an b k. It follow (after some (in this course) unjustifie playing with the orer of limits) that lim E(e itxn ) E(e itx ) will become arbitrary small. Let X, X 1, X 2, be ranom variables an suppose that ϕ Xn (t) e itc for some c R an all t R, then X n c. If follows from Theorem 4.3 that X n c, which, since c is P constant, implies X n c We can now easily prove the Weak Law of Large Numbers: Let X 1, X 2, be i.i.. ranom variables with E(X 1 ) = µ < then n 1 S n = n 1 n X k P µ Using (in orer of occurrence) Theorem 4.4.9, inepenence, ientical istributions an Theorem gives n ϕ Sn/n(t) = ϕ Sn (t/n) = ϕ Xk (t/n) = [ϕ X1 (t/n)] n = [1 + iµt/n + o(t/n)] n [e iµt/n ] n = e iµt Consequence Example Let X, X 1, X 2, be ranom variables an suppose that X n X an Xn Y. Now ϕ Xn (t) ϕ X (t) an ϕ Xn (t) ϕ Y (t) for t R ϕ X (t) ϕ Y (t) ϕ X (t) ϕ Xn (t) + ϕ Xn (t) ϕ Y (t) 0 by Remark 4.2 This gives ϕ X (t) = ϕ Y (t) an by Theorem that X an Y have the same istribution. Assume P(X n = n) = 1/n = 1 P(X n = 0), then ϕ Xn (t) = (1 1/n)e it0 + (1/n)e itn = 1 + (e itn 1)/n 1 this implies X n P 0 Note that ψ Xn = 1 1/n + (1/n)e tn for t > 0 We cannot use Theorem 4.2, since there is no open ball aroun 0 on which ψ X (t) is efine.

3 Example Assume X n = Bin(n, λ/n) then n ( ) n g Xn (t) = (t λ k n )k (1 λ n )n k = (1 λ n + t λ n )n = (1 + k=0 λ(t 1) ) n e λ(t 1) = n (λt) k k=0 this implies Bin(n, λ/n) Poi(λ) k! e λ Central Limit Theorem Theorem Let X 1, X 2, be i.i.. ranom variables with µ = E(X 1 ) < an σ 2 = E((X 1 µ) 2 ) <. Let S n = n X k, then S n nµ σ 2 n N (0, 1) With Y k = X k µ. The statement of the theorem reas σ 2 1 n n Y k N (0, 1) Note that E(Y 1 ) = 0 an Var(Y 1 ) = E((Y 1 ) 2 ) = σ2 σ 2 = 1 Proof of Central Limit Theorem Let Z = Sn nµ σ 2 n = 1 n n Y k then ϕ Z (t) = n ϕ Yk (t/ n) = [ϕ Yk (t/ n)] n = [1 + 0 it 1 1 n 2 ( t ) 2 t + o( n 2 )]n e t2 /2 n which is the characteristic function of a stanar normal istribution (see page 74). Empirical istribution functions Let X 1, X 2, be i.i.. ranom variables with istribution function F. The (Ranom!!) empirical istribution function is efine by F n (x) = n 1 {i; X i x} = n 1 n i=1 1(X i x) note that nf n (x) = n i=1 1(X i x) = Bin(n, F (x)) E(F n (x)) = n 1 nf (x) = F (x) an Var(F n (x)) = n 2 nf (x)(1 F (x)) < 1/n 0 The weak law of large numbers gives F n (x) P F (x) the central limit theorem gives nf n(x) nf (x) nf (x)(1 F (x)) N (0, 1) This gives information about the spee of convergence of F n (x) to F (x)

