Pushmeet Kohli Microsoft Research

Size: px
Start display at page:

Download "Pushmeet Kohli Microsoft Research"

Transcription

1 Pushmeet Kohli Microsoft Research

2 E(x) x in {0,1} n Image (D) [Boykov and Jolly 01] [Blake et al. 04]

3 E(x) = c i x i Pixel Colour x in {0,1} n Unary Cost (c i ) Dark (Bg) Bright (Fg) x* = arg min E(x) [Boykov and Jolly 01] [Blake et al. 04]

4 E(x) = c i x i + d ij x i -x j x in {0,1} n Pixel Colour Smoothness Prior Unary Cost (c i ) Dark (Bg) Bright (Fg) [Boykov and Jolly 01] [Blake et al. 04]

5 E(x) = c i x i + d ij x i -x j x in {0,1} n Pixel Colour Smoothness Prior How to minimize E(x)? x* = arg min E(x) Old Solution [Boykov and Jolly 01] [Blake et al. 04]

6 NP-Hard MAXCUT CSP Space of Problems

7 Perfect Graphs, Low-tree width, Submodular functions, Structured decomposable functions NP-Hard MAXCUT CSP Tractable Problems March 2014 Space of Problems

8 Tractability Properties NP-Hard MAXCUT CSP Structural Tractability Tree Structured Space of Problems

9 Tractability Properties Constraints on the terms of your energy functions d ij x i -x j Language or Form Tractability NP-Hard CSP Tree Structured MAXCUT Pair-wise O(n3 ) Submodular Functions O(n 6 ) Space of Problems

10 S st-mincut E(x) Pairwise Submodular T Solution [Hammer, 1965] [Kolmogorov and Zabih, 2002]

11 Demo

12 .. So what are the challenges?

13 Modelling Challenges

14 Does not enforce connectivity Short boundary bias Cannot enforce priors on label counts

15 Taskar et al. 02 associative potentials Roth & Black 05 field of experts Kohli Kumar Torr. 07 segment consistency Kohli Ladicky Torr 08 segment consistency Woodford et al. 08 planarity constraint Vicente et al. 08 connectivity constraint Nowozin & Lampert 09 connectivity constraint Ladický et al. 09 consistency over several scales Woodford et al. 09 marginal probability Delong et al. 10 label occurrence costs Ladicky et al. 10 label set co-occurrence costs Jegelka and Bilmes 11 label set co-occurrence costs many others

16 Transformation schemes [Kolmogorov 02] [Kohli et al.07, 08,09] Constrained Inference using Parametric Mincuts [Kolmogorov 07] [Lim et al.08, 14] Decomposition Techniques [Woodford et al. 09] [Komodakis 09].. Iterative refinement of constraints (Connectivity and Bounding Box Potentials) [Nowozin and Lampert 08, Lempitsky et al. 09].. Special purpose message computation [Gupta and Sarawagi 07, 08] [Tarlow et al. 09].. Learning to preserve higher-order statistics [Pletscher and Kohli 12 ]

17 Transformation schemes [Kolmogorov 02] [Kohli et al.07, 08,09] Constrained Inference using Parametric Mincuts [Kolmogorov 07] [Lim et al.08, 14] Decomposition Techniques [Woodford et al. 09] [Komodakis 09].. Iterative refinement of constraints (Connectivity and Bounding Box Potentials) [Nowozin and Lampert 08, Lempitsky et al. 09].. Special purpose message computation [Gupta and Sarawagi 07, 08] [Tarlow et al. 09].. Learning to preserve higher-order statistics [Pletscher and Kohli 12 ]

18 Higher Order Function Pairwise Submodular Function Ensure tractability of the transformed problem

19

20 Unary Potentials [Shotton et al. ECCV 2006] Colour, Location & Texture Higher Order Energy Sky Building Grass Tree + Pairwise Smoothness Potentials + Pixels belonging to a group should take the same label p Higher Order Potentials (Defined using multiple Segmentations) h(x p ) = { 0 if x i =L, I ϵ p C otherwise

21 Unary Potentials [Shotton et al. ECCV 2006] Colour, Location & Texture Higher Order Energy Sky Tree Building Grass + Pairwise Smoothness Potentials + Higher Order Potentials (Defined using multiple Segmentations)

22 Unary Potentials [Shotton et al. ECCV 2006] Colour, Location & Texture Higher Order Energy Sky Tree Building Grass + Pairwise Smoothness Potentials + Energy Minimization Segmentation Solution Higher Order Potentials (Defined using multiple Segmentations)

23 h(x p ) = { 0 if all x i = Tree (0), I ϵ p 1 otherwise Pixels belonging to the group p should take the same label tree p

