SPIN2010. I.Meshkov 1, Yu.Filatov 1,2. Forschungszentrum Juelich GmbH. 19th International Spin Physics Symposium September 27 October 2, 2010

Size: px
Start display at page:

Download "SPIN2010. I.Meshkov 1, Yu.Filatov 1,2. Forschungszentrum Juelich GmbH. 19th International Spin Physics Symposium September 27 October 2, 2010"

Transcription

1 Forschungszentrum Juelich GmbH SPIN200 9th International Spin Physics Symposium September 27 October 2, 200 Jülich, Germany Polarized Hadron Beams in NICA Project I.Meshkov, Yu.Filatov,2 JINR, Dubna 2 Moscow Institute for Physics and Technology

2 Contents Introduction: ti physics at NICA. Facility scheme and operation scenario 2. Polarized protons and deuterons acceleration in Nuclotron 3. Polarized particle dynamics in NICA Collider 4. Luminosity of p p and d d colliding beams Conclusion 2 I.Meshkov, Yu.Filatov Polarized Beams in NICA, SPIN200, Sep 27-Oct02, 200, Juelich

3 Introduction: Physics at NICA Spin Physics at NICA The SPD program includes the studies of Drell-Yan processes, J/Ψ production processes, Spin effects in elastic p p, p d and d d scattering, Spin effects in inclusive high-pt reactions, Polarization effects in heavy ions collisions. i See Report by A.Nagaytsev, Friday, October THE SPIN PHYSICS DETECTOR- SPD to study spin structure of the nucleon and polarization effects at NICA (Conceptual Design Report) S i ff t i l ti d (Conceptual Design Report) Polarized beams of protons and deuterons: (both longitudinal and transverse polarizations) p p s pp = 2 27 GeV (5 2.6 GeV kinetic energy ) JINR Dubna 200 d d s NN = GeV (2 5.9 GeV/u ion kinetic energy ) Laverage E30 cm-2 s- (at s pp = 27 GeV) pp 3 I.Meshkov, Yu.Filatov Polarized Beams in NICA, SPIN200, Sep 27-Oct02, 200, Juelich

4 . Facility Scheme and Operation Scenario NICA Layout MPD 2.5 m 4.0 m Booster SPI & LU-20 ( Old linac) Synchrophasotron yoke Nuclotron beam transfer line Nuclotron Spin Physics Detector (SPD) Beam transfer lines & New research area 4 I.Meshkov, Yu.Filatov Polarized Beams in NICA, SPIN200, Sep 27-Oct02, 200, Juelich

5 . Facility Scheme and Operation Scenario (Contnd) Polarized proton acceleration (Contnd) Source of Polarized Ions (SPI) LU-20: ions/pulse of d (5 MeV/u) or p 20 MeV Collider (45 Tm) Storage of 30 bunches by x0 9 p per ring at 5-2 GeV, No cooling! Booster (25 Tm) (2-3) single-turn injection, storage of p, acceleration up to 50 MeV, electron cooling, extraction IP- Two SC collider rings IP-2 Below st dangerous resonance in the Booster To be analyzed! 2х30 injection cycles Nuclotron (45 Tm) injection of one bunch of. 0 9 ions, acceleration up to 2 GeV max. I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich 5

6 2. Polarized Protons and Deuterons Acceleration in Nuclotron Type of resonance Spin resonances Resonance condition Total number of resonances at acceleration p 0 2 GeV d 0 6 GeV/u.Intrinsic res. ν spin = kp ± Q y Integer res. ν spin = k 25 3.Nonsuperperiodic ν spin = m ± Q y, m kp (5.6 GeV/u) Coupling res. ν spin = m ± Q x 49 2 ν spin spin precession tune, Q x,y - betatron tunes p k, m integers, p number of superperiods (8 for Nuclotron) Power of the spin resonances: w,2 >> w 3,4 Thus, no problem for d acceleration in Nuclotron 6 I.Meshkov, Yu.Filatov Polarized Beams in NICA, SPIN200, Sep 27-Oct02, 200, Juelich y

7 2. Polarized Protons and Deuterons Acceleration in Nuclotron db/dt = T/s Spin resonances at Nuclotron.Intrinsic res. ν spin = kp ± Q y lg(w/wd ) 2.Integer res. ν spin = k lg(w/w D ) E p,gev w D = w D = E p,gev Here w is the resonance strength: w ~ /(2n θ ), where n θ is turn number at exact resonance that is sufficient for spin overturn (at db/dt = 0!). w D is the resonance strength that produces full depolarization at free crossing of the resonance at given crossing speed at given db/dt (or dγ/dt). (In other words: one has to choose a crossing speed and calculate w D for it; then to compare actual resonance strength w with w D ) 7 I.Meshkov, Yu.Filatov Polarized Beams in NICA, SPIN200, Sep 27-Oct02, 200, Juelich

8 2. Polarized Protons and Deuterons Acceleration in Nuclotron db/dt = T/s Spin resonances at Nuclotron lg(w/w D ) 3. Nonsuperperiodic res. ν spin = m ± Q y, m kp E p,gev lg(w/w D ) 4. Coupling res. ν spin = m ± Q x, m kp E p,gev w D = w D = D Not any resonance is dangerous! There are three Types of Spin resonances at Nuclotron: above blue line strong resonance: particle crosses it without polarization loss (regime of adiabatic a at crossing, see further), r), below green line a weak resonance, particle crosses it free, between both lines intermediate (see further). I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich 8