4 Example: Stirling s formula n! Stirling s formula states that n n+1/2 e n 1 Γ(u) More general u u 1/2 e u 1, where Γ(u) = 0 x u 1 e x x. Remember Γ(u) = (u 1)! for u N Let Y be a ranom variable with Γ istribution with mean an variance both u, i.e. f (x) = x u 1 e x Γ(u) an characteristic function ϕ(t) = (1 it) u X = (Y u)/ u has istribution function f u (x) = u(x u + u) u 1 e (x u+u) /Γ(u) an characteristic function ϕ u (t) = e it u (1 it/ u) u by the inversion theorem for continuous ensities (f (x) = 1 e itx ϕ(t)t) we obtain f u (0) = 1 ϕ u(t)t Example: Stirling s formula continue We have f u (0) = u u 1/2 e u /Γ(u) an f u (0) = 1 ϕ u(t)t We also obtain (for u ) ϕ u (t) = e it u (1 it/ u) u = exp[ it u u log[(1 it/ u)] = exp[ it u u(it/ u + t 2 /(2u) + O(t 3 u 3/2 ))] u u 1/2 e u /Γ(u) = 1 lim u uu 1/2 e u /Γ(u) = lim = 1 = exp[ t 2 /2 + O(t 3 u 1/2 ))] e t2 /2 ϕ u(t)t gives u 1 lim ϕ u(t)t = 1 u ϕ u (t)t e t2 /2 t = 1 Remark Tail events Let X 1, X 2, be i.i.. ranom variables with µ = E(X 1 ) <, σ 2 = E((X 1 µ) 2 ) < an E( X 1 3 ) <. Furthermore, let S n = n X k an Φ(x) = x 1 e y 2 /2 y be the istribution function of a stanar normal istribution an let F n (x) be the istribution function of Sn nµ Then σ 2 n sup x F n (x) Φ(x) CE( X 1 3 )/ σ 6 n for some constant C We omit the proof. Let X 1, X 2, be ranom variables on (Ω, F, P) Let H n = σ(x n+1, X n+2, ) be the smallest σ-algebra in which all ranom variables X n+1, X n+2, are measurable H n H n+1, so H = n H n is well efine. H is calle the tail σ-algebra, an events containe in it are tail events Some examples of tail events are { n=1 1(X n > 0) = }, {lim sup X n = } an { n=1 X n converges}

5 Kolmogorov s zero-one law Remark Theorem If X 1, X 2, are inepenent, then all tail events H H satisfy either P(H) = 1 or P(H) = 0 The proof is left as an exercise In many situations, it is easy to apply Kolmogorov s zero-one law to show that some event has probability 0 or 1, but surprisingly har to etermine which of the two. Let X 1, X 2, be i.i.. ranom variables with µ = E(X 1 ) = 0 an σ 2 = E((X 1 µ) 2 ) = 1. Furthermore, let S n = n X k Observe that lim sup n S n / 2n log log[n] = z is a tail event for all z R an has probability 0 or 1. Without proof we state the following theorem Theorem (Law of the iterate logarithm) P(lim sup n S n / 2n log log[n] = 1) = 1

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

1. Aufgabenblatt zur Vorlesung Probability Theory

1. Aufgabenblatt zur Vorlesung Probability Theory 24.10.17 1. Aufgabenblatt zur Vorlesung By (Ω, A, P ) we always enote the unerlying probability space, unless state otherwise. 1. Let r > 0, an efine f(x) = 1 [0, [ (x) exp( r x), x R. a) Show that p f

More information

Topic 7: Convergence of Random Variables

Topic 7: Convergence of Random Variables Topic 7: Convergence of Ranom Variables Course 003, 2016 Page 0 The Inference Problem So far, our starting point has been a given probability space (S, F, P). We now look at how to generate information

More information

Econometrics I. September, Part I. Department of Economics Stanford University

Econometrics I. September, Part I. Department of Economics Stanford University Econometrics I Deartment of Economics Stanfor University Setember, 2008 Part I Samling an Data Poulation an Samle. ineenent an ientical samling. (i.i..) Samling with relacement. aroximates samling without

More information

Characteristic Functions and the Central Limit Theorem

Characteristic Functions and the Central Limit Theorem Chapter 6 Characteristic Functions and the Central Limit Theorem 6.1 Characteristic Functions 6.1.1 Transforms and Characteristic Functions. There are several transforms or generating functions used in

More information

Logarithmic spurious regressions

Logarithmic spurious regressions Logarithmic spurious regressions Robert M. e Jong Michigan State University February 5, 22 Abstract Spurious regressions, i.e. regressions in which an integrate process is regresse on another integrate

More information

Convergence in Distribution

Convergence in Distribution Convergence in Distribution Undergraduate version of central limit theorem: if X 1,..., X n are iid from a population with mean µ and standard deviation σ then n 1/2 ( X µ)/σ has approximately a normal

More information

Gaussian vectors and central limit theorem

Gaussian vectors and central limit theorem Gaussian vectors and central limit theorem Samy Tindel Purdue University Probability Theory 2 - MA 539 Samy T. Gaussian vectors & CLT Probability Theory 1 / 86 Outline 1 Real Gaussian random variables

More information

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ).