24 x i { 0 if all x i = 0 f(x)= 1 otherwise x i

25 x i { 0 if all x i = 0 f(x)= 1 otherwise x i

26 min f(x) x = Higher Order Submodular Function min x,a ϵ {0,1} a + ā x i Quadratic Submodular Function x i f(x)= { 0 if all x i = 0 1 otherwise 1 a=0 a=1 1 x i 2 3

27 Image (MSRC-21) Pairwise CRF Higher order CRF Ground Truth Grass Sheep [Runner-Up, PASCAL VOC 2008 ]

28

29 E(X) = c + i x i d ij x i -x j Encourages short boundaries Penalize types of boundaries not the actual number of boundaries! Image Segmentation Cooperative Cuts [Jegelka and Bilmes, CVPR 2011]

30 E(X) = c + i x i d ij x i -x j

31 E(X) = c + i x i d ij x i -x j + h g (X p ) g in G Divide edges into different types Incorporate a higher order consistency potential over the edges h g (X p ) = F ( x i -x j ) ij in g F x i -x j ij in g

32 E(X) = c + i x i d ij x i -x j + h g (X p ) g in G Divide edges into different types Incorporate a higher order consistency potential over the edges h g (X p ) = F ( x i -x j ) ij in g F x i -x j ij in g

33 E(X) = c + i x i d ij x i -x j + h g (X p ) g in G Divide edges into different types Incorporate a higher order consistency potential over the edges h g (X p ) = F ( x i -x j ) ij in g F x i -x j ij in g Needs Special Purpose Minimization x

34 f1 f2 f1 f2 Transformation f1 f2

35

36

37 Image Ground Truth Pairwise Model Higher-order Model

38 Image Ground Truth Pairwise Model Deep Model

39

40 min f(x) x = Higher Order Submodular Function min f 1 (x)a + f 2 (x) (1-a) x,a ϵ {0,1} Quadratic Submodular Function f 2 (x) a=0 f 1 (x) a=1 Lower envelop of concave functions is concave x i [Kohli et al. 08]

41 min f(x) x = x ϵ {0,1} Higher Order Submodular Function min max f 1 (x)a + f 2 (x) (1-a) a ϵ {0,1} Quadratic Submodular Function f 2 (x) a=0 f 1 (x) a=1 Upper envelope of linear functions is convex Very Hard x i Problem!!!! [Kohli and Kumar, CVPR 2010]

42 SILHOUETTE CONSTRAINTS SIZE/VOLUME PRIORS [Sinha et al. 05, Cremers et al. 08] [Woodford et al. 2009] 3D RECONSTRUCTION BINARY SEGMENTATION Rays must touch silhouette at least once Object Background Prior on size of object (say n/2) [Kohli and Kumar, CVPR 2010]

43 x* = Such that: arg min x E(x) x has area A = A x has boundary length B = B

44 Parametric Maxflow/st-Mincut λ = + λ = x v =0 x v =n x* = arg min

45 Parametric Maxflow/st-Mincut λ = + λ = x v =0 x v =n x* = arg min [Gallo et al. 1986] [Kolmogorov et al. ICCV 2007]

46 Generalized (Multi-dimensional) Parametric Maxflow

47

48 x y Can we find parameters that lead to solutions consistent with higher-order statistics? [Pletscher and Kohli, AISTATS 2012 ]

49 x y [AISTATS 2012]

50 x y Requires solution of [AISTATS 2012]

51 [AISTATS 2012]

52 Adaptive data-driven representations for Higher order Potentials Global potentials that encode topology constraints Efficiency

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr

Graph Cut based Inference with Co-occurrence Statistics. Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Graph Cut based Inference with Co-occurrence Statistics Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr Image labelling Problems Assign a label to each image pixel Geometry Estimation Image Denoising

More information

Pushmeet Kohli. Microsoft Research Cambridge. IbPRIA 2011

Pushmeet Kohli. Microsoft Research Cambridge. IbPRIA 2011 Pushmeet Kohli Microsoft Research Cambridge IbPRIA 2011 2:30 4:30 Labelling Problems Graphical Models Message Passing 4:30 5:00 - Coffee break 5:00 7:00 - Graph Cuts Move Making Algorithms Speed and Efficiency

More information

Discrete Inference and Learning Lecture 3

Discrete Inference and Learning Lecture 3 Discrete Inference and Learning Lecture 3 MVA 2017 2018 h

More information

Part 6: Structured Prediction and Energy Minimization (1/2)

Part 6: Structured Prediction and Energy Minimization (1/2) Part 6: Structured Prediction and Energy Minimization (1/2) Providence, 21st June 2012 Prediction Problem Prediction Problem y = f (x) = argmax y Y g(x, y) g(x, y) = p(y x), factor graphs/mrf/crf, g(x,