9 2. Polarized Protons and Deuterons Acceleration in Nuclotron Not any resonance is dangerous! db/dt = T/s Dangerous db/dt = T/s resonances Spin s are resonances marked with at Nuclotron red caps.intrinsic res. ν lg(w/w D ) lg(w/w D ) spin = kp ± Q y 2.Integer res. ν spin = k 2 4 lg(w/w D ) E p,gev w D = w D = E p,gev 3. Nonsuperperiodic res. ν spin = m ± Q y, m kp E p,gev lg(w/w D ) 4. Coupling res. ν spin = m ± Q x, m kp E p, GeV w D = w D = I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich 9

10 2. Polarized Protons and Deuterons Acceleration in Nuclotron (Contnd) Polarized proton acceleration in Nuclotron: Transparent Crossing of spin resonances J = m after J befor J is a Spin Adiabatic Invariant, i.e. projection to the periodical n-axis 0 I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich

11 2. Polarized Protons and Deuterons Acceleration in Nuclotron (Contnd) n y Polarized proton acceleration in Nuclotron: Transparent Crossing of spin resonances Spin Tune Control System (STCS) x Solenoid Dipole Solenoid Dipole Solenoid Dipole Solenoid s B B s B x B s x B x y Dynamics of the Spin Orbit Vector (SOV) n s ν Spin = ϕ x ϕ y /2π per turn, ϕ x, ϕ y << Closed orbit distortion less than 0,5 cm I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich x

12 2. Polarized Protons and Deuterons Acceleration in Nuclotron (Contnd) Polarized proton acceleration in Nuclotron (Contnd) STCS parameters Parameter Dipole Solenoid Number of elements x + 2x x + 2x0.5 5 Regime Pulsed mode Cycling mode Winding type Normal l Superconductive d Pulse duration (period) ~ 320 µsec ~ 4 sec Repetition rate, s - ~ Length, mm L total 3.5 m Aperture, mm hor ver Magn. field, T Max. current, ka Max. M. voltage g kv V (SC) ( ) 2 I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich

13 2. Polarized Protons and Deuterons Acceleration in Nuclotron (Contnd) Polarized proton acceleration in Nuclotron (Contnd) Proton Energy Spread Limitation at Transparent Crossing of a Resonance The condition to be met: if γ < γ w D γ when γ < γ w D D<0, D 0 if when D<0,0 D 0 D, D 0 the beam depolarization at the transparent resonance crossing 2γ with STCS application and without it, correspondingly. That gives at db/dt = T/s at 2 T dipole field γ 7,3 4 γ 4 D<0, D 0 if < 0 or <,2 0 γ γ γ 7,3 4 γ 5 D<0, D 0 if < 0 or < 6 0 γ γ γ γ (E=5GeV), (E=5GeV), γ γ γ < 5 0 γ < 2, (E=2GeV) (E=2GeV) However, such a low p/p requires e-cooling application (!) that is available at The Booster. 3 I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich

14 An 2. Polarized option: acceleration Protons and up to Deuterons 5 GeV and Acceleration extraction into Nuclotron collider for Not any resonance is dangerous! further acceleration (revolution frequency variation.3%) up to 2 GeV max. Dangerous db/dt = T/s resonances Spin are resonances marked with at Nuclotron Depolarization at acceleration s in the collider red is suppressed caps.intrinsic res. ν spin = kp ± Q y lg(w/w by Siberian D ) Snake (see further) lg(w/w D ) 2 2.Integer res. ν spin = k 4 lg(w/w D ) E p,gev w D = w D = E p,gev 3. Nonsuperperiodic res. ν spin = m ± Q y, m kp lg(w/w D ) 4. Coupling res. Then depolarization after transparent crossing of all 8 E p resonances,gev is < 5% ν spin = m ± Q x, m kp E p, GeV w D = w D = I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich

15 3. Polarized Particle Dynamics in NICA Collider Longitudinal na and transverse rs polarization on formation on Second part of Siberian Snake with longitudinal axis First part of Siberian Snake with longitudinal axis π/4 -π/4 Spin rotators around vertical direction by π/4 Spin rotators around vertical direction by -π/4 π/4 -π/4 5 I.Meshkov, Yu.Filatov Polarized Beams in NICA SPIN-Praha-200 July 23-28, 200 Praha

16 3. Polarized Particle Dynamics in NICA Collider (Contnd) Longitudinal na Polarization on Formation: on Dipole Dpo Siberian ran Snake (Contnd) y x s B x B y First part of Siberian Snake with longitudinal axis -B x -B y B x -B y st half of the Snake: protons, 5.4 GeV (γ = 6), 4 dipoles x m, B max = 5 T, L total = 5.64 m 6 I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich

17 3. Polarized Particle Dynamics in NICA Collider (Contnd) Longitudinal na Polarization on Formation: on Dipole Siberian Snake (Contnd) Second part of Siberian Snake with longitudinal axis y x s B y B y -B x B x -B y -B x 2 nd half of the Snake: protons, 5.4 GeV (γ = 6), 4 dipoles x m, B max = 5 T, L total = 5.64 m 7 I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich

18 3. Polarized Particle Dynamics in NICA Collider Transverse Polarization Formation: Radial Polarization The scheme of vertical spin rotator by π/4 Total length of vertical spin rotator by Pi/2 is 2X4,4m 8 I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich