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ). 1 Economics 620, Lecture 8a: Asymptotics II Uses of Asymptotic Distributions: Suppose X n! 0 in probability. (What can be said about the distribution of X n?) In order to get distribution theory, we need

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

Lecture 1: Review of Basic Asymptotic Theory

Lecture 1: Review of Basic Asymptotic Theory Lecture 1: Instructor: Department of Economics Stanfor University Prepare by Wenbo Zhou, Renmin University Basic Probability Theory Takeshi Amemiya, Avance Econometrics, 1985, Harvar University Press.

More information

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy,

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy, NOTES ON EULER-BOOLE SUMMATION JONATHAN M BORWEIN, NEIL J CALKIN, AND DANTE MANNA Abstract We stuy a connection between Euler-MacLaurin Summation an Boole Summation suggeste in an AMM note from 196, which

More information

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang.

March 1, Florida State University. Concentration Inequalities: Martingale. Approach and Entropy Method. Lizhe Sun and Boning Yang. Florida State University March 1, 2018 Framework 1. (Lizhe) Basic inequalities Chernoff bounding Review for STA 6448 2. (Lizhe) Discrete-time martingales inequalities via martingale approach 3. (Boning)

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca October 22nd, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

Good luck! (W (t(j + 1)) W (tj)), n 1.

Good luck! (W (t(j + 1)) W (tj)), n 1. Av Matematisk statistik TENTAMEN I SF940 SANNOLIKHETSTEORI/EXAM IN SF940 PROBABILITY THE- ORY, WEDNESDAY OCTOBER 5, 07, 0800-300 Examinator : Boualem Djehiche, tel 08-7907875, email: boualem@kthse Tillåtna

More information

Levy Process and Infinitely Divisible Law

Levy Process and Infinitely Divisible Law Stat205B: Probability Theory (Spring 2003) Lecture: 26 Levy Process an Infinitely Divisible Law Lecturer: James W. Pitman Scribe: Bo Li boli@stat.berkeley.eu Levy Processes an Infinitely Divisible Law

More information

PROBABILITY THEORY LECTURE 3

PROBABILITY THEORY LECTURE 3 PROBABILITY THEORY LECTURE 3 Per Sidén Division of Statistics Dept. of Computer and Information Science Linköping University PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L3 1 / 15 OVERVIEW LECTURE

More information

3.6. Let s write out the sample space for this random experiment:

3.6. Let s write out the sample space for this random experiment: STAT 5 3 Let s write out the sample space for this ranom experiment: S = {(, 2), (, 3), (, 4), (, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)} This sample space assumes the orering of the balls

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

MAT 135B Midterm 1 Solutions

MAT 135B Midterm 1 Solutions MAT 35B Midterm Solutions Last Name (PRINT): First Name (PRINT): Student ID #: Section: Instructions:. Do not open your test until you are told to begin. 2. Use a pen to print your name in the spaces above.

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics Chapter Three. Point Estimation 3.4 Uniformly Minimum Variance Unbiased Estimator(UMVUE) Criteria for Best Estimators MSE Criterion Let F = {p(x; θ) : θ Θ} be a parametric distribution

More information

Introduction to Self-normalized Limit Theory

Introduction to Self-normalized Limit Theory Introduction to Self-normalized Limit Theory Qi-Man Shao The Chinese University of Hong Kong E-mail: qmshao@cuhk.edu.hk Outline What is the self-normalization? Why? Classical limit theorems Self-normalized

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

Stochastic Models (Lecture #4)