More information

MAP Estimation Algorithms in Computer Vision - Part II

MAP Estimation Algorithms in Computer Vision - Part II MAP Estimation Algorithms in Comuter Vision - Part II M. Pawan Kumar, University of Oford Pushmeet Kohli, Microsoft Research Eamle: Image Segmentation E() = c i i + c ij i (1- j ) i i,j E: {0,1} n R 0

More information

Higher-Order Clique Reduction Without Auxiliary Variables

Higher-Order Clique Reduction Without Auxiliary Variables Higher-Order Clique Reduction Without Auxiliary Variables Hiroshi Ishikawa Department of Computer Science and Engineering Waseda University Okubo 3-4-1, Shinjuku, Tokyo, Japan hfs@waseda.jp Abstract We

More information

Graph Cut based Inference with Co-occurrence Statistics

Graph Cut based Inference with Co-occurrence Statistics Graph Cut based Inference with Co-occurrence Statistics Lubor Ladicky 1,3, Chris Russell 1,3, Pushmeet Kohli 2, and Philip H.S. Torr 1 1 Oxford Brookes 2 Microsoft Research Abstract. Markov and Conditional

More information

Generalized Roof Duality for Pseudo-Boolean Optimization

Generalized Roof Duality for Pseudo-Boolean Optimization Generalized Roof Duality for Pseudo-Boolean Optimization Fredrik Kahl Petter Strandmark Centre for Mathematical Sciences, Lund University, Sweden {fredrik,petter}@maths.lth.se Abstract The number of applications

More information

Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps

Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps Making the Right Moves: Guiding Alpha-Expansion using Local Primal-Dual Gaps Dhruv Batra TTI Chicago dbatra@ttic.edu Pushmeet Kohli Microsoft Research Cambridge pkohli@microsoft.com Abstract 5 This paper

More information

Part 7: Structured Prediction and Energy Minimization (2/2)

Part 7: Structured Prediction and Energy Minimization (2/2) Part 7: Structured Prediction and Energy Minimization (2/2) Colorado Springs, 25th June 2011 G: Worst-case Complexity Hard problem Generality Optimality Worst-case complexity Integrality Determinism G:

More information

Pseudo-Bound Optimization for Binary Energies

Pseudo-Bound Optimization for Binary Energies In European Conference on Computer Vision (ECCV), Zurich, Switzerland, 2014 p. 1 Pseudo-Bound Optimization for Binary Energies Meng Tang 1 Ismail Ben Ayed 1,2 Yuri Boykov 1 1 University of Western Ontario,

More information

Submodularity beyond submodular energies: Coupling edges in graph cuts

Submodularity beyond submodular energies: Coupling edges in graph cuts Submodularity beyond submodular energies: Coupling edges in graph cuts Stefanie Jegelka and Jeff Bilmes Max Planck Institute for Intelligent Systems Tübingen, Germany University of Washington Seattle,

More information

A Graph Cut Algorithm for Higher-order Markov Random Fields

A Graph Cut Algorithm for Higher-order Markov Random Fields A Graph Cut Algorithm for Higher-order Markov Random Fields Alexander Fix Cornell University Aritanan Gruber Rutgers University Endre Boros Rutgers University Ramin Zabih Cornell University Abstract Higher-order

More information

Minimizing Count-based High Order Terms in Markov Random Fields

Minimizing Count-based High Order Terms in Markov Random Fields EMMCVPR 2011, St. Petersburg Minimizing Count-based High Order Terms in Markov Random Fields Thomas Schoenemann Center for Mathematical Sciences Lund University, Sweden Abstract. We present a technique

More information

Inference Methods for CRFs with Co-occurrence Statistics

Inference Methods for CRFs with Co-occurrence Statistics Noname manuscript No. (will be inserted by the editor) Inference Methods for CRFs with Co-occurrence Statistics L ubor Ladický 1 Chris Russell 1 Pushmeet Kohli Philip H. S. Torr the date of receipt and

More information

Inference Methods for CRFs with Co-occurrence Statistics

Inference Methods for CRFs with Co-occurrence Statistics Int J Comput Vis (2013) 103:213 225 DOI 10.1007/s11263-012-0583-y Inference Methods for CRFs with Co-occurrence Statistics L ubor Ladický Chris Russell Pushmeet Kohli Philip H. S. Torr Received: 21 January

More information

Higher-Order Clique Reduction in Binary Graph Cut

Higher-Order Clique Reduction in Binary Graph Cut CVPR009: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami Beach, Florida. June 0-5, 009. Hiroshi Ishikawa Nagoya City University Department of Information and Biological