19 3. Polarized Particle Dynamics in NICA Collider (Contnd) Longitudinal na polarization on injection scheme ( BL) dipole α ( γ ) = + γ a S B ρ ( ) ion ( ) S Upper ring n Dipole B Lower ring n Dipole B 9 I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich

20 4. Luminosity of p p colliding beams Parameters of polarized proton beams in collider Energy, GeV 5 2 Proton number per bunch 6E0.5E0 Rms relative momentum spread 0E-3 0E-3 Rms bunch length, m Rms (unnormalized) emittance, π mm mrad mrad Beta-function in the IP, m Lasslet tune shift Beam-beam parameter Number of bunches 0 0 Luminosity, cm -2 s -.E30.E30 20 I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich

21 5. SPD short description Conclusion: Realization of polarized beam program at Nuclotron and Collider looks feasible. Its development will bring experimental studies in spin physics at JINR to a new level. Thank you for your attention! 2 I.Meshkov, Yu.Filatov, Polarized Beams in NICA, SPIN200, Sep 27-Oct 02, 200, Juelich

NICA Project at JINR Nuclotron-based Ion Collider facility I.Meshkov for NICA team

NICA Project at JINR Nuclotron-based Ion Collider facility I.Meshkov for NICA team Workshop on Beam Cooling and Related Topics COOL 11 NICA Project at JINR Nuclotron-based Ion Collider facility I.Meshkov for NICA team, Ukraine hosted by JINR, Dubna 1 Contents Introduction: The goal of

More information

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF Lia Merminga and Yaroslav Derbenev Center for Advanced Studies of Accelerators, Jefferson Laboratory,

More information

Application of cooling methods at NICA project. G.Trubnikov JINR, Dubna

Application of cooling methods at NICA project. G.Trubnikov JINR, Dubna Application of cooling methods at NICA project G.Trubnikov JINR, Dubna Outline 1. NICA scheme, modes of operation, working cycles;. Booster scheme, parameters, beam requirements; 3. Status of the electron

More information

Superconducting racetrack booster for the ion complex of MEIC

Superconducting racetrack booster for the ion complex of MEIC Journal of Physics: Conference Series PAPER OPEN ACCESS Superconducting racetrack booster for the ion complex of MEIC To cite this article: Yu Filatov et al 2016 J. Phys.: Conf. Ser. 678 012015 Related

More information

Spin physics at the NICA D.Peshekhonov on behalf of the NICA community

Spin physics at the NICA D.Peshekhonov on behalf of the NICA community Spin physics at the NICA D.Peshekhonov on behalf of the NICA community 1/30 Accelerator complex NICA Polarized program of the NICA Project THE SPIN PHYSICS DETECTOR- SPD to study spin structure of the

More information

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Superconducting Magnets for Future Electron-Ion Collider Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Mini-workshop on Accelerator, IAS, HKUST, Hong Kong, January 18-19, 2018 1 Outline

More information

The Electron-Ion Collider

The Electron-Ion Collider The Electron-Ion Collider C. Tschalaer 1. Introduction In the past year, the idea of a polarized electron-proton (e-p) or electron-ion (e-a) collider of high luminosity (10 33 cm -2 s -1 or more) and c.m.

More information

Acceleration of Polarized Protons and Deuterons at COSY

Acceleration of Polarized Protons and Deuterons at COSY Acceleration of Polarized Protons and Deuterons at COSY A. Lehrach, enable FIGURE Imperfection Resonances 0.0005 0.001 0.0015 resonance strength 0.001 0.0015 resonance strength FIGURE Tune-Jump System

More information

Polarization Preservation and Control in a Figure-8 Ring

Polarization Preservation and Control in a Figure-8 Ring Spin Physics (SPIN2014) International Journal of Modern Physics: Conference Series Vol. 40 (2016) 1660090 (7 pages) c The Author(s) DOI: 10.1142/S2010194516600909 Polarization Preservation and Control

More information

Status of the Source of Polarized Ions project for the JINR accelerator complex (September 2013)

Status of the Source of Polarized Ions project for the JINR accelerator complex (September 2013) Status of the Source of Polarized Ions project for the JINR accelerator complex (September 2013) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev Joint Institute for Nuclear Research, Dubna

More information

Ion Polarization in RHIC/eRHIC

Ion Polarization in RHIC/eRHIC Ion Polarization in RHIC/eRHIC M. Bai, W. MacKay, V. Ptitsyn, T. Roser, A. Zelenski Polarized Ion Sources (reporting for Anatoly Zelenski) Polarized proton beams in RHIC/eRHIC Polarized He3 for erhic (reporting

More information

SIMULATION STUDY FOR MEIC ELECTRON COOLING*

SIMULATION STUDY FOR MEIC ELECTRON COOLING* SIMULATION STUDY FOR MEIC ELECTRON COOLING* He Zhang #, Yuhong Zhang, JLab, Newport News, VA 23606, USA Abstract Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab

More information

arxiv: v2 [nucl-ex] 11 Sep 2007

arxiv: v2 [nucl-ex] 11 Sep 2007 arxiv:0709.1459v2 [nucl-ex] 11 Sep 2007 JINR, Dubna E-mail: toneev@theor.jinr.ru for the NICA/MPD working group A new project of Nuclotron-based Ion Collider facility (NICA) and Multi-Purpose Detector

