Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Brønsted Acid-Catalyzed [6+2]-Cycloaddition of 2-Vinylindoles with In Situ Generated 2-Methide-2H-pyrroles: Direct, Catalytic, and Enantioselective Synthesis of 2,3-Dihydro-H-pyrrolizines Isa Kallweit, and Christoph Schneider*

2 Table of Contents General Information... 2 Experimental procedures... 3 Characterization of Products... 3 MR-Spectra... 2 HPLC-Chromatograms Crystallographic data General Information H and 3 C MR spectra were recorded in CDCl 3 using a Brucker Avance III HD (400 MHz), a Varian MERCURYplus 400 (400 MHz) or a Varian MERCURYplus 300 (300 MHz). The signals were referenced to residual chloroform (7.26 ppm, H, ppm, 3 C). Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). Melting points are uncorrected and were determined on a Büchi melting point apparatus. IR spectra were obtained with a FTIR spectrometer (JASCO FT/IR-400). Optical rotations were measured using a Polarotronic polarimeter (Schmidt & Haensch). All ESI mass spectra were recorded on a Brucker ESI-TOF microtof. HPLC analyses were carried out on a Jasco MD-200 plus or Jasco MD-405 instrument with chiral stationary phase column (Daicel Chiralpak IA column). tert-butyl methyl ether and hexane were technical grade and distilled from KOH, toluene was purified and dried by a Solvent Purification System MB SPS-800 (Braun). Flash column chromatography was performed by using Merck silica gel mesh ( mm). All reactions were monitored by thin layer chromatography using precoated silica gel plates. Spots were visualized by UV (λ = 254 nm) and were treated with a vanillin solution in methanol (technical grade). 2-Vinyl indoles 5 were known and prepared by following the literature procedure. [] X-ray data were collected with a GEMII CCD diffractometer (Rigaku Inc.), λ(mo-kα) = Å, T = 30(2) K, empirical absorption corrections with SCALE3 ABSPACK. [2] The structure was solved by dual space methods with SIR-92. [3] Structure refinement was done with SHELXL-206 [4] by using full-matrix least-square routines against F2. All hydrogen atoms were calculated on idealized positions with exception of the OH proton which was detected in the difference map and refined with a restraint. The absolute structure was established by anomalous dispersion effects. The picture was generated with the program ORTEP. [5] CCDC (9) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via (or from the Cambridge Crystallographic Data Centre, 2 Union Road, Cambridge CB2 EZ, UK; fax: (+44) ; or deposit@ccdc.cam.uk). [] W. Tan, X. Li, Y.-X. Gong, M.-D. Ge, F. Shi, Chem. Commun. 204, 50, , K. Bera, C. Schneider, Chem. Eur. J. 206, 22, [2] Empirical absorption correction, CrysAlis-Pro Software package, Oxford Diffraction Ltd [3] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 994, 27, 435. [4] a) SHELX includes SHELXS-203, SHELXL-206: G. M. Sheldrick, Acta Crystallogr. Sect. C 205, 7, 3 8; b) SHELXT: G. M. Sheldrick, Acta Crystallogr. Sect. A 205, 7, 3 8. [5] L. J. Farrugia, J. Appl. Cryst. 202, 45,

3 Experimental procedures General procedure A: Enantioselective Cycloaddition To a suspension of (H-pyrrol-2-yl)(aryl)methanol 4 (0.2 mmol,.2 equiv), (E)-3-methyl-2-(styryl)-H-indole 5 (0. mmol, equiv) and pulverized 4 Å molecular sieves (30 mg, 300 mg/mmol) in toluene ( ml), catalyst 7g (6.3 mg, 0.0 mmol, 0 mol%) was added at rt. The reaction mixture was stirred at 60 C and monitored by TLC. After completion of the reaction the crude reaction mixture was purified by column chromatography using hexane-mtbe (0.5-0 %, gradient elution) as eluent to afford products 6/8. The enantiomeric excess was determined by HPLC on a chiral stationary phase. Diastereomeric ratio was determined via H-MR and was >20: in all cases. Large scale synthesis: Analogous to General Procedure A the reaction was performed using 4h (.62 g, 4.80 mmol,.2 eq.), 5a (933 mg, 4.00 mmol,.0 eq.),.0 g pulverized 4 Å molecular sieves and catalyst 7g (23 mg, mmol, 5 mol%) in toluene (40 ml) and gave product 6h in 89 % yield (.95 g) and 96:4 e.r. The enantiomeric ratio was further enhanced to >99.5:0.5 e.r. by single recrystallization. General procedure B: Photocatalytic Autooxidation 3-(3-Methyl-H-Indol-2-yl)-2,3-dihydro-H-pyrrolizine 6 (0.0 mmol,.0 eq.) was dissolved in toluene and 0.5 mg (> mol%) rose bengal was added. A continuous stream of oxygen was bubbled through the reaction mixture and it was irradiated with green LEDs for 4 h. The precipitate was collected, washed with hexanes and dried under reduced pressure to give hydroperoxide 9 as pale pink solid. Characterization of Products Methyl (S,2S,3R)-6-ethyl-7-methyl-3-(3-methyl-H-indol-2-yl)-,2-diphenyl-2,3-dihydro-H-pyrrolizine-5-carboxylate (6a) According to General Procedure A: 33 mg (0.2 mmol) 4a, 23 mg (0.0 mmol) 5a, 48 h. Yield 43 mg, 90 % as a white solid, e.r. 94:6, [α] D 25 = 30 (c = 2.0, CHCl 3). mp = 82 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 4H), (m, 6H), (m, H), 7.04 (td, J = 7.3,.4 Hz, H), 5.90 (d, J = 6. Hz, H), 4.52 (d, J = 6.8 Hz, H), 3.76 (t, J = 6.4 Hz, H), 2.93 (dq, J = 3.0, 7.4 Hz, H), 2.76 (dq, J = 3., 7.4 Hz, H),.92 (s, 3H),.78 (s, 3H),.9 (t, J = 7.4 Hz, 3H) , 65.00, 52.02, 50.5, 9.22, 5.38, 8.92, C MR (75 MHz, CDCl 3) δ [ppm] = 6.09, 4.48, 40.97, 40.79, 40.52, 35.37, 34.60, 29.4, 29.08, 28.99, 27.73, 27.55, 27.30, 2.68, 9.22, 8.54, 4.48, 2.03, 0.82, 07.49, IR (KBr) ν [cm - ] = 342, 2954, 2924, 2869, 682, 495, 456, 280, 30, 759, 743, 70. HR-MS (ESI) calc. for: C 33H 3 2O 2 - ([M-H] - ): , found: HPLC IA column (90 % hexane, 0 % iso-propanol, ml/min, 278 nm) R t = 4.5 min, R t2 = 9. min. 3

4 Methyl (S,2S,3R)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)-,2-diphenyl-2,3-dihydro-H-pyrrolizine-5-carboxylate (6b) According to General Procedure A: 3 mg (0.2 mmol) 4b, 23 mg (0.0 mmol) 5a, 48 h. 25 Yield 36 mg, 75 % as a white solid, e.r. 93:7, [α] D = 46 (c = 2.0, CHCl 3). mp = 96 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 7H), (m, 6H), (m, H), 7.04 (td, J = 7.3,.4 Hz, H), 5.92 (d, J = 5.8 Hz, H), 4.52 (d, J = 6.5 Hz, H), 3.77 (t, J = 6.2 Hz, H), 3.39 (s, 3H), 2.37 (s, 3H),.94 (s, 3H),.78 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.3, 4.80, 4.04, 40.7, 35.37, 34.53, 33.93, 29.39, 29.2, 29.02, 27.62, 27.56, 27.49, 27.32, 2.70, 9.22, 8.55, 5.6, 2.85, 0.83, 07.56, 67.22, 64.96, 5.98, 50.57,.5, 9.5, IR (KBr) ν [cm - ] = 3327, 299, 698, 684, 495, 446, 335, 274, 26, 28, 755, 699. HR-MS (ESI) calc. for: C 32H 29 2O - 2 ([M-H] - ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 5.3 min, R t2 = 9.8 min. Methyl (S,2S,3R)-7-methyl-3-(3-methyl-H-indol-2-yl)-,2,6-triphenyl-2,3-dihydro-H-pyrrolizine-5-carboxylate (6c) According to General Procedure A: 40 mg (0.2 mmol) 4c, 23 mg (0.0 mmol) 5a, 48 h. 25 Yield 42 mg, 78 % as a white solid, e.r. 97:3, [α] D = +6 (c =.0, CHCl 3). mp = 205 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = 7.53 (s, H), (m, H), (m, 5H), 7.0 (ddd, J = 8., 7.0,.4 Hz, H), 7.05 (td, J = 7.4,.2 Hz, H), 6.0 (d, J = 6.4 Hz, H), 4.6 (d, J = 7. Hz, H), 3.83 (t, J = 6.8 Hz, H), 3.22 (s, 3H),.94 (s, 3H),.72 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 60.75, 40.98, 40.67, 40.60, 37.59, 35.44, 35.6, 33.93, 30.37, 29.37, 29.2, 29.05, 27.85, 27.74, 27.68, 27.60, 27.42, 26.96, 2.84, 9.30, 8.60, 4.80, 2.64, 0.9, 07.93, 67.4, 65.22, 52.3, 50.68, 9.78, IR (KBr) ν [cm - ] = 3425, 693, 458, 288, 202, 42, 089, 744, 702. HR-MS (ESI) calc. for: C 37H 32 2O 2a + ([M+a] + ): , found: HPLC IA column (90 % hexane, 0 % iso-propanol, ml/min, 282 nm) R t = 4.9 min, R t2 = 3.4 min. Methyl (S,2S,3R)- 7-methyl-3-(3-methyl-H-indol-2-yl)-,2-diphenyl-2,3-dihydro-H-pyrrolizine-5-carboxylate (6d) According to General Procedure A: 30 mg (0.2 mmol) 4d, 23 mg (0.0 mmol) 5a, 48 h. 22 Yield 23 mg, 49 % as a white solid, e.r. 94:6, [α] D = 42 (c =.0, CHCl 3). mp = 0 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 4H), 5.92 (d, J = 5.8 Hz, H), 4.54 (d, J = 6.4 Hz, H), 3.84 (t, J = 6. Hz, H), 3.48 (s, 3H),.97 (s, 3H),.88 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 60.56, 4.67, 4.64, 40.84, 35.45, 33.85, 29.34, 29.6, 29.08, 27.64, 27.56, 27.47, 27.40, 23.09, 2.80, 9.24, 8.70, 7.9, 3.30, 0.8, 08.3, 67.69, 64.36, 5.8, 5.08,.5, IR (KBr) ν [cm - ] = 334, 295, 2922, 687, 472, 454, 335, 242, 098, 0, 757, 700, 457. HR-MS (ESI) calc. for: C 3H 27 2O - 2 ([M-H] - ): , found: HPLC IA column (90 % hexane, 0 % iso-propanol, ml/min, 278 nm) R t = 5.8 min, R t2 = 0.7 min. 4