More information

A note on the primal-dual method for the semi-metric labeling problem

A note on the primal-dual method for the semi-metric labeling problem A note on the primal-dual method for the semi-metric labeling problem Vladimir Kolmogorov vnk@adastral.ucl.ac.uk Technical report June 4, 2007 Abstract Recently, Komodakis et al. [6] developed the FastPD

More information

Markov Random Fields for Computer Vision (Part 1)

Markov Random Fields for Computer Vision (Part 1) Markov Random Fields for Computer Vision (Part 1) Machine Learning Summer School (MLSS 2011) Stephen Gould stephen.gould@anu.edu.au Australian National University 13 17 June, 2011 Stephen Gould 1/23 Pixel

More information

Higher-Order Energies for Image Segmentation

Higher-Order Energies for Image Segmentation IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Higher-Order Energies for Image Segmentation Jianbing Shen, Senior Member, IEEE, Jianteng Peng, Xingping Dong, Ling Shao, Senior Member, IEEE, and Fatih Porikli,

More information

Transformation of Markov Random Fields for Marginal Distribution Estimation

Transformation of Markov Random Fields for Marginal Distribution Estimation Transformation of Markov Random Fields for Marginal Distribution Estimation Masaki Saito Takayuki Okatani Tohoku University, Japan {msaito, okatani}@vision.is.tohoku.ac.jp Abstract This paper presents

More information

On Partial Optimality in Multi-label MRFs

On Partial Optimality in Multi-label MRFs Pushmeet Kohli 1 Alexander Shekhovtsov 2 Carsten Rother 1 Vladimir Kolmogorov 3 Philip Torr 4 pkohli@microsoft.com shekhovt@cmp.felk.cvut.cz carrot@microsoft.com vnk@adastral.ucl.ac.uk philiptorr@brookes.ac.uk

More information

Submodular Maximization and Diversity in Structured Output Spaces

Submodular Maximization and Diversity in Structured Output Spaces Submodular Maximization and Diversity in Structured Output Spaces Adarsh Prasad Virginia Tech, UT Austin adarshprasad27@gmail.com Stefanie Jegelka UC Berkeley stefje@eecs.berkeley.edu Dhruv Batra Virginia

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Philipp Krähenbühl and Vladlen Koltun Stanford University Presenter: Yuan-Ting Hu 1 Conditional Random Field (CRF) E x I = φ u

More information

Truncated Max-of-Convex Models Technical Report

Truncated Max-of-Convex Models Technical Report Truncated Max-of-Convex Models Technical Report Pankaj Pansari University of Oxford The Alan Turing Institute pankaj@robots.ox.ac.uk M. Pawan Kumar University of Oxford The Alan Turing Institute pawan@robots.ox.ac.uk

More information

MAP Examples. Sargur Srihari

MAP Examples. Sargur Srihari MAP Examples Sargur srihari@cedar.buffalo.edu 1 Potts Model CRF for OCR Topics Image segmentation based on energy minimization 2 Examples of MAP Many interesting examples of MAP inference are instances

More information

On Partial Optimality in Multi-label MRFs

On Partial Optimality in Multi-label MRFs On Partial Optimality in Multi-label MRFs P. Kohli 1 A. Shekhovtsov 2 C. Rother 1 V. Kolmogorov 3 P. Torr 4 1 Microsoft Research Cambridge 2 Czech Technical University in Prague 3 University College London

More information

Decision Tree Fields

Decision Tree Fields Sebastian Nowozin, arsten Rother, Shai agon, Toby Sharp, angpeng Yao, Pushmeet Kohli arcelona, 8th November 2011 Introduction Random Fields in omputer Vision Markov Random Fields (MRF) (Kindermann and

More information

Tightness of LP Relaxations for Almost Balanced Models

Tightness of LP Relaxations for Almost Balanced Models Tightness of LP Relaxations for Almost Balanced Models Adrian Weller University of Cambridge AISTATS May 10, 2016 Joint work with Mark Rowland and David Sontag For more information, see http://mlg.eng.cam.ac.uk/adrian/

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials by Phillip Krahenbuhl and Vladlen Koltun Presented by Adam Stambler Multi-class image segmentation Assign a class label to each

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

Inference for Order Reduction in Markov Random Fields

Inference for Order Reduction in Markov Random Fields Inference for Order Reduction in Markov Random Fields Andre C. Gallagher Eastman Kodak Company andre.gallagher@kodak.com Dhruv Batra Toyota Technological Institute at Chicago ttic.uchicago.edu/ dbatra