Stochastic Models (Lecture #4) Stochastic Models (Lecture #4) Thomas Verdebout Université libre de Bruxelles (ULB) Today Today, our goal will be to discuss limits of sequences of rv, and to study famous limiting results. Convergence

More information

1 Math 285 Homework Problem List for S2016

1 Math 285 Homework Problem List for S2016 1 Math 85 Homework Problem List for S016 Note: solutions to Lawler Problems will appear after all of the Lecture Note Solutions. 1.1 Homework 1. Due Friay, April 8, 016 Look at from lecture note exercises:

More information

Probability and Measure

Probability and Measure Chapter 4 Probability and Measure 4.1 Introduction In this chapter we will examine probability theory from the measure theoretic perspective. The realisation that measure theory is the foundation of probability

More information

SUFFICIENT STATISTICS

SUFFICIENT STATISTICS SUFFICIENT STATISTICS. Introduction Let X (X,..., X n ) be a random sample from f θ, where θ Θ is unknown. We are interested using X to estimate θ. In the simple case where X i Bern(p), we found that the

More information

Exercise Exercise Homework #6 Solutions Thursday 6 April 2006

Exercise Exercise Homework #6 Solutions Thursday 6 April 2006 Unless otherwise stated, for the remainder of the solutions, define F m = σy 0,..., Y m We will show EY m = EY 0 using induction. m = 0 is obviously true. For base case m = : EY = EEY Y 0 = EY 0. Now assume

More information

LECTURE NOTES ON DVORETZKY S THEOREM

LECTURE NOTES ON DVORETZKY S THEOREM LECTURE NOTES ON DVORETZKY S THEOREM STEVEN HEILMAN Abstract. We present the first half of the paper [S]. In particular, the results below, unless otherwise state, shoul be attribute to G. Schechtman.

More information

17. Convergence of Random Variables

17. Convergence of Random Variables 7. Convergence of Random Variables In elementary mathematics courses (such as Calculus) one speaks of the convergence of functions: f n : R R, then lim f n = f if lim f n (x) = f(x) for all x in R. This

More information

Lecture 4: September Reminder: convergence of sequences

Lecture 4: September Reminder: convergence of sequences 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 4: September 6 In this lecture we discuss the convergence of random variables. At a high-level, our first few lectures focused

More information

Jointly continuous distributions and the multivariate Normal

Jointly continuous distributions and the multivariate Normal Jointly continuous istributions an the multivariate Normal Márton alázs an álint Tóth October 3, 04 This little write-up is part of important founations of probability that were left out of the unit Probability

More information

Some Examples. Uniform motion. Poisson processes on the real line

Some Examples. Uniform motion. Poisson processes on the real line Some Examples Our immeiate goal is to see some examples of Lévy processes, an/or infinitely-ivisible laws on. Uniform motion Choose an fix a nonranom an efine X := for all (1) Then, {X } is a [nonranom]

More information

the convolution of f and g) given by

the convolution of f and g) given by 09:53 /5/2000 TOPIC Characteristic functions, cont d This lecture develops an inversion formula for recovering the density of a smooth random variable X from its characteristic function, and uses that

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0.

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0. Calculus refresher Disclaimer: I claim no original content on this ocument, which is mostly a summary-rewrite of what any stanar college calculus book offers. (Here I ve use Calculus by Dennis Zill.) I

More information

IEOR 3106: Introduction to Operations Research: Stochastic Models. Fall 2011, Professor Whitt. Class Lecture Notes: Thursday, September 15.

IEOR 3106: Introduction to Operations Research: Stochastic Models. Fall 2011, Professor Whitt. Class Lecture Notes: Thursday, September 15. IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2011, Professor Whitt Class Lecture Notes: Thursday, September 15. Random Variables, Conditional Expectation and Transforms 1. Random

More information

Convergence of Random Walks

Convergence of Random Walks Chapter 16 Convergence of Ranom Walks This lecture examines the convergence of ranom walks to the Wiener process. This is very important both physically an statistically, an illustrates the utility of

More information

Stat 475 Life Contingencies I. Chapter 2: Survival models

Stat 475 Life Contingencies I. Chapter 2: Survival models Stat 475 Life Contingencies I Chapter 2: Survival models The future lifetime random variable Notation We are interested in analyzing and describing the future lifetime of an individual. We use (x) to denote