More information

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems:

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems: A Project to convert TLS Booster to hadron accelerator 1. Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV, and a storage ring. The TLS storage ring is currently operating

More information

The Detector Design of the Jefferson Lab EIC

The Detector Design of the Jefferson Lab EIC The Detector Design of the Jefferson Lab EIC Jefferson Lab E-mail: mdiefent@jlab.org The Electron-Ion Collider (EIC) is envisioned as the next-generation U.S. facility to study quarks and gluons in strongly

More information

Advanced Design of the FAIR Storage Ring Complex

Advanced Design of the FAIR Storage Ring Complex Advanced Design of the FAIR Storage Ring Complex M. Steck for the FAIR Technical Division and the Accelerator Division of GSI The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC

More information

RHIC AND ITS UPGRADE PROGRAMS

RHIC AND ITS UPGRADE PROGRAMS Proceedings of EPAC8, Genoa, Italy FRXAGM1 Abstract RHIC AND ITS UPGRADE PROGRAMS Thomas Roser Brookhaven National Laboratory, Upton, New York 11793-5, USA As the first hadron accelerator and collider

More information

Siberian Snakes and Spin Manipulations. From controlling spin to taming snakes.

Siberian Snakes and Spin Manipulations. From controlling spin to taming snakes. Siberian Snakes and Spin Manipulations From controlling spin to taming snakes. Thomas Roser Spin Physics Symposium November 14, 2009 Spin Dynamics in Rings Precession Equation in Laboratory Frame: (Thomas

More information

PoS(Baldin ISHEPP XXII)002

PoS(Baldin ISHEPP XXII)002 Status of the NICA Project at JINR V.Kekelidze, 1 A.Kovalenko, R.Lednicky, V.Matveev, I.Meshkov, A.Sorin, G.Trubnikov (for NICA Collaboration) Joint Institute for Nuclear Research, 141980 Dubna, Russia

More information

RHIC OPERATIONAL STATUS

RHIC OPERATIONAL STATUS RHIC OPERATIONAL STATUS Thomas Roser Brookhaven National Laboratory, Upton, New York 11793-5, USA Abstract As the first hadron accelerator and collider consisting of two independent superconducting rings

More information

BEAM COOLING AT NICA COLLIDER

BEAM COOLING AT NICA COLLIDER BEAM COOLING AT NICA COLLIDER T. Katayama, GSI, Darmstadt, Germany I. Meshkov, A. Sidorin and G. Trubnikov, JINR, Dubna, Russia. Abstract At the heavy ion collider NICA presently promoted at the JINR,

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004 ELIC Design Ya. Derbenev, K. Beard, S. Chattopadhyay, J. Delayen, J. Grames, A. Hutton, G. Krafft, R. Li, L. Merminga, M. Poelker, E. Pozdeyev, B. Yunn, Y. Zhang Center for Advanced Studies of Accelerators

More information

PoS(ICHEP2012)411. Scientific Program of NICA at JINR

PoS(ICHEP2012)411. Scientific Program of NICA at JINR Scientific Program of NICA at JINR, A.D. Kovalenko, R. Lednicky, V.A. Matveev, I.N. Meshkov, A.S. Sorin, G.T. Trubnikov Joint Institute for Nuclear Research E-mail: Vladimir.Kekelidze@cern.ch New scientific

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

Super-c-tau factory in Novosibirsk (WP7)

Super-c-tau factory in Novosibirsk (WP7) Super-c-tau factory in Novosibirsk (WP7) E. Levichev Budker Institute of Nuclear Physics Novosibirsk, RUSSIA CREMLIN kick-off meeting, 6-7 October 2015 NRC Kurchatov Institute Budker Institute Founded

More information

Spin-physics with Polarized Antiprotons at GSI

Spin-physics with Polarized Antiprotons at GSI http://www.fz-juelich.de/ikp/pax Spin-physics with Polarized Antiprotons at GSI Frank Rathmann Forschungszentrum JülichJ Spin Physics and Beyond, Madison, June 10, 2005 QCD Physics at FAIR (CDR): unpolarized

More information

Matching of Siberian Snakes

Matching of Siberian Snakes 9 November 00 AGS Polarization Workshop Matching of Siberian Snakes snake snake??? Driven spin perturbation on a traectory Integer values of spin-tune n tune n y lead to coherent disturbances of spin motion

More information

HIGH-ENERGY HEAVY-ION ACCELERATORS

HIGH-ENERGY HEAVY-ION ACCELERATORS HIGH-ENERGY HEAVY-ION ACCELERATORS D. DINEV Bulgarian Academy of Sciences Institute for Nuclear Research and Nuclear Energy Why heavy ions accelerated to high energies? QCD phase diagram (Artist s view)

More information

Tagging with Roman Pots at RHIC. Proton tagging at STAR

Tagging with Roman Pots at RHIC. Proton tagging at STAR Tagging with Roman Pots at RHIC Proton tagging at STAR Elastic and Diffractive Processes in High Energy Proton Scattering Elastic scattering Detect protons in very forward direction with Roman Pots (RPs)

More information

Status of Optics Design

Status of Optics Design 17th B2GM, February 5, 2014 Status of Optics Design Y. Ohnishi /KEK 17th B2GM KEK, February 5, 2014 Contents! Lattice parameters! Dynamic aperture under influence of beam-beam effect! Lattice preparation