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

Joint Optimization of Segmentation and Appearance Models

Joint Optimization of Segmentation and Appearance Models Joint Optimization of Segmentation and Appearance Models David Mandle, Sameep Tandon April 29, 2013 David Mandle, Sameep Tandon (Stanford) April 29, 2013 1 / 19 Overview 1 Recap: Image Segmentation 2 Optimization

More information

Potts model, parametric maxflow and k-submodular functions

Potts model, parametric maxflow and k-submodular functions 2013 IEEE International Conference on Computer Vision Potts model, parametric maxflow and k-submodular functions Igor Gridchyn IST Austria igor.gridchyn@ist.ac.at Vladimir Kolmogorov IST Austria vnk@ist.ac.at

More information

Discrete Optimization in Machine Learning. Colorado Reed

Discrete Optimization in Machine Learning. Colorado Reed Discrete Optimization in Machine Learning Colorado Reed [ML-RCC] 31 Jan 2013 1 Acknowledgements Some slides/animations based on: Krause et al. tutorials: http://www.submodularity.org Pushmeet Kohli tutorial:

More information

Submodularization for Binary Pairwise Energies

Submodularization for Binary Pairwise Energies IEEE conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, 214 p. 1 Submodularization for Binary Pairwise Energies Lena Gorelick Yuri Boykov Olga Veksler Computer Science Department

More information

Parameter Learning for Log-supermodular Distributions

Parameter Learning for Log-supermodular Distributions Parameter Learning for Log-supermodular Distributions Tatiana Shpakova IRIA - École ormale Supérieure Paris tatiana.shpakova@inria.fr Francis Bach IRIA - École ormale Supérieure Paris francis.bach@inria.fr

More information

Learning Graph Laplacian for Image Segmentation

Learning Graph Laplacian for Image Segmentation Learning Graph Laplacian for Image Segmentation EN4: Image processing Sergey Milyaev Radiophysics Department Voronezh State University, Voronezh, Russia sergey.milyaev@gmail.com Olga Barinova Department

More information

A Compact Linear Programming Relaxation for Binary Sub-modular MRF

A Compact Linear Programming Relaxation for Binary Sub-modular MRF A Compact Linear Programming Relaxation for Binary Sub-modular MRF Junyan Wang and Sai-Kit Yeung Singapore University of Technology and Design {junyan_wang,saikit}@sutd.edu.sg Abstract. Direct linear programming

More information

Active MAP Inference in CRFs for Efficient Semantic Segmentation

Active MAP Inference in CRFs for Efficient Semantic Segmentation 2013 IEEE International Conference on Computer Vision Active MAP Inference in CRFs for Efficient Semantic Segmentation Gemma Roig 1 Xavier Boix 1 Roderick de Nijs 2 Sebastian Ramos 3 Kolja Kühnlenz 2 Luc

More information

Learning with Structured Inputs and Outputs

Learning with Structured Inputs and Outputs Learning with Structured Inputs and Outputs Christoph H. Lampert IST Austria (Institute of Science and Technology Austria), Vienna Microsoft Machine Learning and Intelligence School 2015 July 29-August

More information

Superdifferential Cuts for Binary Energies

Superdifferential Cuts for Binary Energies Superdifferential Cuts for Binary Energies Tatsunori Taniai University of Tokyo, Japan Yasuyuki Matsushita Osaka University, Japan Takeshi Naemura University of Tokyo, Japan taniai@iis.u-tokyo.ac.jp yasumat@ist.osaka-u.ac.jp

More information

Introduction To Graphical Models

Introduction To Graphical Models Peter Gehler Introduction to Graphical Models Introduction To Graphical Models Peter V. Gehler Max Planck Institute for Intelligent Systems, Tübingen, Germany ENS/INRIA Summer School, Paris, July 2013

More information

Revisiting Uncertainty in Graph Cut Solutions

Revisiting Uncertainty in Graph Cut Solutions Revisiting Uncertainty in Graph Cut Solutions Daniel Tarlow Dept. of Computer Science University of Toronto dtarlow@cs.toronto.edu Ryan P. Adams School of Engineering and Applied Sciences Harvard University

More information

Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passing

Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passing Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passing Huayan Wang huayanw@cs.stanford.edu Computer Science Department, Stanford University, Palo Alto, CA 90 USA Daphne Koller koller@cs.stanford.edu

More information

Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes

Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes Supplementary Material Accompanying Geometry Driven Semantic Labeling of Indoor Scenes Salman H. Khan 1, Mohammed Bennamoun 1, Ferdous Sohel 1 and Roberto Togneri 2 School of CSSE 1, School of EECE 2 The

More information

Structured Prediction

Structured Prediction Structured Prediction Classification Algorithms Classify objects x X into labels y Y First there was binary: Y = {0, 1} Then multiclass: Y = {1,...,6} The next generation: Structured Labels Structured