5 Methyl (S,2S,3R)-3-(3-methyl-H-indol-2-yl)-,2-diphenyl-2,3,6,7,8,9-hexahydro-H-pyrrolo[2,-a]isoindole-5- carboxylate (6e) According to General Procedure A: 34 mg (0.2 mmol) 4e, 23 mg (0.0 mmol) 5a, 48 h. Yield 34 mg, 68 % as a white solid, e.r. 9:9, [α] D 25 = 42 (c =.0, CHCl 3). mp = 22 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 6H), (m, 6H), 5.93 (d, J = 6. Hz, H), 4.50 (d, J = 6.8 Hz, H), 3.78 (t, J = 6.5 Hz, H), 3.40 (s, 2H), (m, 2H), (m, 2H),.93 (s, 3H), (m, 4H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.06, 4.53, 40.66, 39.73, 35.70, 35.45, 34.47, 29.45, 29.09, 28.98, 27.72, 27.57, 27.53, 27.30, 2.68, 9.2, 8.59, 4.57, 3.80, 0.85, 07.70, 67.26, 64.78, 5.96, 50.54, 24.38, 23.37, 23.26, 2.58, IR (KBr) ν [cm - ] = 3434, 2930, 2842, 696, 679, 496, 453, 374, 33, 268, 9, 04, 762, 743, 70. HR-MS (ESI) calc. for: C 34H 32 2O 2a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 6. min, R t2 = 3.2 min. Methyl (S,2S,3R)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)-2-phenyl--(p-tolyl)-2,3-dihydro-H-pyrrolizine-5- carboxylate (6f) According to General Procedure A: 33 mg (0.2 mmol) 4f, 23 mg (0.0 mmol) 5a, 48 h. Yield 34 mg, 70 % as a white solid, e.r. 92:8, [α] D 25 = 2 (c = 2.0, CHCl 3). mp = 3 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 3H), (m, 9H), 5.9 (d, J = 5.8 Hz, H), 4.49 (d, J = 6.4 Hz, H), 3.74 (t, J = 6. Hz, H), 3.39 (s, 3H), 2.37 (s, 3H), 2.3 (s, 3H),.94 (s, 3H),.79 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.32, 4.9, 40.93, 37.97, 36.90, 35.33, 34.58, 33.9, 29.67, 29.36, 29.08, 27.6, 27.50, 27.34, 2.63, 9.6, 8.53, 5.03, 2.78, 0.8, 07.48, 67.23, 64.92, 5.60, 50.55, 2.20,.53, 9.7, IR (KBr) ν [cm - ] = 3443, 697, 683, 53, 496, 456, 443, 334, 304, 268, 27, 742, 70. HR-MS (ESI) calc. for: C 33H 32 2O 2a + ([M+a] + ): , found: HPLC IA column (90 % hexane, 0 % iso-propanol, ml/min, 278 nm) R t = 4.4 min, R t2 = 7.0 min. Methyl (S,2S,3R)--(4-methoxyphenyl)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)-2-phenyl-2,3-dihydro-H-pyrrolizine-5- carboxylate (6g) According to General Procedure A: 35 mg (0.2 mmol) 4g, 23 mg (0.0 mmol) 5a, 48 h. Yield 33 mg, 66 % as a white solid, e.r. 94:6, [α] D 24 = 6 (c = 2.0, CHCl 3). mp = 88 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = 7.43 (d, J = 8.0 Hz, 2H), (m, 2H), (m, 7H), (m, 2H), 5.90 (d, J = 6.0 Hz, H), 4.46 (d, J = 6.7 Hz, H), 3.77 (s, 3H), 3.72 (t, J = 6.3 Hz, H), 3.38 (s, 3H), 2.36 (s, 3H),.92 (s, 3H),.77 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.32, 58.83, 4.74, 4.09, 35.40, 34.63, 33.9, 33.03, 29.45, 29.09, 28.55, 27.66, 27.52, 2.68, 9.22, 8.55, 5.08, 4.38, 2.74, 0.84, 07.53, 67.39, 64.92, 55.40, 5.35, 50.53,.49, 9.09, IR (KBr) ν [cm - ] = 3444, 2923, 698, 683, 5, 496, 457, 440, 389, 334, 303, 265, 246, 75, 27, 033, 830, 743, 70. HR-MS (ESI) calc. for: C 37H 32 2O 3a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 229 nm) R t = 6.5 min, R t2 = 5.2 min. 5

6 Methyl (S,2S,3R)- -(4-bromophenyl)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)-2-phenyl-2,3-dihydro-H-pyrrolizine-5- carboxylate (6h) According to General Procedure A: 40 mg (0.24 mmol) 4h, 23 mg (0.20 mmol) 5a, 48 h. Yield 36 mg, 64 % as a white solid, e.r. 96:4, [α] D 22 = +68 (c =.0, CHCl 3). mp = 87 C (CH 2Cl 2/hexane). H MR (300 MHz, CDCl 3) δ [ppm] = (m, 4H), (m, 3H), (m, H), (m, 6H), 5.90 (d, J = 6.4 Hz, H), 4.46 (d, J = 7.2 Hz, H), 3.68 (t, J = 6.5 Hz, H), 3.35 (s, 3H), 2.35 (s, 3H),.88 (s, 3H),.74 (s, 3H). 3 C MR (75 MHz, CDCl 3) δ [ppm] = 6.23, 40.75, 40.2, 39.90, 35.37, 34.34, 33.93, 32.08, 29.48, 29.26, 29.5, 27.78, 2.80, 2.6, 9.33, 8.55, 5.3, 2.76, 0.88, 07.58, 67.44, 65.06, 5.65, 50.58,.46, 9.3, IR (KBr) ν [cm - ] = 3444, 697, 683, 49, 457, 442, 403, 390, 27, 29, 0, 743, 700. HR-MS (ESI) calc. for: C 32H 29Br 2O 2a + ([M+a] + ): , found: HPLC IA column (90 % hexane, 0 % iso-propanol, ml/min, 278 nm) R t = 4.7 min, R t2 = 9.2 min. Methyl (S,2S,3R)- -(4-(tert-butyl)phenyl)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)-2-phenyl-2,3-dihydro-H-pyrrolizine- 5-carboxylate (6i) According to General Procedure A: 38 mg (0.2 mmol) 4i, 23 mg (0.0 mmol) 5a, 48 h. Yield 47 mg, 89 % as a white solid, e.r. 94:6, [α] D 25 = 9 (c = 2.0, CHCl 3). mp = 99 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = 7.44 (d, J = 7.5 Hz, H), (m, 6H), (m, 6H), 5.9 (d, J = 4.9 Hz, H), 4.5 (d, J = 5.5 Hz, H), 3.78 (t, J = 5.3 Hz, H), 3.43 (s, 3H), 2.38 (s, 3H), 2.00 (s, 3H),.84 (s, 3H),.30 (s, 9H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.37, 50.23, 42.83, 40.87, 38.9, 35.39, 34.57, 33.90, 29.3, 29.6, 27.46, 27.40, 27.04, 25.94, 2.68, 9.6, 8.57, 5.9, 2.97, 0.76, 07.60, 66.75, 64.88, 5.2, 50.56, 34.6, 3.48,.57, 9.30, 8.4. IR (KBr) ν [cm - ] = 346, 2960, 70, 685, 496, 458, 442, 364, 334, 302, 269, 28, 763, 74, 700. HR-MS (ESI) calc. for: C 36H 38 2O 2a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 4.8 min, R t2 = 7.3 min. Methyl (S,2S,3R)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)-2-phenyl--(4-(trifluoromethyl)phenyl)-2,3-dihydro-Hpyrrolizine-5-carboxylate (6j) According to General Procedure A: 39 mg (0.2 mmol) 4j, 23 mg (0.0 mmol) 5a, 48 h. Yield 40 mg, 74 % as an orange solid, e.r. 95:5, [α] D 25 = 8 (c =.0, CHCl 3). mp = 0 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = 7.53 (d, J = 8.0 Hz, 2H), (m, 2H), (m, 5H), (m, 4H), 5.92 (d, J = 6.4 Hz, H), 4.57 (d, J = 7.3 Hz, H), 3.7 (t, J = 6.8 Hz, H), 3.36 (s, 3H), 2.37 (s, 3H),.88 (s, 3H),.74 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.2, 44.97, 40.60, 39.77, 35.4, 34.24, (q, J = 33.3 Hz), 29.52, 29.22, 27.9, 27.87, 27.79, (q, J = 3.8 Hz), 24.8 (q, J = Hz), 2.87, 9.39, 8.57, 5.49, 2.84, 0.88, 07.67, 67.4, 65.8, 5.94, 50.6,.45, 9.7, IR (KBr) ν [cm - ] = 3446, 698, 685, 69, 496, 326, 269, 67, 27, 0, 068, 08, 742, 70. HR-MS (ESI) calc. for: C 33H 29F 3 2O 2a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 275 nm) R t = 5.5 min, R t2 = 3.0 min. 6