More information

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS 1.5-GeV FFAG Accelerator as Injector to the BNL-AGS Alessandro G. Ruggiero M. Blaskiewicz,, T. Roser, D. Trbojevic,, N. Tsoupas,, W. Zhang Oral Contribution to EPAC 04. July 5-9, 5 2004 Present BNL - AGS

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

RHIC - the high luminosity hadron collider

RHIC - the high luminosity hadron collider RHIC - the high luminosity hadron collider RHIC overview Luminosity and polarization evolution Performance limitations Future upgrades RHIC II luminosity upgrade erhic Thomas Roser MIT seminar November

More information

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory The 2015 erhic Ring-Ring Design Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory The Relativistic Heavy Ion Collider RHIC Two superconducting storage rings 3833.845 m circumference

More information

Low Energy RHIC electron Cooling (LEReC)

Low Energy RHIC electron Cooling (LEReC) Low Energy RHIC electron Cooling (LEReC) LEReC overview: project goal and cooling approach Alexei Fedotov MEIC Collaboration Meeting 30 31 LEReC Project Mission/Purpose The purpose of the LEReC is to provide

More information

The NICA Project at JINR Dubna

The NICA Project at JINR Dubna EPJ Web of Conferences 71, 00127 (2014) DOI: 10.1051/ epjconf/ 20147100127 C Owned by the authors, published by EDP Sciences, 2014 The NICA Project at JINR Dubna V.Kekelidze, A.Kovalenko, R.Lednicky, V.Matveev,

More information

Towards Polarized Antiprotons at FAIR

Towards Polarized Antiprotons at FAIR Towards Polarized Antiprotons at FAIR http://www.fz-juelich.de/ikp/pax Frank Rathmann Institut für Kernphysik Forschungszentrum Jülich Kyoto, October 3, 2006 Outline PAX physics program Accelerator configuration

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

Search for an electric dipole moment with polarized beams in storage rings

Search for an electric dipole moment with polarized beams in storage rings Search for an electric dipole moment with polarized beams in storage rings Università di Ferrara and INFN 44 Ferrara, Italy E-mail: lenisa@fe.infn.it E. J. Stephenson Center for Exploration of Energy and

More information

Longitudinal Top-up Injection for Small Aperture Storage Rings

Longitudinal Top-up Injection for Small Aperture Storage Rings Longitudinal Top-up Injection for Small Aperture Storage Rings M. Aiba, M. Böge, Á. Saá Hernández, F. Marcellini and A. Streun Paul Scherrer Institut Introduction Lower and lower horizontal emittances

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

arxiv: v1 [physics.acc-ph] 21 Oct 2014

arxiv: v1 [physics.acc-ph] 21 Oct 2014 SIX-DIMENSIONAL WEAK STRONG SIMULATIONS OF HEAD-ON BEAM BEAM COMPENSATION IN RHIC arxiv:.8v [physics.acc-ph] Oct Abstract Y. Luo, W. Fischer, N.P. Abreu, X. Gu, A. Pikin, G. Robert-Demolaize BNL, Upton,

More information

SC magnets for Future HEHIHB Colliders

SC magnets for Future HEHIHB Colliders SC magnets for Future HEHIHB Colliders presented by L. Bottura WAMS, Archamps, March 22-23,2004 Overview Few selected examples of drivers for R&D in the next 10 years LHC upgrades scenarios (why? how?)

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

Status of the NICA project at JINR

Status of the NICA project at JINR Status of the NICA project at JINR Vladimir Kekelidze 1, Alexandr Kovalenko 1,, Rihard Lednicky 1, Viktor Matveev 1, Igor Meshkov 1, Alexandr Sorin 1, and Grigory Trubnikov 1 1 Joint Institute for Nuclear

More information

An Electron-Nucleon Collider at FAIR

An Electron-Nucleon Collider at FAIR An Electron-Nucleon Collider at FAIR Wolfgang Gradl for the ENC@FAIR study group Institut für Kernphysik Physics at a High Energy Electron Ion Collider Seattle, 19 th October 009 Outline FAIR and PANDA

More information

FROM HERA TO FUTURE ELECTRON-ION COLLIDERS*

FROM HERA TO FUTURE ELECTRON-ION COLLIDERS* FROM HERA TO FUTURE ELECTRON-ION COLLIDERS* V. Ptitsyn, BNL, Upton, NY 11980, USA. Abstract An overview of the proposals of new electron-ion colliders - e-rhic at BNL, EIC at JLab and LHeC at CERN - in

More information

Proposal to convert TLS Booster for hadron accelerator

Proposal to convert TLS Booster for hadron accelerator Proposal to convert TLS Booster for hadron accelerator S.Y. Lee -- Department of Physics IU, Bloomington, IN -- NSRRC Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV,

More information

The polarized electron-nucleon collider project ENC at GSI/FAIR

The polarized electron-nucleon collider project ENC at GSI/FAIR The polarized electron-nucleon collider project ENC at GSI/FAIR A Lehrach 1, K Aulenbacher 2, O Boldt 3, R Heine 2, W Hillert 3, C Montag 4, P Schnizer 5 and T Weis 6 1 Institut für Kernphysik, Forschungzsentrum