More information

18.175: Lecture 8 Weak laws and moment-generating/characteristic functions

18.175: Lecture 8 Weak laws and moment-generating/characteristic functions 18.175: Lecture 8 Weak laws and moment-generating/characteristic functions Scott Sheffield MIT 18.175 Lecture 8 1 Outline Moment generating functions Weak law of large numbers: Markov/Chebyshev approach

More information

February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM

February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM Abstract. The Rao-Blacwell theorem told us how to improve an estimator. We will discuss conditions on when the Rao-Blacwellization of an estimator

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

GENERATING FUNCTIONS AND CENTRAL LIMIT THEOREMS

GENERATING FUNCTIONS AND CENTRAL LIMIT THEOREMS GENERATING FUNCTIONS AND CENTRAL LIMIT THEOREMS Michael Drmota Institute of Discrete Mathematics and Geometry Vienna University of Technology A 1040 Wien, Austria michael.drmota@tuwien.ac.at http://www.dmg.tuwien.ac.at/drmota/

More information

Fundamental Tools - Probability Theory II

Fundamental Tools - Probability Theory II Fundamental Tools - Probability Theory II MSc Financial Mathematics The University of Warwick September 29, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory II 1 / 22 Measurable random

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

Metric Spaces. Exercises Fall 2017 Lecturer: Viveka Erlandsson. Written by M.van den Berg

Metric Spaces. Exercises Fall 2017 Lecturer: Viveka Erlandsson. Written by M.van den Berg Metric Spaces Exercises Fall 2017 Lecturer: Viveka Erlandsson Written by M.van den Berg School of Mathematics University of Bristol BS8 1TW Bristol, UK 1 Exercises. 1. Let X be a non-empty set, and suppose

More information

1 Probability theory. 2 Random variables and probability theory.

1 Probability theory. 2 Random variables and probability theory. Probability theory Here we summarize some of the probability theory we need. If this is totally unfamiliar to you, you should look at one of the sources given in the readings. In essence, for the major

More information

Week 2. Review of Probability, Random Variables and Univariate Distributions

Week 2. Review of Probability, Random Variables and Univariate Distributions Week 2 Review of Probability, Random Variables and Univariate Distributions Probability Probability Probability Motivation What use is Probability Theory? Probability models Basis for statistical inference

More information

Self-normalized Cramér-Type Large Deviations for Independent Random Variables

Self-normalized Cramér-Type Large Deviations for Independent Random Variables Self-normalized Cramér-Type Large Deviations for Independent Random Variables Qi-Man Shao National University of Singapore and University of Oregon qmshao@darkwing.uoregon.edu 1. Introduction Let X, X

More information

under the null hypothesis, the sign test (with continuity correction) rejects H 0 when α n + n 2 2.

under the null hypothesis, the sign test (with continuity correction) rejects H 0 when α n + n 2 2. Assignment 13 Exercise 8.4 For the hypotheses consiere in Examples 8.12 an 8.13, the sign test is base on the statistic N + = #{i : Z i > 0}. Since 2 n(n + /n 1) N(0, 1) 2 uner the null hypothesis, the

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

ADVANCED PROBABILITY: SOLUTIONS TO SHEET 1

ADVANCED PROBABILITY: SOLUTIONS TO SHEET 1 ADVANCED PROBABILITY: SOLUTIONS TO SHEET 1 Last compiled: November 6, 213 1. Conditional expectation Exercise 1.1. To start with, note that P(X Y = P( c R : X > c, Y c or X c, Y > c = P( c Q : X > c, Y

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Math 832 Fall University of Wisconsin at Madison. Instructor: David F. Anderson

Math 832 Fall University of Wisconsin at Madison. Instructor: David F. Anderson Math 832 Fall 2013 University of Wisconsin at Madison Instructor: David F. Anderson Pertinent information Instructor: David Anderson Office: Van Vleck 617 email: anderson@math.wisc.edu Office hours: Mondays

More information

P(x) = 1 + x n. (20.11) n n φ n(x) = exp(x) = lim φ (x) (20.8) Our first task for the chain rule is to find the derivative of the exponential