7 Methyl (S,2S,3R)--(3,5-dimethylphenyl)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)-2-phenyl-2,3-dihydro-H-pyrrolizine- 5-carboxylate (6k) According to General Procedure A: 35 mg (0.2 mmol) 4k, 23 mg (0.0 mmol) 5a, 48 h. Yield 4 mg, 82 % as a white solid, e.r. 94:6, [α] D 25 = 2 (c = 2.0, CHCl 3). mp = 95 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 3H), (m, 4H), 6.86 (s, H), 6.75 (s, 2H), 5.92 (d, J = 5.0 Hz, H), 4.44 (d, J = 5.6 Hz, H), (m, H), 3.43 (s, 3H), 2.38 (s, 3H), 2.24 (s, 6H), 2.00 (s, 3H),.8 (s, 3H). 3 C MR (75 MHz, CDCl 3) δ [ppm] = 6.38, 42.77, 4.6, 40.98, 38.56, 35.3, 34.6, 33.89, 29.37, 29.4, 28.95, 27.46, 27.38, 25.23, 2.70, 9.9, 8.57, 5.4, 2.93, 0.77, 07.56, 66.7, 64.89, 5.66, 50.58, 2.49,.59, 9.22, IR (KBr) θ [cm - ] = 3444, 292, 698, 685, 605, 485, 457, 270, 29, 849, 742, 700. HR-MS (ESI) calc. for: C 34H 34 2O 2a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 4.5 min, R t2 = 6.7 min. Methyl (S,2S,3R)--(benzo[d][,3]dioxol-5-yl)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)-2-phenyl-2,3-dihydro-Hpyrrolizine-5-carboxylate (6l) 762, 743, 70. According to General Procedure A: 36 mg (0.2 mmol) 4l, 23 mg (0.0 mmol) 5a, 48 h. Yield 42 mg, 8 % as a white solid, e.r. 93:7, [α] D 25 = (c = 2.0, CHCl 3). mp = 5 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 2H), (m, 5H), 6.7 (d, J = 7.9 Hz, H), (m, H), 6.6 (dd, J = 8.0,.8 Hz, H), (m, 2H), 5.88 (d, J = 6.0 Hz, H), 4.43 (d, J = 6.7 Hz, H), 3.70 (t, J = 6.3 Hz, H), 3.37 (s, 3H), 2.36 (s, 3H),.92 (s, 3H),.80 (s, 3H). 3 C MR (75 MHz, CDCl 3) δ [ppm] = 6.29, 48.33, 46.84, 4.56, 40.73, 35.40, 34.9, 34.53, 33.9, 29.43, 29.2, 27.66, 27.59, 2.7, 20.53, 9.24, 8.55, 5.5, 2.8, 0.87, 08.46, 07.84, 07.55, 0.24, 67.42, 64.90, 5.79, 50.54,.48, 9.3, IR (KBr) ν [cm - ] = 342, 698, 685, 503, 489, 456, 442, 365, 269, 248, 240, 038, 933, HR-MS (ESI) calc. for: C 33H 30 2O 4a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 280 nm) R t = 6.8 min, R t2 = 4.2 min. Methyl (S,2S,3R)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)--(naphthalen-2-yl)-2-phenyl-2,3-dihydro-H-pyrrolizine-5- carboxylate (6m) According to General Procedure A: 37 mg (0.2 mmol) 4m, 23 mg (0.0 mmol) 5a, 48 h. Yield 37 mg, 70 % as a white solid, e.r. 96:4, [α] D 25 = +72 (c =.0, CHCl 3). mp = 28 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 3H), (m, 4H), (m, 4H), (m, 2H), (m, 3H), 5.98 (d, J = 5.9 Hz, H), 4.69 (d, J = 6.6 Hz, H), 3.88 (t, J = 6.3 Hz, H), 3.40 (s, 3H), 2.40 (s, 3H),.95 (s, 3H),.77 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.33, 4.63, 40.76, 38.44, 35.38, 34.5, 33.97, 33.58, 32.75, 29.44, 29.5, 29.04, 27.83, 27.82, 27.69, 27.62, 26.46, 26.0, 26.03, 25.73, 2.73, 9.25, 8.54, 5.29, 2.97, 0.85, 07.65, 67.07, 65.09, 52.30, 50.58,.53, 9.2, IR (KBr) ν [cm - ] = 3434, 698, 684, 495, 456, 44, 388, 27, 3, 820, 744, 700. HR-MS (ESI) calc. for: C 36H 32 2O 2a + ([M+a] + ): , found: HPLC IA column (90 % hexane, 0 % iso-propanol, ml/min, 278 nm) R t = 4.8 min, R t2 = 8.0 min. 7

8 Methyl (S,2S,3R)--(3-methoxyphenyl)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)-2-phenyl-2,3-dihydro-H-pyrrolizine-5- carboxylate (6n) According to General Procedure A: 35 mg (0.2 mmol) 4n, 23 mg (0.0 mmol) 5a, 48 h. Yield 40 mg, 79 % as a white solid, e.r. 97:3, [α] D 25 = 29 (c = 2.0, CHCl 3). mp = 5 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 3H), 7.2 (t, J = 7.9 Hz, H), (m, 3H), (m, 2mH), 6.76 (dd, J = 8.3, 2.3 Hz, 2H), 6.69 (d, J = 2. Hz, H), 5.92 (d, J = 5.4 Hz, H), 4.48 (d, J = 6. Hz, H), 3.77 (t, J = 5.7 Hz, H), 3.69 (s, 3H), 3.40 (s, 3H), 2.37 (s, 3H),.96 (s, 3H),.8 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.34, 60.5, 42.80, 42.7, 40.60, 35.35, 34.57, 33.95, 30.00, 29.39, 29.5, 27.56, 27.5, 2.69, 9.79, 9.2, 8.54, 5.8, 3.45, 2.95, 2.35, 0.84, 07.5, 66.94, 64.95, 55.29, 5.95, 50.59,.54, 9.23, IR (KBr) ν [cm - ] = 3445, 2923, 698, 684, 602, 490, 456, 438, 336, 267, 27, 048, 743, 70. HR-MS (ESI) calc. for: C 33H 32 2O 3a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 6. min, R t2 = 0.7 min. Methyl (S,2S,3R)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)-2-phenyl--(o-tolyl)-2,3-dihydro-H-pyrrolizine-5- carboxylate (6o) According to General Procedure A: 33 mg (0.2 mmol) 4o, 23 mg (0.0 mmol) 5a, 4 d. Yield 34 mg, 69 % as a white solid, e.r. 77:23, [α] D 25 = 38 (c =.0, CHCl 3). mp = 04 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 2H), (m, 9H), 5.90 (d, J = 5. Hz, H), 4.72 (d, J = 5.6 Hz, H), 3.68 (t, J = 5.4 Hz, H), 3.42 (s, 3H), 2.38 (s, 3H),.99 (s, 6H),.75 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.7, 42.75, 4.22, 39.47, 36.48, 35.24, 34.38, 33.82, 3.03, 29.3, 29., 29.03, 27.40, 27.4, 27.2, 26.38, 2.57, 9.07, 8.43, 5.5, 2.47, 0.70, 07.53, 66.0, 65.04, 50.44, 48.44, 9.97,.46, 8.92, IR (KBr) ν [cm - ] = 3445, 697, 683, 65, 637, 494, 458, 270, 76, 743, 70. HR-MS (ESI) calc. for: C 33H 32 2O 2a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 4.6 min, R t2 = 7.3 min. Methyl (S,2S,3R)-2-(4-methoxyphenyl)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)--phenyl-2,3-dihydro-H-pyrrolizine-5- carboxylate (8a) According to General Procedure A: 3 mg (0.2 mmol) 4b, 26 mg (0.0 mmol) 5b, 48 h. Yield 35 mg, 70 % as a white solid, e.r. 92:8, [α] D 25 = 46 (c =.0, CHCl 3). mp = 02 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 2H), (m, 7H), 6.85 (d, J = 8.2 Hz, 2H), 5.85 (d, J = 6.2 Hz, H), 4.47 (d, J = 7.0 Hz, H), 3.8 (s, 3H), 3.7 (t, J = 6.6 Hz, H), 3.37 (s, 3H), 2.36 (s, 3H),.94 (s, 3H),.76 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.30, 59.03, 4.03, 40.78, 35.39, 34.59, 33.82, 33.49, 29.43, 28.96, 28.76, 27.53, 27.25, 2.65, 9.20, 8.5, 5.5, 4.4, 2.78, 0.82, 07.5, 66.67, 65.09, 55.40, 52.2, 50.5,.46, 9.0, IR (KBr) ν [cm - ] = 3445, 697, 685, 62, 54, 496, 456, 442, 304, 287, 264, 25, 80, 27, 034, 743, 704. HR-MS (ESI) calc. for: C 33H 32 2O 3a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 6.8 min, R t2 = 2.5 min. 8

9 Methyl (S,2S,3R)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)--phenyl-2-(p-tolyl)-2,3-dihydro-H-pyrrolizine-5- carboxylate (8b) According to General Procedure A: 3 mg (0.2 mmol) 4b, 25 mg (0.0 mmol) 5c, 48 h. Yield 36 mg, 73 % as a white solid, e.r. 9:9, [α] D 25 = 58 (c =.0, CHCl 3). mp = 92 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 2H), (m, 9H), 5.89 (d, J = 5.8 Hz, H), 4.50 (d, J = 6.6 Hz, H), 3.74 (t, J = 6.2 Hz, H), 3.39 (s, 3H), 2.37 (s, 3H), 2.36 (s, 3H),.96 (s, 3H),.78 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.3, 4.3, 40.80, 38.75, 37.5, 35.36, 34.66, 33.87, 29.75, 29.4, 28.98, 27.49, 27.25, 2.64, 9.8, 8.52, 5.4, 2.79, 0.8, 07.48, 66.88, 65.02, 52.03, 50.53, 2.27,.50, 9.4, IR (KBr) ν [cm - ] = 3443, 698, 683, 496, 455, 389, 302, 270, 27, 742, 703. HR-MS (ESI) calc. for C 33H 32 2O 2a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 5.2 min, R t2 = 6.6 min. Methyl (S,2S,3R)-2-(4-chlorophenyl)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)--phenyl-2,3-dihydro-H-pyrrolizine-5- carboxylate (8c) According to General Procedure A: 3 mg (0.2 mmol) 4b, 27 mg (0.0 mmol) 5d, 48 h. Yield 34 mg, 67 % as a white solid, e.r. 9:9, [α] D 25 = 56 (c =.0, CHCl 3). mp = 05 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 4H), (m, 7H), 5.87 (d, J = 6. Hz, H), 4.46 (d, J = 6.9 Hz, H), 3.74 (t, J = 6.5 Hz, H), 3.38 (s, 3H), 2.36 (s, 3H),.94 (s, 3H),.76 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.25, 40.62, 40.38, 40.00, 35.42, 34.20, 33.98, 33.45, 29.34, 29.29, 29.08, 29.06, 2.84, 9.33, 8.60, 5.24, 2.94, 0.87, 07.66, 66.73, 64.76, 52.05, 50.59,.48, 9.09, IR (KBr) ν [cm - ] = 3444, 2924, 697, 683, 65, 494, 455, 270, 29, 743, 702. HR-MS (ESI) calc. for: C 32H 29Cl 2O 2a + ([M+a] + ): 53.80, found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 6.0 min, R t2 = 8.9 min. Methyl (S,2S,3R)-2-(4-fluorophenyl)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)--phenyl-2,3-dihydro-H-pyrrolizine-5- carboxylate (8d) 52.5, 50.58,.48, 9.0, According to General Procedure A: 3 mg (0.2 mmol) 4b, 25 mg (0.0 mmol) 5e, 48 h. Yield 33 mg, 67 % as a white solid, e.r. 92:8, [α] D 25 = 28 (c =.0, CHCl 3). mp = 98 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 3H), (m, 8H), 5.86 (d, J = 6.2 Hz, H), 4.46 (d, J = 7.0 Hz, H), 3.74 (t, J = 6.6 Hz, H), 3.38 (s, 3H), 2.36 (s, 3H),.93 (s, 3H),.76 (s, 3H). 3 C MR (75 MHz, CDCl 3) δ [ppm] = (d, J = Hz), 6.26, 40.70, 40.48, 37.8 (d, J = 3. Hz), 35.4, 34.25, 33.93, 29.36, (d, J = 8.0 Hz), 29.05, 27.48, 27.42, 2.80, 9.30, 8.58, 5.98 (d, J = 2.5 Hz), 5.2, 2.9, 0.86, 07.63, 66.65, 64.94, IR (KBr) ν [cm - ] = 3445, 698, 684, 509, 496, 456, 270, 227, 28, 743, 704. HR-MS (ESI) calc. for: C 32H 29F 2O 2a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 5.8 min, R t2 = 9.4 min. 9