More information

STORAGE RINGS FOR RADIO-ISOTOPE BEAMS

STORAGE RINGS FOR RADIO-ISOTOPE BEAMS STORAGE RINGS FOR RADIO-ISOTOPE BEAMS Takeshi Katayama, Center for Nuclear Study, University of Tokyo, Wako, Japan INTRODUCTION In this decade, new era is opened in nuclear physics with use of radioactive

More information

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23,

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, 2007 As each working day, since the beginning of the

More information

Synchrotron Motion. RF cavities. Charged particles gain and lose energy in electric field via

Synchrotron Motion. RF cavities. Charged particles gain and lose energy in electric field via 217 NSRRC FEL Longitudinal Motion (SYL) 1 Synchrotron Motion RF cavities Charged particles gain and lose energy in electric field via Δ. For DC accelerators such as the Cockcroft-Walton and Van-der- Graaff

More information

Polarization studies for beam parameters of CEPC and FCCee

Polarization studies for beam parameters of CEPC and FCCee Polarization studies for beam parameters of CEPC and FCCee Ivan Koop, BINP, 630090 Novosibirsk IAS conference, HKUST, Hong Kong, 23.01.2018 I. Koop, IAS 2018 1 Outline Polarization specificity of CEPC

More information

ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)*

ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)* ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)* J. Kewisch, M. Blaskiewicz, A. Fedotov, D. Kayran, C. Montag, V. Ranjbar Brookhaven National Laboratory, Upton, New York Abstract Low-energy RHIC Electron

More information

General Considerations

General Considerations Advantages of Muons Advantages of leptons over hadrons Energetic Interaction simplicity Minimal synchrotron radiation at high energies Can bend: not forced to linac like e Reuse accelerating structures

More information

MEIC Electron-Ion Collider - Space-Charge Issues

MEIC Electron-Ion Collider - Space-Charge Issues MEIC Electron-Ion Collider - Space-Charge Issues on behalf of MEIC Collaboration 1 MEIC (Medium-energy Electron Ion Collider) Collaboration A. Bogacz, P. Brindza, A. Camsonne, E. Daly, Y. Derbenev, D.

More information

T. ROSER Brookhaven National Laboratory, Upton, N. Y , USA. Abstract

T. ROSER Brookhaven National Laboratory, Upton, N. Y , USA. Abstract r L Baryons '95, 7 t h I n t y n a t i o n a l Conf. on t h e S t r u c t u r e of Baryons, Santa F e, IJM, 10/3-7/35. POLARIZED PROTO &LIDERS* T. ROSER Brookhaven National Laboratory, Upton, N. Y. 11973,

More information

Introduction to Collider Physics

Introduction to Collider Physics Introduction to Collider Physics William Barletta United States Particle Accelerator School Dept. of Physics, MIT The Very Big Picture Accelerators Figure of Merit 1: Accelerator energy ==> energy frontier

More information

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman Accelerator Physics of PEP-1 Lecture #7 March 13,1998 Dr. John Seeman Accelerator Physics of PEPJ John Seeman March 13,1998 1) What is PEP-? Lecture 1 2) 3) Beam parameters for an luminosity of 3~1~~/cm~/sec

More information

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV $)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV R. Brinkmann, Ya. Derbenev and K. Flöttmann, DESY April 1999 $EVWUDFW We discuss the possibility of generating a low-emittance flat (ε y

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses P. Spiller, K. Blasche, B. Franczak, J. Stadlmann, and C. Omet GSI Darmstadt, D-64291 Darmstadt, Germany Abstract:

More information

LHC operation in 2015 and prospects for the future

LHC operation in 2015 and prospects for the future LHC operation in 2015 and prospects for the future Moriond Workshop La Thuile March 2016 Jörg Wenninger CERN Beams Department Operation group / LHC For the LHC commissioning and operation teams 1 Moriond

More information

M. Biagini, LAL & INFN French-Ukrainian Workshop on the instrumentation developments for high energy physics LAL, November

M. Biagini, LAL & INFN French-Ukrainian Workshop on the instrumentation developments for high energy physics LAL, November M. Biagini, LAL & INFN French-Ukrainian Workshop on the instrumentation developments for high energy physics LAL, November 6-8 2017 Why a new t/charm-factory? Physics at rather low energy is still interesting

More information

Consideration for polarization in FCChh. V. Ptitsyn (BNL)

Consideration for polarization in FCChh. V. Ptitsyn (BNL) Consideration for polarization in FCChh V. Ptitsyn (BNL) Spin flipper RHIC First Polarized Hadron Collider! Absolute Polarimeter (H jet) pc Polarimeters Diverse technologies are used on different stages

More information

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e -

Potential use of erhic s ERL for FELs and light sources ERL: Main-stream GeV e - Up-gradable to 20 + GeV e - Potential use of erhic s ERL for FELs and light sources Place for doubling energy linac ERL: Main-stream - 5-10 GeV e - Up-gradable to 20 + GeV e - RHIC Electron cooling Vladimir N. Litvinenko and Ilan

More information

Optimal axes of Siberian snakes for polarized proton acceleration

Optimal axes of Siberian snakes for polarized proton acceleration PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 7, 121001 (2004) Optimal axes of Siberian snakes for polarized proton acceleration Georg H. Hoffstaetter Department of Physics, Cornell University,

More information

Polarization of a stored beam by spin filtering

Polarization of a stored beam by spin filtering Mitglied der Helmholtz-Gemeinschaft Polarization of a stored beam by spin filtering Christian Weidemann 03. June 2013 Motivation The PAX collaboration proposed to investigate so called Drell-Yan processes