P(x) = 1 + x n. (20.11) n n φ n(x) = exp(x) = lim φ (x) (20.8) Our first task for the chain rule is to find the derivative of the exponential 20. Derivatives of compositions: the chain rule At the en of the last lecture we iscovere a nee for the erivative of a composition. In this lecture we show how to calculate it. Accoringly, let P have omain

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

Markovian N-Server Queues (Birth & Death Models)

Markovian N-Server Queues (Birth & Death Models) Markovian -Server Queues (Birth & Death Moels) - Busy Perio Arrivals Poisson (λ) ; Services exp(µ) (E(S) = /µ) Servers statistically ientical, serving FCFS. Offere loa R = λ E(S) = λ/µ Erlangs Q(t) = number

More information

Lecture I: Asymptotics for large GUE random matrices

Lecture I: Asymptotics for large GUE random matrices Lecture I: Asymptotics for large GUE random matrices Steen Thorbjørnsen, University of Aarhus andom Matrices Definition. Let (Ω, F, P) be a probability space and let n be a positive integer. Then a random

More information

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities PCMI 207 - Introduction to Random Matrix Theory Handout #2 06.27.207 REVIEW OF PROBABILITY THEORY Chapter - Events and Their Probabilities.. Events as Sets Definition (σ-field). A collection F of subsets

More information

A D VA N C E D P R O B A B I L - I T Y

A D VA N C E D P R O B A B I L - I T Y A N D R E W T U L L O C H A D VA N C E D P R O B A B I L - I T Y T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Conditional Expectation 5 1.1 Discrete Case 6 1.2

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 8: Expectation in Action Relevant textboo passages: Pitman [6]: Chapters 3 and 5; Section 6.4

More information

CSE 312 Final Review: Section AA

CSE 312 Final Review: Section AA CSE 312 TAs December 8, 2011 General Information General Information Comprehensive Midterm General Information Comprehensive Midterm Heavily weighted toward material after the midterm Pre-Midterm Material

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

Probability and Measure

Probability and Measure Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 84 Paper 4, Section II 26J Let (X, A) be a measurable space. Let T : X X be a measurable map, and µ a probability

More information

Tail and Concentration Inequalities

Tail and Concentration Inequalities CSE 694: Probabilistic Analysis and Randomized Algorithms Lecturer: Hung Q. Ngo SUNY at Buffalo, Spring 2011 Last update: February 19, 2011 Tail and Concentration Ineualities From here on, we use 1 A to

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Random Models Tusheng Zhang February 14, 013 1 Introduction In this module, we will introduce some random models which have many real life applications. The course consists of four parts. 1. A brief review

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Monday, September 26, 2011 Lecture 10: Exponential families and Sufficient statistics Exponential Families Exponential families are important parametric families

More information

Statistics. Statistics

Statistics. Statistics The main aims of statistics 1 1 Choosing a model 2 Estimating its parameter(s) 1 point estimates 2 interval estimates 3 Testing hypotheses Distributions used in statistics: χ 2 n-distribution 2 Let X 1,

More information

4 Sums of Independent Random Variables

4 Sums of Independent Random Variables 4 Sums of Independent Random Variables Standing Assumptions: Assume throughout this section that (,F,P) is a fixed probability space and that X 1, X 2, X 3,... are independent real-valued random variables

More information

Fundamental Tools - Probability Theory IV

Fundamental Tools - Probability Theory IV Fundamental Tools - Probability Theory IV MSc Financial Mathematics The University of Warwick October 1, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory IV 1 / 14 Model-independent

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

Bivariate scatter plots and densities

Bivariate scatter plots and densities Multivariate descriptive statistics Bivariate scatter plots and densities Plotting two (related) variables is often called a scatter plot. It is a bivariate version of the rug plot. It can show something

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

Martingale Theory for Finance

Martingale Theory for Finance Martingale Theory for Finance Tusheng Zhang October 27, 2015 1 Introduction 2 Probability spaces and σ-fields 3 Integration with respect to a probability measure. 4 Conditional expectation. 5 Martingales.