More information

Discrete Optimization Lecture 5. M. Pawan Kumar

Discrete Optimization Lecture 5. M. Pawan Kumar Discrete Optimization Lecture 5 M. Pawan Kumar pawan.kumar@ecp.fr Exam Question Type 1 v 1 s v 0 4 2 1 v 4 Q. Find the distance of the shortest path from s=v 0 to all vertices in the graph using Dijkstra

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

Quadratization of symmetric pseudo-boolean functions

Quadratization of symmetric pseudo-boolean functions of symmetric pseudo-boolean functions Yves Crama with Martin Anthony, Endre Boros and Aritanan Gruber HEC Management School, University of Liège Liblice, April 2013 of symmetric pseudo-boolean functions

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm

Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm Dhruv Batra Sebastian Nowozin Pushmeet Kohli TTI-Chicago Microsoft Research Cambridge Microsoft Research Cambridge

More information

Undirected graphical models

Undirected graphical models Undirected graphical models Semantics of probabilistic models over undirected graphs Parameters of undirected models Example applications COMP-652 and ECSE-608, February 16, 2017 1 Undirected graphical

More information

Integrating Local Classifiers through Nonlinear Dynamics on Label Graphs with an Application to Image Segmentation

Integrating Local Classifiers through Nonlinear Dynamics on Label Graphs with an Application to Image Segmentation Integrating Local Classifiers through Nonlinear Dynamics on Label Graphs with an Application to Image Segmentation Yutian Chen Andrew Gelfand Charless C. Fowlkes Max Welling Bren School of Information

More information

Course 16:198:520: Introduction To Artificial Intelligence Lecture 9. Markov Networks. Abdeslam Boularias. Monday, October 14, 2015

Course 16:198:520: Introduction To Artificial Intelligence Lecture 9. Markov Networks. Abdeslam Boularias. Monday, October 14, 2015 Course 16:198:520: Introduction To Artificial Intelligence Lecture 9 Markov Networks Abdeslam Boularias Monday, October 14, 2015 1 / 58 Overview Bayesian networks, presented in the previous lecture, are

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Summary of Class Advanced Topics Dhruv Batra Virginia Tech HW1 Grades Mean: 28.5/38 ~= 74.9%

More information

Optimizing Expected Intersection-over-Union with Candidate-Constrained CRFs

Optimizing Expected Intersection-over-Union with Candidate-Constrained CRFs Optimizing Expected Intersection-over-Union with Candidate-Constrained CRFs Faruk Ahmed Université de Montréal faruk.ahmed@umontreal.ca Daniel Tarlow Microsoft Research dtarlow@microsoft.com Dhruv Batra

More information

Max$Sum(( Exact(Inference(

Max$Sum(( Exact(Inference( Probabilis7c( Graphical( Models( Inference( MAP( Max$Sum(( Exact(Inference( Product Summation a 1 b 1 8 a 1 b 2 1 a 2 b 1 0.5 a 2 b 2 2 a 1 b 1 3 a 1 b 2 0 a 2 b 1-1 a 2 b 2 1 Max-Sum Elimination in Chains

More information

Markov Random Fields

Markov Random Fields Markov Random Fields Umamahesh Srinivas ipal Group Meeting February 25, 2011 Outline 1 Basic graph-theoretic concepts 2 Markov chain 3 Markov random field (MRF) 4 Gauss-Markov random field (GMRF), and

More information

Submodularity in Machine Learning

Submodularity in Machine Learning Saifuddin Syed MLRG Summer 2016 1 / 39 What are submodular functions Outline 1 What are submodular functions Motivation Submodularity and Concavity Examples 2 Properties of submodular functions Submodularity

More information

Energy Minimization via Graph Cuts

Energy Minimization via Graph Cuts Energy Minimization via Graph Cuts Xiaowei Zhou, June 11, 2010, Journal Club Presentation 1 outline Introduction MAP formulation for vision problems Min-cut and Max-flow Problem Energy Minimization via

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

Scalable Variational Inference in Log-supermodular Models

Scalable Variational Inference in Log-supermodular Models Josip Djolonga Andreas Krause Department of Computer Science, ETH Zurich JOSIPD@INF.ETHZ.CH KRAUSEA@ETHZ.CH Abstract We consider the problem of approximate Bayesian inference in log-supermodular models.