More information

Unique features of linac-ring

Unique features of linac-ring Unique features of linac-ring erhic Daniel Anderson 1, Ilan Ben-Zvi 1,2,4, Rama Calaga 1,4, Xiangyun Chang 1,4, Manouchehr Farkhondeh 3, Alexei Fedotov 1, Jörg Kewisch 1, Vladimir Litvinenko, 1,4, William

More information

Overview of HEMC Scheme

Overview of HEMC Scheme Overview of HEMC Scheme R. B. Palmer, (BNL) JLab 2/28/2011 My birthday Progress on Cooling simulations New Acceleration sequence with higher transmission New System transmission estimate New Wall power

More information

G. Trubnikov. научная сессия-конференция секции ЯФ ОФН РАН 27 ноября 2009 г.

G. Trubnikov. научная сессия-конференция секции ЯФ ОФН РАН 27 ноября 2009 г. Status of NICA Project Nuclotron-based Ion Collider facility G. Trubnikov for NICA Collaboration научная сессия-конференция секции ЯФ ОФН РАН 27 ноября 2009 г. 1 Contents Introduction: The physics case

More information

Longitudinal Dynamics

Longitudinal Dynamics Longitudinal Dynamics F = e (E + v x B) CAS Bruges 16-25 June 2009 Beam Dynamics D. Brandt 1 Acceleration The accelerator has to provide kinetic energy to the charged particles, i.e. increase the momentum

More information

Compressor Lattice Design for SPL Beam

Compressor Lattice Design for SPL Beam EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN A&B DIVISION AB-Note-27-34 BI CERN-NUFACT-Note-153 Compressor Lattice Design for SPL Beam M. Aiba Abstract A compressor ring providing very short proton

More information

Physics with Tagged Forward Protons using the STAR Detector at RHIC. The Relativistic Heavy Ion Collider The pp2pp Experiment STAR 2009

Physics with Tagged Forward Protons using the STAR Detector at RHIC. The Relativistic Heavy Ion Collider The pp2pp Experiment STAR 2009 Physics with Tagged Forward Protons using the STAR Detector at RHIC The Relativistic Heavy Ion Collider The pp2pp Experiment 2002 2003 STAR 2009 Elastic and Diffractive Processes Elastic scattering Detect

More information

Review of ISOL-type Radioactive Beam Facilities

Review of ISOL-type Radioactive Beam Facilities Review of ISOL-type Radioactive Beam Facilities, CERN Map of the nuclear landscape Outline The ISOL technique History and Geography Isotope Separation On-Line Existing facilities First generation facilities

More information

The Superconducting SIS100 Synchrotron for High Intensity Proton and Heavy Ion Beams

The Superconducting SIS100 Synchrotron for High Intensity Proton and Heavy Ion Beams The Superconducting SIS100 Synchrotron for High Intensity Proton and Heavy Ion Beams Peter Spiller HB2008 26.8.2008 GSI/FAIR Accelerator Facility Primary Beam Intensity x 100-1000 Secondary Beam Intensity

More information

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev. Compressor Ring Valeri Lebedev Fermilab Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions Muon Collider Workshop Newport News, VA Dec. 8-1, 8 Where do we go?

More information

Measurement of the Proton Beam Polarization with Ultra Thin Carbon Targets at RHIC

Measurement of the Proton Beam Polarization with Ultra Thin Carbon Targets at RHIC 1of23 Measurement of the Proton Beam Polarization with Ultra Thin Carbon Targets at RHIC Brookhaven National Laboratory for the RHIC Polarimetry Group Sep 12, 2013 Relativistic Heavy Ion Collider world

More information

Spin Dynamics at the NLC

Spin Dynamics at the NLC BI TN-2004-3 Revision 0: June 1, 2004 Spin Dynamics at the NLC Ken Moffeit and Mike Woods SLAC Abstract This note describes spin transport and depolarization effects at the NLC. We also discuss the difference

More information

Storage Ring Based EDM Search Achievements and Goals

Storage Ring Based EDM Search Achievements and Goals Mitglied der Helmholtz-Gemeinschaft Storage Ring Based EDM Search Achievements and Goals October 20, 2014 Andreas Lehrach RWTH Aachen University & Forschungszentrum Jülich on behalf of the JEDI collaboration

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

The light nuclei spin structure from the hadronic interactions at intermediate energies

The light nuclei spin structure from the hadronic interactions at intermediate energies The light nuclei spin structure from the hadronic interactions at intermediate energies P.K. Kurilkin on behalf JINR-Japan collaboration Hadron 2011, June 13-17, München, Germany Collaboration Joint Institute

More information

Longitudinal Momentum Mining of Beam Particles in a Storage Ring

Longitudinal Momentum Mining of Beam Particles in a Storage Ring Longitudinal Momentum Mining of Beam Particles in a Storage Ring C. M. Bhat Fermi National Accelerator Laboratory, P.O.Box 5, Batavia, IL 651, USA (Submitted for publications) I describe a new scheme for

More information

FAIR AT GSI. P. Spiller, GSI, Darmstadt, Germany

FAIR AT GSI. P. Spiller, GSI, Darmstadt, Germany FAIR AT GSI P. Spiller, GSI, Darmstadt, Germany Abstract Based on the experience of the existing GSI facility and with the aim to apply new technical concepts in phase space cooling and fast ramping of