10 Methyl (S,2S,3R)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)--phenyl-2-(3-(trifluoromethyl)phenyl)-2,3-dihydro-Hpyrrolizine-5-carboxylate (8e) According to General Procedure A: 3 mg (0.2 mmol) 4b, 30 mg (0.0 mmol) 5f, 48 h at 80 C. Yield 26 mg, 47 % as a white solid, e.r. 92:8, [α] D 25 = 38 (c =.0, CHCl 3). mp = 96 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = 7.58 (d, J = 7.8 Hz, H), (m, 4H), (m, 5H), (m, 5H), 5.9 (d, J = 6. Hz, H), 4.5 (d, J = 6.9 Hz, H), 3.84 (t, J = 6.6 Hz, H), 3.39 (s, 3H), 2.36 (s, 3H),.92 (s, 3H),.76 (s, 3H). 3 C MR (75 MHz, CDCl 3) δ [ppm] = 6.24, 42.37, 40.4, 40.26, 35.47, 34.0, 34.02, 3.47 (q, J = 3.5 Hz), 3.29, 29.7, 29.50, 29.35, 29.4, 27.59, 27.48, 25.89, (q, J = 3.6 Hz), (q, J = 3.7 Hz), (q, J = Hz), 22.28, 2.94, 9.39, 8.64, 5.28, 3.0, 0.89, 07.72, 67.06, 64.68, 5.95, 50.6,.49, 9.07, IR (KBr) ν [cm - ] = 3357, 2923, 698, 684, 495, 455, 329, 268, 67, 26, 074, 742, 702, 505. HR-MS (ESI) calc. for: C 33H 29F 3 2O 2a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 5.0 min, R t2 = 2.3 min. Methyl (S,2S,3R)-2-(3-bromophenyl)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)--phenyl-2,3-dihydro-H-pyrrolizine-5- carboxylate (8f) According to General Procedure A: 3 mg (0.2 mmol) 4b, 3 mg (0.0 mmol) 5g, 48 h at 80 C. Yield 26 mg, 46 % as a white solid, e.r. 92:8, [α] D 25 = 50 (c =.0, CHCl 3). mp = 98 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 6H), (m, 7H), 5.89 (d, J = 5.8 Hz, H), 4.48 (d, J = 6.6 Hz, H), 3.73 (t, J = 6.3 Hz, H), 3.40 (s, 3H), 2.36 (s, 3H),.96 (s, 3H),.76 (s, 3H). 3 C MR (75 MHz, CDCl 3) δ [ppm] = 6.25, 44.07, 40.66, 40.34, 35.43, 34.23, 34.08, 30.82, 30.73, 30.54, 29.38, 29.2, 27.5, 27.46, 26.49, 23.6, 2.87, 9.35, 8.64, 5.24, 2.97, 0.88, 07.68, 66.85, 64.77, 5.96, 50.6,.50, 9.0, IR (KBr) ν [cm - ] = 3435, 685, 648, 637, 596, 496, 456, 30, 27, 28, 742, 700, 505. HR-MS (ESI) calc. for: C 32H 29Br 2O 2a + ([M+a] + ): , found: HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 225 nm) R t = 5.5 min, R t2 = 5.9 min. Methyl (S,2S,3R)-2-(2-fluorophenyl)-6,7-dimethyl-3-(3-methyl-H-indol-2-yl)--phenyl-2,3-dihydro-H-pyrrolizine-5- carboxylate (8g) According to General Procedure A: 3 mg (0.2 mmol) 4b, 25 mg (0.0 mmol) 5h, 48 h at 80 C. Yield 3 mg, 63 % as a white solid, e.r. 90:0, [α] D 25 = 44 (c =.0, CHCl 3). mp = 98 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 3H), (m, 7H), 6.94 (t, J = 7.5 Hz, H), 6.03 (d, J = 5.9 Hz, H), 4.56 (d, J = 6.6 Hz, H), 3.94 (t, J = 6.2 Hz, H), 3.39 (s, 3H), 2.36 (s, 3H),.94 (s, 3H),.77 (s, 3H). 3 C MR (75 MHz, CDCl 3) δ [ppm] = 6.33, (d, J = Hz), 40.88, 40.65, 35.40, 34.39, 33.83, (d, J = 4.3 Hz), (d, J = 8.2 Hz), 29.38, 29.06, (d, J = 3. Hz), 27.54, 27.40, (d, J = 3.3 Hz), 2.73, 9.22, 8.57, 6.0 (d, J = 2.9 Hz), 5.26, 2.98, 0.85, 07.64, 63.07, 6.65, 50.59, (d, J = 5. Hz),.53, 9.6, 8.7. IR (KBr) ν [cm - ] = 3444, 698, 684, 650, 635, 622, 494, 456, 272, 29, 759, 745, 703. HR-MS (ESI) calc. for: C 32H 29F 2O 2a + ([M+a] + ):, found:. HPLC IA column (95 % hexane, 5 % iso-propanol, ml/min, 278 nm) R t = 5.3 min, R t2 = 8.6 min. 0

11 Methyl (S,2R,3R)-2,6,7-trimethyl-3-(3-methyl-H-indol-2-yl)--phenyl-2,3-dihydro-H-pyrrolizine-5-carboxylate (8h) According to General Procedure A: 3 mg (0.2 mmol) 4b, 7 mg (0.0 mmol) 5i, 48 h at room temperature. 25 Yield 4 mg, 33 % as a white solid, e.r. 77:23, [α] D = +26 (c =.0, CHCl 3). mp = 92 C (CH 2Cl 2/hexane). H MR (400 MHz, CDCl 3) δ [ppm] = (m, 2H), (m, 2H), (m, 3H), (m, H), (m, 2H), 5.45 (d, J = 6.7 Hz, H), 3.94 (d, J = 7.4 Hz, H), 3.36 (s, 3H), (m, H), 2.35 (s, 3H), 2.30 (s, 3H),.67 (s, 3H),.35 (d, J = 6.9 Hz, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 6.3, 4.38, 4., 35.4, 34.62, 33.4, 29.36, 28.99, 27.8, 27.26, 2.74, 9.26, 8.46, 5.07, 2.56, 0.80, 07.54, 63.83, 56.76, 5.42, 50.44, 8.00, H.33, 8.89, IR (KBr) ν [cm - ] = 3433, 679, 495, 453, 27, 9, 742, 703. HR-MS (ESI) calc. for: C 27H 28 2O 2a + ([M+a] + ): , found: HPLC IA column (90 % hexane, 0 % iso-propanol, ml/min, 278 nm) R t = 4.7 min, R t2 = 7.6 min. Methyl (S,2S,3R)--(4-bromophenyl)-3-((R)-3-hydroperoxy-3-methyl-3H-indol-2-yl)-6,7-dimethyl-2-phenyl-2,3-dihydro- H-pyrrolizine-5-carboxylate (9) According to General Procedure B: 55 mg (0.0 mmol) 4b. Yield 5 mg, 26 % as a pale pink solid, d.r. >20:, [α] D 24 = +56 (c =.0, THF). mp = 29 C (toluene). H MR (400 MHz, CDCl 3) δ [ppm] = 7.64 (s, H), 7.46 (d, J = 7.6 Hz, H), (m, 9H), (m, 3H), 5.70 (d, J = 2.8 Hz, H), (m, 2H), 3.66 (s, 3H), 2.36 (s, 3H),.79 (s, 3H),.57 (s, 3H). 3 C MR (0 MHz, CDCl 3) δ [ppm] = 8.80, 62.28, 53.50, 45.56, 4.60, 4.5, 37.5, 32.87, 3.35, 30.22, 30.02, 29.3, 27.22, 26.55, 26.28, 2.53, 20.4, 5.26, 2.3, 94.2, 66.30, 59.6, 52.4, 50.60, 9.44, 2.04, 9.0. IR (KBr) ν [cm - ] = 3425, 2925, 697, 488, 458, 269, 252, 27, 0, 74, 700. HR-MS (ESI) calc. for: C 32H 30Br 2O 4 + ([M+H] + ): , found:

12 MR-Spectra H MR (400 MHz, CDCl3) 3 C MR (75 MHz, CDCl3) 2

13 H 6b H MR (400 MHz, CDCl3) H 6b 3 C MR (0 MHz, CDCl3) 3

14 H 6c H MR (400 MHz, CDCl3) H 6c 3 C MR (0 MHz, CDCl3) 4

15 H 6d H MR (400 MHz, CDCl3) H 6d 3 C MR (0 MHz, CDCl3) 5

16 H 6e H MR (400 MHz, CDCl3) H 6e 3 C MR (0 MHz, CDCl3) 6

17 H 6f H MR (400 MHz, CDCl3) H 6f 3 C MR (0 MHz, CDCl3) 7

18 OMe H 6g H MR (400 MHz, CDCl3) OMe H 6g 3 C MR (0 MHz, CDCl3) 8

19 Br H 6h H MR (300 MHz, CDCl3) Br H 6h 3 C MR (75 MHz, CDCl3) 9

20 H 6i H MR (400 MHz, CDCl3) H 6i 3 C MR (0 MHz, CDCl3) 20

21 CF 3 H 6j H MR (400 MHz, CDCl3) CF 3 H 6j 3 C MR (0 MHz, CDCl3) 2

22 H 6k H MR (400 MHz, CDCl3) H 6k 3 C MR (75 MHz, CDCl3) 22

23 O O H 6l H MR (400 MHz, CDCl3) O O H 6l 3 C MR (75 MHz, CDCl3) 23

24 H 6m H MR (400 MHz, CDCl3) H 6m 3 C MR (0 MHz, CDCl3) 24

25 H MR (400 MHz, CDCl3) 3 C MR (0 MHz, CDCl3) 25

26 H 6o H MR (400 MHz, CDCl3) H 6o 3 C MR (0 MHz, CDCl3) 26

27 H OMe 8a H MR (400 MHz, CDCl3) H OMe 8a 3 C MR (0 MHz, CDCl3) 27

28 H 8b H MR (400 MHz, CDCl3) H 8b 3 C MR (0 MHz, CDCl3) 28

29 H MR (400 MHz, CDCl3) 3 C MR (0 MHz, CDCl3) 29

30 H F 8d H MR (400 MHz, CDCl3) H F 8d 3 C MR (75 MHz, CDCl3) 30

31 CF 3 H 8e H MR (400 MHz, CDCl3) CF 3 H 8e 3 C MR (75 MHz, CDCl3) 3

32 Br H 8f H MR (400 MHz, CDCl3) Br H 8f 3 C MR (75 MHz, CDCl3) 32

33 F H 8g H MR (400 MHz, CDCl3) F H 8g 3 C MR (75 MHz, CDCl3) 33

34 H 8h H MR (400 MHz, CDCl3) H 8h 3 C MR (0 MHz, CDCl3) 34

35 Br OOH 9 H MR (400 MHz, CDCl3) before (bottom) and after (top) treatment with D2O Br OOH 9 3 C MR (0 MHz, CDCl3) 35

36 HPLC-Chromatograms H rac-6a H 6a 36

37 H rac-6b H 6b 37

38 H rac-6c H 6c 38

39 H rac-6d H 6d 39

40 H rac-6e H 6e 40

41 H rac-6f H 6f 4

42 OMe H rac-6g OMe H 6g 42

43 Br H rac-6h Br H 6h 43

44 H rac-6i H 6i 44

45 CF 3 H rac-6j CF 3 H 6j 45

46 H rac-6k H 6k 46

47 O O H rac-6l O O H 6l 47

48 H rac-6m H 6m 48

49 OMe H rac-6n OMe H 6n 49

50 H rac-6o H 6o 50

51 5

52 H rac-8b H 8b 52

53 53

54 H F rac-8d H F 8d 54

55 CF 3 H rac-8e CF 3 H 8e 55

56 Br H rac-8f Br H 8f 56

57 F H rac-8g F H 8g 57

58 H rac-8h H 8h 58

59 Crystallographic data 59

60 Table. Crystal data and structure refinement for 9. Identification code shelx Empirical formula C32 H29 Br 2 O4 Formula weight Temperature 30(2) K Wavelength Å Crystal system Orthorhombic Space group P Unit cell dimensions a = 0.247(2) Å a= 90. b = 3.475(2) Å b= 90. c = (4) Å g = 90. Volume (9) Å 3 Z 4 Density (calculated).435 Mg/m 3 Absorption coefficient.558 mm - F(000) 208 Crystal size x x mm 3 Theta range for data collection 2.23 to Index ranges -4<=h<=7, -9<=k<=2, -33<=l<=27 Reflections collected Independent reflections 308 [R(int) = ] Completeness to theta = % Absorption correction Semi-empirical from equivalents Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 308 / / 359 Goodness-of-fit on F Final R indices [I>2sigma(I)] R = , wr2 = R indices (all data) R = 0.076, wr2 = Absolute structure parameter -0.04(4) Extinction coefficient n/a Largest diff. peak and hole and e.å -3 60

61 Table 2. Atomic coordinates ( x 0 4 ) and equivalent isotropic displacement parameters (Å 2 x 0 3 ) for 9. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) C() -448(3) 240(2) 823(2) 24() C(2) -2565(3) 74(2) 8450(2) 3() C(3) -3384(3) 244(3) 7973(2) 37() C(4) -3086(4) 2077(2) 7306(2) 38() C(5) -974(3) 567(2) 7088(2) 32() C(6) -59(3) 5(2) 7556(2) 25() C(7) 8(3) 536(2) 7503() 22() C(8) -40(3) -509(2) 797(2) 29() C(9) 424(3) 450(2) 8244() 9() C(0) 660(3) -42(2) 8484() 9() C() 2885(3) 674(2) 8473() 20() C(2) 4056(3) 78(2) 8226() 22() C(3) 4397(4) 30(3) 7564(2) 34() C(4) 545(4) -449(3) 73(2) 4() C(5) 623(3) -069(3) 7722(2) 36() C(6) 5802(3) -26(3) 8384(2) 36() C(7) 4773(3) -557(3) 8638(2) 3() C(8) 3052(3) 074(2) 9204() 20() C(9) 2734(3) 282(2) 9325() 2() C(20) 3734(3) 2859(2) 9482(2) 27() C(2) 3476(3) 3867(2) 9636(2) 30() C(22) 222(3) 420(2) 967() 25() C(23) 96(3) 3557(2) 9463(2) 27() C(24) 466(3) 2545(2) 9322(2) 27() C(25) 2205(3) 364(2) 9592() 9() C(26) 867(3) 59(2) 0239() 9() C(27) 989(2) -670(2) 0225() 20() C(28) 805(3) -934(2) 9560() 9() C(29) 235(3) 703(2) 0847() 26() C(30) 404(3) -63(2) 0824() 27() C(3) 24(3) -7(2) 9244(2) 22() C(32) -362(4) -304(2) 9449(2) 38() () -454(2) 795(2) 8636() 22() (2) 574(2) -294(2) 989() 8() O() 089(2) 967(2) 702() 26() 6

62 O(2) 34(2) 2006(2) 733() 3() O(3) -9(2) -82(2) 8653() 28() O(4) -509(2) -2327(2) 9697() 28() Br() 836() 5583() 982() 37() 62

63 Table 3. Bond lengths [Å] and angles [ ] for 9. C()-C(2).376(4) C()-C(6).394(4) C()-().430(4) C(2)-C(3).395(5) C(2)-H(2) C(3)-C(4).379(5) C(3)-H(3) C(4)-C(5).392(5) C(4)-H(4) C(5)-C(6).372(4) C(5)-H(5) C(6)-C(7).509(4) C(7)-O().428(3) C(7)-C(8).523(4) C(7)-C(9).536(4) C(8)-H(8A) C(8)-H(8B) C(8)-H(8C) C(9)-().279(4) C(9)-C(0).50(4) C(0)-(2).458(3) C(0)-C().568(4) C(0)-H(0).0000 C()-C(2).56(4) C()-C(8).572(4) C()-H().0000 C(2)-C(3).380(4) C(2)-C(7).387(4) C(3)-C(4).387(5) C(3)-H(3) C(4)-C(5).370(5) C(4)-H(4) C(5)-C(6).373(5) C(5)-H(5) C(6)-C(7).390(5) C(6)-H(6) C(7)-H(7) C(8)-C(25).495(4) 63

64 C(8)-C(9).53(4) C(8)-H(8).0000 C(9)-C(24).383(4) C(9)-C(20).394(4) C(20)-C(2).387(4) C(20)-H(20) C(2)-C(22).367(4) C(2)-H(2) C(22)-C(23).376(4) C(22)-Br().903(3) C(23)-C(24).388(4) C(23)-H(23) C(24)-H(24) C(25)-(2).350(3) C(25)-C(26).374(4) C(26)-C(27).43(4) C(26)-C(29).500(4) C(27)-C(28).393(4) C(27)-C(30).495(4) C(28)-(2).374(3) C(28)-C(3).445(4) C(29)-H(29A) C(29)-H(29B) C(29)-H(29C) C(30)-H(30A) C(30)-H(30B) C(30)-H(30C) C(3)-O(3).205(4) C(3)-O(4).336(3) C(32)-O(4).434(4) C(32)-H(32A) C(32)-H(32B) C(32)-H(32C) O()-O(2).46(3) O(2)-H(7) 0.85(2) C(2)-C()-C(6) 2.8(3) C(2)-C()-() 26.5(3) C(6)-C()-().7(3) C()-C(2)-C(3) 7.5(3) 64

65 C()-C(2)-H(2) 2.2 C(3)-C(2)-H(2) 2.2 C(4)-C(3)-C(2) 20.8(3) C(4)-C(3)-H(3) 9.6 C(2)-C(3)-H(3) 9.6 C(3)-C(4)-C(5) 2.2(3) C(3)-C(4)-H(4) 9.4 C(5)-C(4)-H(4) 9.4 C(6)-C(5)-C(4) 8.3(3) C(6)-C(5)-H(5) 20.9 C(4)-C(5)-H(5) 20.9 C(5)-C(6)-C() 20.4(3) C(5)-C(6)-C(7) 32.6(3) C()-C(6)-C(7) 07.0(2) O()-C(7)-C(6) 5.9(2) O()-C(7)-C(8) 03.7(2) C(6)-C(7)-C(8) 2.7(2) O()-C(7)-C(9) 4.4(2) C(6)-C(7)-C(9) 99.4(2) C(8)-C(7)-C(9).(2) C(7)-C(8)-H(8A) 09.5 C(7)-C(8)-H(8B) 09.5 H(8A)-C(8)-H(8B) 09.5 C(7)-C(8)-H(8C) 09.5 H(8A)-C(8)-H(8C) 09.5 H(8B)-C(8)-H(8C) 09.5 ()-C(9)-C(0) 23.2(2) ()-C(9)-C(7) 4.3(2) C(0)-C(9)-C(7) 22.5(2) (2)-C(0)-C(9).(2) (2)-C(0)-C() 0.5(2) C(9)-C(0)-C() 4.3(2) (2)-C(0)-H(0) 09.9 C(9)-C(0)-H(0) 09.9 C()-C(0)-H(0) 09.9 C(2)-C()-C(0) 09.(2) C(2)-C()-C(8) 3.(2) C(0)-C()-C(8) 05.9(2) C(2)-C()-H() 09.5 C(0)-C()-H()