More information

Semi-Markov/Graph Cuts

Semi-Markov/Graph Cuts Semi-Markov/Graph Cuts Alireza Shafaei University of British Columbia August, 2015 1 / 30 A Quick Review For a general chain-structured UGM we have: n n p(x 1, x 2,..., x n ) φ i (x i ) φ i,i 1 (x i, x

More information

arxiv: v1 [cs.cv] 23 Mar 2015

arxiv: v1 [cs.cv] 23 Mar 2015 Superpixelizing Binary MRF for Image Labeling Problems arxiv:1503.06642v1 [cs.cv] 23 Mar 2015 Junyan Wang and Sai-Kit Yeung Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372

More information

Rounding-based Moves for Semi-Metric Labeling

Rounding-based Moves for Semi-Metric Labeling Rounding-based Moves for Semi-Metric Labeling M. Pawan Kumar, Puneet K. Dokania To cite this version: M. Pawan Kumar, Puneet K. Dokania. Rounding-based Moves for Semi-Metric Labeling. Journal of Machine

More information

Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm

Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm Dhruv Batra Sebastian Nowozin Pushmeet Kohli TTI-Chicago Microsoft Research Cambridge Microsoft Research Cambridge

More information

1 Sparsity and l 1 relaxation

1 Sparsity and l 1 relaxation 6.883 Learning with Combinatorial Structure Note for Lecture 2 Author: Chiyuan Zhang Sparsity and l relaxation Last time we talked about sparsity and characterized when an l relaxation could recover the

More information

Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs

Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs Adrian Weller University of Cambridge CP 2015 Cork, Ireland Slides and full paper at http://mlg.eng.cam.ac.uk/adrian/ 1 / 21 Motivation:

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Laconic: Label Consistency for Image Categorization

Laconic: Label Consistency for Image Categorization 1 Laconic: Label Consistency for Image Categorization Samy Bengio, Google with Jeff Dean, Eugene Ie, Dumitru Erhan, Quoc Le, Andrew Rabinovich, Jon Shlens, and Yoram Singer 2 Motivation WHAT IS THE OCCLUDED

More information

MANY problems in computer vision, such as segmentation,

MANY problems in computer vision, such as segmentation, 134 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 6, JUNE 011 Transformation of General Binary MRF Minimization to the First-Order Case Hiroshi Ishikawa, Member, IEEE Abstract

More information

Machine Learning for Structured Prediction

Machine Learning for Structured Prediction Machine Learning for Structured Prediction Grzegorz Chrupa la National Centre for Language Technology School of Computing Dublin City University NCLT Seminar Grzegorz Chrupa la (DCU) Machine Learning for

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Discriminative Fields for Modeling Spatial Dependencies in Natural Images

Discriminative Fields for Modeling Spatial Dependencies in Natural Images Discriminative Fields for Modeling Spatial Dependencies in Natural Images Sanjiv Kumar and Martial Hebert The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213 {skumar,hebert}@ri.cmu.edu

More information

Maximum Persistency via Iterative Relaxed Inference with Graphical Models

Maximum Persistency via Iterative Relaxed Inference with Graphical Models Maximum Persistency via Iterative Relaxed Inference with Graphical Models Alexander Shekhovtsov TU Graz, Austria shekhovtsov@icg.tugraz.at Paul Swoboda Heidelberg University, Germany swoboda@math.uni-heidelberg.de

More information

Learning Spectral Graph Segmentation

Learning Spectral Graph Segmentation Learning Spectral Graph Segmentation AISTATS 2005 Timothée Cour Jianbo Shi Nicolas Gogin Computer and Information Science Department University of Pennsylvania Computer Science Ecole Polytechnique Graph-based

More information

Approximation Bounds for Inference using Cooperative Cuts

Approximation Bounds for Inference using Cooperative Cuts Stefanie Jegelka Max Planck Institute for Intelligent Systems, Tübingen, Germany Jeff Bilmes University of Washington, Seattle, WA 98195, USA jegelka@tuebingen.mpg.de bilmes@u.washington.edu Abstract We

More information

Does Better Inference mean Better Learning?

Does Better Inference mean Better Learning? Does Better Inference mean Better Learning? Andrew E. Gelfand, Rina Dechter & Alexander Ihler Department of Computer Science University of California, Irvine {agelfand,dechter,ihler}@ics.uci.edu Abstract

More information

What Metrics Can Be Approximated by Geo-Cuts, or Global Optimization of Length/Area and Flux

What Metrics Can Be Approximated by Geo-Cuts, or Global Optimization of Length/Area and Flux Proceedings of International Conference on Computer Vision (ICCV), Beijing, China, October 2005 vol.., p.1 What Metrics Can Be Approximated by Geo-Cuts, or Global Optimization of Length/Area and Flux Vladimir

More information

Computing the M Most Probable Modes of a Graphical Model

Computing the M Most Probable Modes of a Graphical Model Chao Chen Vladimir Kolmogorov Yan Zhu Rutgers University IST Austria Rutgers University Dimitris Metaxas Rutgers University Christoph H. Lampert IST Austria Abstract We introduce the M-Modes problem for