More information

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University Section 27 The Central Limit Theorem Po-Ning Chen, Professor Institute of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 3000, R.O.C. Identically distributed summands 27- Central

More information

Lecture 19: Properties of Expectation

Lecture 19: Properties of Expectation Lecture 19: Properties of Expectation Dan Sloughter Furman University Mathematics 37 February 11, 4 19.1 The unconscious statistician, revisited The following is a generalization of the law of the unconscious

More information

Asymptotic Statistics-VI. Changliang Zou

Asymptotic Statistics-VI. Changliang Zou Asymptotic Statistics-VI Changliang Zou Kolmogorov-Smirnov distance Example (Kolmogorov-Smirnov confidence intervals) We know given α (0, 1), there is a well-defined d = d α,n such that, for any continuous

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

µ X (A) = P ( X 1 (A) )

µ X (A) = P ( X 1 (A) ) 1 STOCHASTIC PROCESSES This appendix provides a very basic introduction to the language of probability theory and stochastic processes. We assume the reader is familiar with the general measure and integration

More information

Lecture 22: Variance and Covariance

Lecture 22: Variance and Covariance EE5110 : Probability Foundations for Electrical Engineers July-November 2015 Lecture 22: Variance and Covariance Lecturer: Dr. Krishna Jagannathan Scribes: R.Ravi Kiran In this lecture we will introduce

More information

Convergence of random variables, and the Borel-Cantelli lemmas

Convergence of random variables, and the Borel-Cantelli lemmas Stat 205A Setember, 12, 2002 Convergence of ranom variables, an the Borel-Cantelli lemmas Lecturer: James W. Pitman Scribes: Jin Kim (jin@eecs) 1 Convergence of ranom variables Recall that, given a sequence

More information

Exercises in Extreme value theory

Exercises in Extreme value theory Exercises in Extreme value theory 2016 spring semester 1. Show that L(t) = logt is a slowly varying function but t ǫ is not if ǫ 0. 2. If the random variable X has distribution F with finite variance,

More information

Lecture Notes 9: Probability

Lecture Notes 9: Probability University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 91 Lecture Notes 9: Probability Andrés Carvajal, with many revisions by Peter Hammond September, 2011; latest revision September

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

MAS113 Introduction to Probability and Statistics

MAS113 Introduction to Probability and Statistics MAS113 Introduction to Probability and Statistics School of Mathematics and Statistics, University of Sheffield 2018 19 Identically distributed Suppose we have n random variables X 1, X 2,..., X n. Identically

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 20, 2009 Preliminaries for dealing with continuous random processes. Brownian motions. Our main reference for this lecture

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

18.175: Lecture 15 Characteristic functions and central limit theorem

18.175: Lecture 15 Characteristic functions and central limit theorem 18.175: Lecture 15 Characteristic functions and central limit theorem Scott Sheffield MIT Outline Characteristic functions Outline Characteristic functions Characteristic functions Let X be a random variable.

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

Lecture 3 - Expectation, inequalities and laws of large numbers

Lecture 3 - Expectation, inequalities and laws of large numbers Lecture 3 - Expectation, inequalities and laws of large numbers Jan Bouda FI MU April 19, 2009 Jan Bouda (FI MU) Lecture 3 - Expectation, inequalities and laws of large numbersapril 19, 2009 1 / 67 Part

More information

On the convergence of sequences of random variables: A primer

On the convergence of sequences of random variables: A primer BCAM May 2012 1 On the convergence of sequences of random variables: A primer Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM May 2012 2 A sequence a :

More information

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1 Problem Sheet 1 1. Let Ω = {1, 2, 3}. Let F = {, {1}, {2, 3}, {1, 2, 3}}, F = {, {2}, {1, 3}, {1, 2, 3}}. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X :

More information

arxiv: v4 [math.pr] 27 Jul 2016

arxiv: v4 [math.pr] 27 Jul 2016 The Asymptotic Distribution of the Determinant of a Ranom Correlation Matrix arxiv:309768v4 mathpr] 7 Jul 06 AM Hanea a, & GF Nane b a Centre of xcellence for Biosecurity Risk Analysis, University of Melbourne,

More information