66 C(8)-C()-H() 09.5 C(3)-C(2)-C(7) 8.3(3) C(3)-C(2)-C() 9.4(3) C(7)-C(2)-C() 22.3(3) C(2)-C(3)-C(4) 2.(3) C(2)-C(3)-H(3) 9.4 C(4)-C(3)-H(3) 9.4 C(5)-C(4)-C(3) 20.2(3) C(5)-C(4)-H(4) 9.9 C(3)-C(4)-H(4) 9.9 C(4)-C(5)-C(6) 9.4(3) C(4)-C(5)-H(5) 20.3 C(6)-C(5)-H(5) 20.3 C(5)-C(6)-C(7) 20.7(3) C(5)-C(6)-H(6) 9.7 C(7)-C(6)-H(6) 9.7 C(2)-C(7)-C(6) 20.3(3) C(2)-C(7)-H(7) 9.8 C(6)-C(7)-H(7) 9.8 C(25)-C(8)-C(9) 3.(2) C(25)-C(8)-C() 02.5(2) C(9)-C(8)-C() 6.7(2) C(25)-C(8)-H(8) 08.0 C(9)-C(8)-H(8) 08.0 C()-C(8)-H(8) 08.0 C(24)-C(9)-C(20) 8.(3) C(24)-C(9)-C(8) 22.3(2) C(20)-C(9)-C(8) 9.5(3) C(2)-C(20)-C(9) 2.4(3) C(2)-C(20)-H(20) 9.3 C(9)-C(20)-H(20) 9.3 C(22)-C(2)-C(20) 8.7(3) C(22)-C(2)-H(2) 20.6 C(20)-C(2)-H(2) 20.6 C(2)-C(22)-C(23) 2.7(3) C(2)-C(22)-Br() 9.5(2) C(23)-C(22)-Br() 8.8(2) C(22)-C(23)-C(24) 9.0(3) C(22)-C(23)-H(23) 20.5 C(24)-C(23)-H(23)

67 C(9)-C(24)-C(23) 2.(3) C(9)-C(24)-H(24) 9.4 C(23)-C(24)-H(24) 9.4 (2)-C(25)-C(26) 08.9(2) (2)-C(25)-C(8).3(2) C(26)-C(25)-C(8) 39.8(2) C(25)-C(26)-C(27) 06.9(2) C(25)-C(26)-C(29) 26.6(2) C(27)-C(26)-C(29) 26.5(2) C(28)-C(27)-C(26) 07.4(2) C(28)-C(27)-C(30) 27.7(2) C(26)-C(27)-C(30) 24.9(2) (2)-C(28)-C(27) 07.0(2) (2)-C(28)-C(3) 20.7(2) C(27)-C(28)-C(3) 32.3(2) C(26)-C(29)-H(29A) 09.5 C(26)-C(29)-H(29B) 09.5 H(29A)-C(29)-H(29B) 09.5 C(26)-C(29)-H(29C) 09.5 H(29A)-C(29)-H(29C) 09.5 H(29B)-C(29)-H(29C) 09.5 C(27)-C(30)-H(30A) 09.5 C(27)-C(30)-H(30B) 09.5 H(30A)-C(30)-H(30B) 09.5 C(27)-C(30)-H(30C) 09.5 H(30A)-C(30)-H(30C) 09.5 H(30B)-C(30)-H(30C) 09.5 O(3)-C(3)-O(4) 23.8(3) O(3)-C(3)-C(28) 25.4(3) O(4)-C(3)-C(28) 0.7(2) O(4)-C(32)-H(32A) 09.5 O(4)-C(32)-H(32B) 09.5 H(32A)-C(32)-H(32B) 09.5 O(4)-C(32)-H(32C) 09.5 H(32A)-C(32)-H(32C) 09.5 H(32B)-C(32)-H(32C) 09.5 C(9)-()-C() 07.(2) C(25)-(2)-C(28) 09.8(2) C(25)-(2)-C(0) 4.2(2) C(28)-(2)-C(0) 34.6(2) 67

68 C(7)-O()-O(2) 07.8(2) O()-O(2)-H(7) 98(3) C(3)-O(4)-C(32) 6.3(2) Symmetry transformations used to generate equivalent atoms: 68

69 Table 4. Anisotropic displacement parameters (Å 2 x 0 3 )for x292. The anisotropic displacement factor exponent takes the form: -2p 2 [ h 2 a* 2 U h k a* b* U 2 ] U U 22 U 33 U 23 U 3 U 2 C() 2() 23() 27() -2() -4() -2() C(2) 28(2) 32(2) 35(2) -6() -3() 4() C(3) 26(2) 34(2) 5(2) -7() -8(2) 6() C(4) 29(2) 38(2) 47(2) 6() -5(2) 6(2) C(5) 27(2) 38(2) 3(2) 5() -9() -2() C(6) 20() 26() 28(2) 2() -5() -2() C(7) 2() 26() 9() 3() -() -() C(8) 33(2) 32(2) 24() -3() -3() -2() C(9) 20() 9() 8() () -2() -4() C(0) 2() 2() 3() 2() -() -2() C() 2() 9() 20() 3() -2() -() C(2) 2() 23() 22() () -2() -4() C(3) 35(2) 43(2) 24(2) 4() 2() 6() C(4) 37(2) 52(2) 32(2) -2(2) 0() 4(2) C(5) 22(2) 39(2) 46(2) -(2) 5(2) 0() C(6) 30(2) 36(2) 42(2) () -3(2) 9() C(7) 28(2) 36(2) 27() 4() 0() 2() C(8) 7() 20() 22() () -2() -() C(9) 23() 2() 8() 3() -2() -4() C(20) 2() 25() 34(2) () -4() -4() C(2) 28(2) 25() 36(2) 0() -2() -8() C(22) 33(2) 20() 23() -() 3() -() C(23) 24() 28(2) 29(2) -2() -3() 0() C(24) 24() 24() 3(2) -3() -3() -4() C(25) 9() 6() 2() 0() -4() 0() C(26) 20() 8() 9() -() -() 2() C(27) 20() 2() 8() 0() -() 3() C(28) 7() 8() 2() 2() 0() () C(29) 32(2) 26() 9() -4() -3() () C(30) 3(2) 3(2) 20() 3() 2() -() C(3) 20() 8() 27() () 0() 0() C(32) 35(2) 32(2) 49(2) 2(2) -(2) -8() () 2() 24() 20() -2() -3() 0() (2) 20() 9() 6() 2() -() -2() O() 28() 26() 23() 3() () -2() 69

70 O(2) 35() 27() 32() 7() -() -6() O(3) 33() 25() 24() -2() -5() -8() O(4) 32() 25() 28() -() 3() -() Br() 46() 23() 42() -6() 0() -2() 70

71 Table 5. Torsion angles [ ] for 9. C(6)-C()-C(2)-C(3) -2.5(5) ()-C()-C(2)-C(3) 76.9(3) C()-C(2)-C(3)-C(4).0(5) C(2)-C(3)-C(4)-C(5).0(5) C(3)-C(4)-C(5)-C(6) -.6(5) C(4)-C(5)-C(6)-C() 0.(5) C(4)-C(5)-C(6)-C(7) 78.(3) C(2)-C()-C(6)-C(5) 2.0(4) ()-C()-C(6)-C(5) -77.5(3) C(2)-C()-C(6)-C(7) -76.5(3) ()-C()-C(6)-C(7) 4.0(3) C(5)-C(6)-C(7)-O() 52.6(4) C()-C(6)-C(7)-O() -29.2(3) C(5)-C(6)-C(7)-C(8) -66.6(4) C()-C(6)-C(7)-C(8).6(3) C(5)-C(6)-C(7)-C(9) 75.7(3) C()-C(6)-C(7)-C(9) -6.(3) O()-C(7)-C(9)-() 3.2(2) C(6)-C(7)-C(9)-() 7.(3) C(8)-C(7)-C(9)-() -.9(3) O()-C(7)-C(9)-C(0) -5.4(4) C(6)-C(7)-C(9)-C(0) -75.5(2) C(8)-C(7)-C(9)-C(0) 65.5(3) ()-C(9)-C(0)-(2) 4.0(4) C(7)-C(9)-C(0)-(2) -63.2(2) ()-C(9)-C(0)-C() -00.(3) C(7)-C(9)-C(0)-C() 82.7(3) (2)-C(0)-C()-C(2) 0.4(2) C(9)-C(0)-C()-C(2) -39.0(2) (2)-C(0)-C()-C(8) -20.7(2) C(9)-C(0)-C()-C(8) 99.0(2) C(0)-C()-C(2)-C(3) 96.0(3) C(8)-C()-C(2)-C(3) -46.4(3) C(0)-C()-C(2)-C(7) -8.2(3) C(8)-C()-C(2)-C(7) 36.3(4) C(7)-C(2)-C(3)-C(4).(5) C()-C(2)-C(3)-C(4) -76.3(3) C(2)-C(3)-C(4)-C(5) -.5(6) 7

72 C(3)-C(4)-C(5)-C(6).(6) C(4)-C(5)-C(6)-C(7) -0.3(5) C(3)-C(2)-C(7)-C(6) -0.3(5) C()-C(2)-C(7)-C(6) 77.0(3) C(5)-C(6)-C(7)-C(2) -0.(5) C(2)-C()-C(8)-C(25) -04.3(2) C(0)-C()-C(8)-C(25) 5.2(3) C(2)-C()-C(8)-C(9) 3.5(3) C(0)-C()-C(8)-C(9) -09.0(3) C(25)-C(8)-C(9)-C(24) -46.4(4) C()-C(8)-C(9)-C(24) 72.2(3) C(25)-C(8)-C(9)-C(20) 30.0(3) C()-C(8)-C(9)-C(20) -.4(3) C(24)-C(9)-C(20)-C(2) 0.5(4) C(8)-C(9)-C(20)-C(2) -76.0(3) C(9)-C(20)-C(2)-C(22) -.6(5) C(20)-C(2)-C(22)-C(23).4(5) C(20)-C(2)-C(22)-Br() -79.6(2) C(2)-C(22)-C(23)-C(24) -0.2(5) Br()-C(22)-C(23)-C(24) -79.(2) C(20)-C(9)-C(24)-C(23) 0.8(4) C(8)-C(9)-C(24)-C(23) 77.2(3) C(22)-C(23)-C(24)-C(9) -.0(5) C(9)-C(8)-C(25)-(2) 23.(2) C()-C(8)-C(25)-(2) -3.5(3) C(9)-C(8)-C(25)-C(26) -57.6(4) C()-C(8)-C(25)-C(26) 75.8(3) (2)-C(25)-C(26)-C(27) 0.3(3) C(8)-C(25)-C(26)-C(27) -79.0(3) (2)-C(25)-C(26)-C(29) 79.5(3) C(8)-C(25)-C(26)-C(29) 0.2(5) C(25)-C(26)-C(27)-C(28) -.0(3) C(29)-C(26)-C(27)-C(28) 79.8(3) C(25)-C(26)-C(27)-C(30) 78.(3) C(29)-C(26)-C(27)-C(30) -.(4) C(26)-C(27)-C(28)-(2).3(3) C(30)-C(27)-C(28)-(2) -77.8(3) C(26)-C(27)-C(28)-C(3) -80.0(3) C(30)-C(27)-C(28)-C(3).0(5) (2)-C(28)-C(3)-O(3) -7.0(4) 72