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

A Combined LP and QP Relaxation for MAP

A Combined LP and QP Relaxation for MAP A Combined LP and QP Relaxation for MAP Patrick Pletscher ETH Zurich, Switzerland pletscher@inf.ethz.ch Sharon Wulff ETH Zurich, Switzerland sharon.wulff@inf.ethz.ch Abstract MAP inference for general

More information

Efficient Inference with Cardinality-based Clique Potentials

Efficient Inference with Cardinality-based Clique Potentials Rahul Gupta IBM Research Lab, New Delhi, India Ajit A. Diwan Sunita Sarawagi IIT Bombay, India Abstract Many collective labeling tasks require inference on graphical models where the clique potentials

More information

Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts

Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts June 23 rd 2008 Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts Christian Wolf Laboratoire d InfoRmatique en Image et Systèmes

More information

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material

A Generative Perspective on MRFs in Low-Level Vision Supplemental Material A Generative Perspective on MRFs in Low-Level Vision Supplemental Material Uwe Schmidt Qi Gao Stefan Roth Department of Computer Science, TU Darmstadt 1. Derivations 1.1. Sampling the Prior We first rewrite

More information

Higher-Order Inference for Multi-class Log-supermodular Models

Higher-Order Inference for Multi-class Log-supermodular Models Higher-Order Inference for Multi-class Log-supermodular Models Jian Zhang, Josip Djolonga and Andreas Krause Department of Computer Science, ETH Zurich jizhang@student.ethz.ch {josipd,krausea}@inf.ethz.ch

More information

A Graphical Model for Simultaneous Partitioning and Labeling

A Graphical Model for Simultaneous Partitioning and Labeling A Graphical Model for Simultaneous Partitioning and Labeling Philip J Cowans Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom pjc51@camacuk Martin Szummer Microsoft Research

More information

Dual Decomposition for Inference

Dual Decomposition for Inference Dual Decomposition for Inference Yunshu Liu ASPITRG Research Group 2014-05-06 References: [1]. D. Sontag, A. Globerson and T. Jaakkola, Introduction to Dual Decomposition for Inference, Optimization for

More information

Semi-Supervised Learning

Semi-Supervised Learning Semi-Supervised Learning getting more for less in natural language processing and beyond Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University 1 Semi-supervised Learning many human

More information

Semi-Supervised Learning with Graphs

Semi-Supervised Learning with Graphs Semi-Supervised Learning with Graphs Xiaojin (Jerry) Zhu LTI SCS CMU Thesis Committee John Lafferty (co-chair) Ronald Rosenfeld (co-chair) Zoubin Ghahramani Tommi Jaakkola 1 Semi-supervised Learning classifiers

More information

Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification

Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification Sanjiv Kumar and Martial Hebert The Robotics Institute, Carnegie Mellon University Pittsburgh, PA 15213,

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

Fast Memory-Efficient Generalized Belief Propagation

Fast Memory-Efficient Generalized Belief Propagation Fast Memory-Efficient Generalized Belief Propagation M. Pawan Kumar P.H.S. Torr Department of Computing Oxford Brookes University Oxford, UK, OX33 1HX {pkmudigonda,philiptorr}@brookes.ac.uk http://cms.brookes.ac.uk/computervision

More information

Learning MN Parameters with Approximation. Sargur Srihari

Learning MN Parameters with Approximation. Sargur Srihari Learning MN Parameters with Approximation Sargur srihari@cedar.buffalo.edu 1 Topics Iterative exact learning of MN parameters Difficulty with exact methods Approximate methods Approximate Inference Belief

More information

Reformulations of nonlinear binary optimization problems

Reformulations of nonlinear binary optimization problems 1 / 36 Reformulations of nonlinear binary optimization problems Yves Crama HEC Management School, University of Liège, Belgium Koper, May 2018 2 / 36 Nonlinear 0-1 optimization Outline 1 Nonlinear 0-1

More information

Scalable Variational Inference in Log-supermodular Models

Scalable Variational Inference in Log-supermodular Models Josip Djolonga Andreas Krause Department of Computer Science, ETH Zurich JOSIPD@INF.ETHZ.CH KRAUSEA@ETHZ.CH Abstract We consider the problem of approximate Bayesian inference in log-supermodular models.

More information

Advanced Structured Prediction

Advanced Structured Prediction Advanced Structured Prediction Editors: Sebastian Nowozin Microsoft Research Cambridge, CB1 2FB, United Kingdom Peter V. Gehler Max Planck Insitute for Intelligent Systems 72076 Tübingen, Germany Jeremy

More information