More information

A high intensity p-linac and the FAIR Project

A high intensity p-linac and the FAIR Project A high intensity p-linac and the FAIR Project Oliver Kester Institut für Angewandte Physik, Goethe-Universität Frankfurt and GSI Helmholtzzentrum für Schwerionenforschung Facility for Antiproton and Ion

More information

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with ILC Spin Rotator Super B Workshop III Presenter: Jeffrey Smith, Cornell University with Peter Schmid, DESY Peter Tenenbaum and Mark Woodley, SLAC Georg Hoffstaetter and David Sagan, Cornell Based on NLC

More information

The Luminosity Upgrade at RHIC. G. Robert-Demolaize, Brookhaven National Laboratory

The Luminosity Upgrade at RHIC. G. Robert-Demolaize, Brookhaven National Laboratory The Luminosity Upgrade at RHIC G. Robert-Demolaize, Brookhaven National Laboratory RHIC accelerator complex: IPAC'15 - May 3-8, 2015 - Richmond, VA, USA 2 The Relativistic Heavy Ion Collider (RHIC) aims

More information

BEPC AND THE FUTURE PROGRAM AT IHEP

BEPC AND THE FUTURE PROGRAM AT IHEP BEPC AND THE FUTURE PROGRAM AT IHEP Z.T. Zhao, S.H.Wang of BEPC Group IHEP, Chinese Academy of Sciences, P.O.Box 918, Beijing 100039, P.R.China Abstract Beijing Electron and Positron Collider (BEPC), a

More information

POLARIZED DEUTERONS AT THE NUCLOTRON 1

POLARIZED DEUTERONS AT THE NUCLOTRON 1 POLARIZED DEUTERONS AT THE NUCLOTRON 1 Yu.K.Pilipenko, S.V.Afanasiev, L.S.Azhgirey, A.Yu.Isupov, V.P.Ershov, V.V.Fimushkin, L.V.Kutuzova, V.F.Peresedov, V.P.Vadeev, V.N.Zhmyrov, L.S.Zolin Joint Institute

More information

HALO SIMULATION IN A REALISTIC PROTON LINAC DESIGN

HALO SIMULATION IN A REALISTIC PROTON LINAC DESIGN HALO SIMULATION IN A REALISTIC PROTON LINAC DESIGN M. Pabst and K. Bongardt, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany A.P. Letchford, Rutherford Appleton Laboratory, Chilton, Didcot, UK Abstract

More information

Implementation of Round Colliding Beams Concept at VEPP-2000

Implementation of Round Colliding Beams Concept at VEPP-2000 Implementation of Round Colliding Beams Concept at VEPP-2000 Dmitry Shwartz BINP, Novosibirsk Oct 28, 2016 JAI, Oxford Introduction Beam-Beam Effects 2 e Interaction Points (IP) Circular colliders e Different

More information

FUNCTIONAL REQUIREMENT SPECIFICATION PROJECT NICA/MPD. Passport of the NICA accelerator complex

FUNCTIONAL REQUIREMENT SPECIFICATION PROJECT NICA/MPD. Passport of the NICA accelerator complex FUNCTIONAL REQUIREMENT SPECIFICATION PROJECT NICA/MPD Passport of NICA accelerator complex Dubna, 2015 Page 1of 19 Prepared by: Date 01 February 2015 Editors/Authors: Igor Meshkov Scientific Leader of

More information

Touschek polarimeter for beam energy measurement of VEPP-4M collider LNFSS-08 1 / 16

Touschek polarimeter for beam energy measurement of VEPP-4M collider LNFSS-08 1 / 16 Touschek polarimeter for beam energy measurement of VEPP-4M collider Ivan Nikolaev Budker Institute of Nuclear Physics Novosibirsk, Russia Frascati Spring School Bruno Touschek May 12-16 2008 Touschek

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

Accelerator Design of High Luminosity Electron-Hadron Collider erhic

Accelerator Design of High Luminosity Electron-Hadron Collider erhic Accelerator Design of High Luminosity Electron-Hadron Collider erhic V. PTITSYN ON BEHALF OF ERHIC DESIGN TEAM: E. ASCHENAUER, M. BAI, J. BEEBE-WANG, S. BELOMESTNYKH, I. BEN-ZVI, M. BLASKIEWICZ, R. CALAGA,

More information

Polarized Electron Beams In The MEIC Collider Ring At JLab

Polarized Electron Beams In The MEIC Collider Ring At JLab Polarized Electron Beams In The MEIC Collider Ring At JLab 1, Ya.S. Derbenev, V.S. Morozov, Y. Zhang Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA E-mail: fanglei@jlab.org,

More information

Muon Front-End without Cooling

Muon Front-End without Cooling EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Muon Front-End without Cooling CERN-Nufact-Note-59 K. Hanke Abstract In this note a muon front-end without cooling is presented. The muons are captured, rotated

More information

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side Frank Zimmermann LHCb Upgrade Workshop Edinburgh, 11 January 2007 Frank Zimmermann, LHCb Upgrade Workshop time scale of LHC upgrade

More information

ACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG

ACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG ACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG M. Grieser, R. Bastert, K. Blaum, H. Buhr, R. von Hahn, M. B. Mendes, R. Repnow, A. Wolf Max-Planck-Institut

More information