73 C(27)-C(28)-C(3)-O(3) 74.4(3) (2)-C(28)-C(3)-O(4) 7.9(2) C(27)-C(28)-C(3)-O(4) -6.7(4) C(0)-C(9)-()-C() 77.6(2) C(7)-C(9)-()-C() -5.0(3) C(2)-C()-()-C(9) -79.0(3) C(6)-C()-()-C(9) 0.5(3) C(26)-C(25)-(2)-C(28) 0.5(3) C(8)-C(25)-(2)-C(28) -80.0(2) C(26)-C(25)-(2)-C(0) 69.3(2) C(8)-C(25)-(2)-C(0) -.(3) C(27)-C(28)-(2)-C(25) -.(3) C(3)-C(28)-(2)-C(25) 79.9(2) C(27)-C(28)-(2)-C(0) -66.7(3) C(3)-C(28)-(2)-C(0) 4.3(4) C(9)-C(0)-(2)-C(25) -0.8(3) C()-C(0)-(2)-C(25) 20.(3) C(9)-C(0)-(2)-C(28) 63.4(4) C()-C(0)-(2)-C(28) -74.7(3) C(6)-C(7)-O()-O(2) 52.3(3) C(8)-C(7)-O()-O(2) 76.4(2) C(9)-C(7)-O()-O(2) -62.5(3) O(3)-C(3)-O(4)-C(32) -4.0(4) C(28)-C(3)-O(4)-C(32) 77.(3) Symmetry transformations used to generate equivalent atoms: 73

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to Vinyl Sulfone: An Organocatalytic Access to Chiral 3-Fluoro-3-Substituted Oxindoles Xiaowei Dou and Yixin Lu * Department of Chemistry & Medicinal

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Asymmetric Friedel-Crafts Alkylations of Indoles with Ethyl Glyoxylate Catalyzed by (S)-BIL-Ti (IV) Complex: Direct

More information

Supporting Information:

Supporting Information: Supporting Information: An rganocatalytic Asymmetric Sequential Allylic Alkylation/Cyclization of Morita-Baylis-Hillman Carbonates and 3-Hydroxyoxindoles Qi-Lin Wang a,b, Lin Peng a, Fei-Ying Wang a, Ming-Liang

More information

Supporting Information

Supporting Information Supporting Information Synthesis of H-Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis Qiang Wang and Xingwei Li* Dalian Institute of Chemical Physics, Chinese Academy

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany A Highly Enantioselective Brønsted Acid Catalyst for the Strecker Reaction Magnus Rueping, * Erli Sugiono and Cengiz Azap General: Unless otherwise

More information

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole James T. Brewster II, a Hadiqa Zafar, a Matthew McVeigh, a Christopher D. Wight, a Gonzalo

More information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information Experimental Supporting Information for Experimental and DFT Studies Explain Solvent Control of C-H Activation and Product Selectivity in the Rh(III)-Catalyzed Formation of eutral and Cationic Heterocycles

More information

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones Daisuke Uraguchi, Takaki Ito, Shinji Nakamura, and Takashi oi* Department of Applied Chemistry, Graduate School

More information

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol . This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry Total Synthesis of Gonytolides C and G, Lachnone C, and Formal Synthesis

More information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Supporting Information Ferrocenyl BODIPYs: Synthesis, Structure and Properties Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra* Department of Chemistry, Indian Institute of Technology

More information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2 S1 Chemistry at Boron: Synthesis and Properties of Red to Near-IR Fluorescent Dyes based on Boron Substituted Diisoindolomethene Frameworks Gilles Ulrich, a, * Sebastien Goeb a, Antoinette De Nicola a,

More information

Stereoselective Synthesis of (-) Acanthoic Acid

Stereoselective Synthesis of (-) Acanthoic Acid 1 Stereoselective Synthesis of (-) Acanthoic Acid Taotao Ling, Bryan A. Kramer, Michael A. Palladino, and Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of California, San

More information

Organocatalytic Doubly Annulative Approach to 3,4-Dihydrocoumarins Bearing a Fused Pyrrolidine Scaffold. Dorota Kowalczyk, and Łukasz Albrecht*

Organocatalytic Doubly Annulative Approach to 3,4-Dihydrocoumarins Bearing a Fused Pyrrolidine Scaffold. Dorota Kowalczyk, and Łukasz Albrecht* Organocatalytic Doubly Annulative Approach to 3,4-Dihydrocoumarins Bearing a Fused Pyrrolidine Scaffold Dorota Kowalczyk, and Łukasz Albrecht* Institute of Organic Chemistry, Chemistry Department, Lodz

More information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Supplementary Information Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes Galyna Dubinina, Hideki Furutachi, and David A. Vicic * Department of Chemistry, University of Hawaii,

More information

Supplementary Figure 1. 1 H and 13 C NMR spectra for compound 1a

Supplementary Figure 1. 1 H and 13 C NMR spectra for compound 1a 216.29 185.02 164.20 148.97 128.19 87.70 79.67 77.30 77.04 76.79 74.66 26.23 2.02 2.03 2.01 3.05 7.26 6.92 6.90 6.25 6.23 5.61 5.60 5.58 5.25 5.24 1.58 Supplementary Figure 1. 1 H and 13 C NMR spectra

More information

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information DBU-Mediated Metal-Free Oxidative Cyanation of α-amino

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Regiodivergent Heterocyclization: A Strategy for the Synthesis of Substituted Pyrroles and Furans Using α-formyl Ketene Dithioacetals as Common Precursors Ting Wu,

More information

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position Feng Zhou, Xing-Ping Zeng, Chao Wang, Xiao-Li Zhao, and Jian Zhou* [a] Shanghai Key Laboratory

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Single-Crystal-to-Single-Crystal Transformation of an Anion Exchangeable

More information

Halogen bonded dimers and ribbons from the self-assembly of 3-halobenzophenones Patricia A. A. M. Vaz, João Rocha, Artur M. S. Silva and Samuel Guieu

Halogen bonded dimers and ribbons from the self-assembly of 3-halobenzophenones Patricia A. A. M. Vaz, João Rocha, Artur M. S. Silva and Samuel Guieu Electronic Supplementary Material (ES) for CrystEngComm. This journal is The Royal Society of Chemistry 27 Halogen bonded dimers and ribbons from the self-assembly of -halobenzophenones Patricia A. A.

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/5/e1500304/dc1 Supplementary Materials for Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne click reaction This PDF file includes:

More information

Supporting Information. Molecular Iodine-Catalyzed Aerobic α,β-diamination of Cyclohexanones with 2- Aminopyrimidine and 2-Aminopyridines

Supporting Information. Molecular Iodine-Catalyzed Aerobic α,β-diamination of Cyclohexanones with 2- Aminopyrimidine and 2-Aminopyridines Supporting Information Molecular Iodine-Catalyzed Aerobic α,β-diamination of Cyclohexanones with 2- Aminopyrimidine and 2-Aminopyridines Thanh Binh guyen,* Ludmila Ermolenko, Pascal Retailleau, and Ali

More information

Amide Directed Cross-Coupling between Alkenes and Alkynes: A Regio- and Stereoselective Approach to Substituted (2Z,4Z)-Dienamides

Amide Directed Cross-Coupling between Alkenes and Alkynes: A Regio- and Stereoselective Approach to Substituted (2Z,4Z)-Dienamides Supporting Information For the article entitled Amide Directed Cross-Coupling between Alkenes and Alkynes: A Regio- and Stereoselective Approach to Substituted (2Z,4Z)-Dienamides Keke Meng, Jian Zhang,*

More information

Copper Mediated Fluorination of Aryl Iodides

Copper Mediated Fluorination of Aryl Iodides Copper Mediated Fluorination of Aryl Iodides Patrick S. Fier and John F. Hartwig* Department of Chemistry, University of California, Berkeley, California 94720, United States. Supporting Information Table

More information

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes Supporting Information to Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed Cascade Trifluoromethylation/Cyclization of 2-(3-Arylpropioloyl)benzaldehydes Yan Zhang*, Dongmei Guo, Shangyi

More information

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Supporting Information 1 Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes Takahiro Kawamoto, Sho Hirabayashi, Xun-Xiang Guo, Takahiro Nishimura,* and Tamio

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information Rhodium(III)-Catalyzed Formal xidative [4+1] Cycloaddition

More information

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Electronic supplementary information Strategy to Enhance Solid-State Fluorescence and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 208 Supporting Information Cobalt-Catalyzed Regioselective Syntheses of Indeno[2,-c]pyridines

More information

Supporting Information

Supporting Information Supporting Information Divergent Reactivity of gem-difluoro-enolates towards Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of -Ketoamides Mallu Kesava Reddy, Isai Ramakrishna,

More information

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one Haoyue Xiang and Chunhao Yang* State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy

More information

Supplementary Information

Supplementary Information Supplementary Information Eco-Friendly Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by FeCl 3 /Al 2 O 3 and Analysis of Large 1 H NMR Diastereotopic Effect Isabel Monreal, a Mariano Sánchez-Castellanos,

More information

A Highly Chemoselective and Enantioselective Aza-Henry Reaction of Cyclic -Carbonyl Ketimines under Bifunctional Catalysis

A Highly Chemoselective and Enantioselective Aza-Henry Reaction of Cyclic -Carbonyl Ketimines under Bifunctional Catalysis A ighly Chemoselective and Enantioselective Aza-enry Reaction of Cyclic -Carbonyl Ketimines under Bifunctional Catalysis Alejandro Parra, Ricardo Alfaro, Leyre Marzo, Alberto Moreno-Carrasco, José Luis

More information

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Carbonylative Coupling of Allylic Acetates with Arylboronic Acids Wei Ma, a Ting Yu, Dong Xue,*

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z51666 Wiley-VCH 2003 69451 Weinheim, Germany Catalytic Enantioselective Synthesis of xindoles and Benzofuranones that Bear a Quaternary Stereocenter Ivory

More information

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Supporting Information for Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes Marco Blangetti, Patricia Fleming and Donal F. O Shea* Centre for Synthesis and Chemical

More information

Supplementary information

Supplementary information Supplementary information Construction of bispirooxindoles containing three quaternary stereocenters in a cascade using a single multifunctional organocatalyst Bin Tan 1, Nuno R. Candeias 1,2 & Carlos

More information

Hualong Ding, Songlin Bai, Ping Lu,* Yanguang Wang*

Hualong Ding, Songlin Bai, Ping Lu,* Yanguang Wang* Supporting Information for Preparation of 2-Amino-3-arylindoles via Pd-Catalyzed Coupling between 3-Diazoindolin-2-imines and Arylboronic Acids as well as Their Extension to 3-Aryl-3-fluoroindolin-2-imines

More information

Supporting Information. Organocatalytic Synthesis of N-Phenylisoxazolidin-5-ones and a One-Pot Synthesis of -Amino Acid Esters

Supporting Information. Organocatalytic Synthesis of N-Phenylisoxazolidin-5-ones and a One-Pot Synthesis of -Amino Acid Esters Supporting Information rganocatalytic Synthesis of N-Phenylisoxazolidin-5-ones and a ne-pot Synthesis of -Amino Acid Esters Jayasree Seayad, Pranab K. Patra, Yugen Zhang,* and Jackie Y. Ying* Institute

More information

Supporting Information

Supporting Information Supporting Information Enantioselective Synthesis of 3-Alkynyl-3-Hydroxyindolin-2-ones by Copper-Catalyzed Asymmetric Addition of Terminal Alkynes to Isatins Ning Xu, Da-Wei Gu, Jing Zi, Xin-Yan Wu, and

More information

Supporting Information

Supporting Information Supporting Information N-Heterocyclic Carbene-Catalyzed Chemoselective Cross-Aza-Benzoin Reaction of Enals with Isatin-derived Ketimines: Access to Chiral Quaternary Aminooxindoles Jianfeng Xu 1, Chengli

More information

Supplementary Materials

Supplementary Materials Supplementary Materials ORTHOGOALLY POSITIOED DIAMIO PYRROLE- AD IMIDAZOLE- COTAIIG POLYAMIDES: SYTHESIS OF 1-(3-SUBSTITUTED-PROPYL)-4- ITROPYRROLE-2-CARBOXYLIC ACID AD 1-(3-CHLOROPROPYL)-4- ITROIMIDAZOLE-2-CARBOXYLIC

More information

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis Supporting Information Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl α-iminoesters through Auto-Tandem Catalysis Azusa Kondoh, b and Masahiro Terada* a a Department of Chemistry, Graduate School

More information

Supporting Information. Cu(I)-Catalyzed Three-Component Reaction of Diazo. Compound with Terminal Alkyne and Nitrosobenzene for

Supporting Information. Cu(I)-Catalyzed Three-Component Reaction of Diazo. Compound with Terminal Alkyne and Nitrosobenzene for Supporting Information of Cu(I)-Catalyzed Three-Component Reaction of Diazo Compound with Terminal Alkyne and Nitrosobenzene for the Synthesis of Trifluoromethyl Dihydroisoxazoles Xinxin Lv, Zhenghui Kang,

More information

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic Supporting information (+)- and ( )-Ecarlottones, Uncommon Chalconoids from Fissistigma latifolium with Proapoptotic Activity Charlotte Gény, Alma Abou Samra, Pascal Retailleau, Bogdan I. Iorga, Hristo

More information

Enantioselective Organocatalytic Michael Addition of Malonate Esters to Nitro Olefins Using Bifunctional Cinchonine Derivatives

Enantioselective Organocatalytic Michael Addition of Malonate Esters to Nitro Olefins Using Bifunctional Cinchonine Derivatives Enantioselective rganocatalytic Michael Addition of Malonate Esters to itro lefins Using Bifunctional Cinchonine Derivatives Jinxing Ye, Darren J. Dixon * and Peter S. Hynes School of Chemistry, University

More information

A Total Synthesis of Paeoveitol

A Total Synthesis of Paeoveitol A Total Synthesis of Paeoveitol Lun Xu, Fengyi Liu, Li-Wen Xu, Ziwei Gao, Yu-Ming Zhao* Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering, Shaanxi

More information

Construction of Vicinal Quaternary Carbon Centers via Cobalt- Catalyzed Asymmetric Reverse Prenylation

Construction of Vicinal Quaternary Carbon Centers via Cobalt- Catalyzed Asymmetric Reverse Prenylation Supporting Information Construction of Vicinal Quaternary Carbon Centers via Cobalt- Catalyzed Asymmetric Reverse Prenylation Minghe Sun, Jia-Feng Chen, Shufeng Chen, Changkun Li* Shanghai Key Laboratory

More information

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii) Supporting Information Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii) complexes: application to the kinetic resolution of allylic alcohols. Mariano A. Fernández-Zúmel, Beatriz

More information

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones Aurora Martínez-Muñoz, David Monge,* Eloísa Martín-Zamora, Eugenia Marqués-López, Eleuterio Álvarez, Rosario Fernández,*

More information

Supplementary information

Supplementary information Supplementary information doi: 10.1038/nchem.215 Concise Synthesis of a Ricciocarpin A and Discovery of a More Potent Analogue Anna Michrowska and Benjamin List Max-Planck-Institut für Kohlenforschung,

More information

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex. Emmanuelle Despagnet-Ayoub, Michael K. Takase, Jay A. Labinger and John E. Bercaw Contents 1. Experimental

More information

Asymmetric Michael Addition of -Fluoro- -nitroalkanes to Nitroolefins: Facile Preparation of Fluorinated Amines and Tetrahydropyrimidines

Asymmetric Michael Addition of -Fluoro- -nitroalkanes to Nitroolefins: Facile Preparation of Fluorinated Amines and Tetrahydropyrimidines Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2014 Asymmetric Michael Addition of -Fluoro- -nitroalkanes to Nitroolefins: Facile Preparation

More information

Stereoselective Synthesis of Ezetimibe via Cross-Metathesis of Homoallylalcohols and α- Methylidene-β-Lactams

Stereoselective Synthesis of Ezetimibe via Cross-Metathesis of Homoallylalcohols and α- Methylidene-β-Lactams SI - 1 Stereoselective Synthesis of Ezetimibe via Cross-Metathesis of Homoallylalcohols and α- Methylidene-β-Lactams Marek Humpl, Jiří Tauchman, Nikola Topolovčan, Jan Kretschmer, Filip Hessler, Ivana

More information

Supplementary Information. Single Crystal X-Ray Diffraction

Supplementary Information. Single Crystal X-Ray Diffraction Supplementary Information Single Crystal X-Ray Diffraction Single crystal diffraction data were collected on an Oxford Diffraction Gemini R Ultra diffractometer equipped with a Ruby CCD-detector with Mo-K

More information

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Electronic Supplementary Information (ESI) Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane Jie Liu, ab Qing Meng, a Xiaotao Zhang, a Xiuqiang Lu, a Ping

More information

Supporting Information for XXXXXXX

Supporting Information for XXXXXXX Supporting Information for XXXXXXX The First Imidazolium-Substituted Metal Alkylidene Giovanni Occhipinti, a Hans-René Bjørsvik, a Karl Wilhelm Törnroos, a Alois Fürstner, b and Vidar R. Jensen a, * a

More information

guanidine bisurea bifunctional organocatalyst

guanidine bisurea bifunctional organocatalyst Supporting Information for Asymmetric -amination of -keto esters using a guanidine bisurea bifunctional organocatalyst Minami Odagi* 1, Yoshiharu Yamamoto 1 and Kazuo Nagasawa* 1 Address: 1 Department

More information

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Reversible dioxygen binding on asymmetric dinuclear rhodium centres Electronic Supporting Information for Reversible dioxygen binding on asymmetric dinuclear rhodium centres Takayuki Nakajima,* Miyuki Sakamoto, Sachi Kurai, Bunsho Kure, Tomoaki Tanase* Department of Chemistry,

More information

Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral Phosphoric Acid-Catalyzed Symmetry Breaking

Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral Phosphoric Acid-Catalyzed Symmetry Breaking Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2012 69451 Weinheim, Germany Substitution of Two Fluorine Atoms in a Trifluoromethyl Group: Regioselective Synthesis of 3-Fluoropyrazoles** Kohei Fuchibe, Masaki Takahashi,

More information

*Corresponding author. Tel.: , ; fax: ; Materials and Method 2. Preparation of GO nanosheets 3

*Corresponding author. Tel.: , ; fax: ; Materials and Method 2. Preparation of GO nanosheets 3 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Synthesis of 2,3-dihydroquinazolinones and quinazolin-4(3h)-one catalyzed by Graphene Oxide

More information

Synthesis of Vinyl Germylenes

Synthesis of Vinyl Germylenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Material for Synthesis of Vinyl Germylenes Małgorzata Walewska, Judith Baumgartner,*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Palladium-Catalyzed Regio-selective xidative C-H

More information

Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion

Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion Supporting Information for Controlled Synthesis of C 70 Equatorial Multiadducts with Mixed Addends from an Equatorial Diadduct: Evidence for an Electrophilic Carbanion Shu-Hui Li, Zong-Jun Li,* Wei-Wei

More information

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives Supplementary Information Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives Kenji Hirata, Toshiaki Suzuki, Ai Noya, Izuru Takei and Masanobu

More information

Regioselective Synthesis of the Tricyclic Core of Lateriflorone

Regioselective Synthesis of the Tricyclic Core of Lateriflorone Regioselective Synthesis of the Tricyclic Core of Lateriflorone Eric J. Tisdale, Hongmei Li, Binh G. Vong, Sun Hee Kim, Emmanuel A. Theodorakis* Department of Chemistry and Biochemistry, University of

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Diphenylprolinol Silyl Ether in Enantioselective, Catalytic Tandem Michael-Henry Reaction for the Control of Four Stereocenters Yujiro Hayashi*,

More information

Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine

Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine Ying Xie, a Hongjie Pan, a Xiao Xiao, a Songlei Li a and Yian Shi* a,b a Beijing National Laboratory for

More information

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles Electronic Supplementary Material (ESI) for ew Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre ational de la Recherche Scientifique 2015 Supplementary Material (ESI)

More information

Iron Catalyzed Cross Couplings of Azetidines: Application to an Improved Formal Synthesis of a Pharmacologically Active Molecule

Iron Catalyzed Cross Couplings of Azetidines: Application to an Improved Formal Synthesis of a Pharmacologically Active Molecule Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Iron Catalyzed Cross Couplings of Azetidines: Application to an Improved Formal Synthesis of a

More information

Supporting Information

Supporting Information upporting Information Cooperative Activating Effect of DM-Tertiary Amine on Elemental ulfur: Direct Access to Thioaurones from 2 -Nitrochalcones under Mild Conditions Thanh Binh Nguyen,* and Pascal Retailleau

More information

Synthesis and Diels Alder Reactivity of Substituted [4]Dendralenes. Table of Contents

Synthesis and Diels Alder Reactivity of Substituted [4]Dendralenes. Table of Contents Supporting Information for: Synthesis and Diels Alder Reactivity of Substituted [4]Dendralenes Mehmet F. Saglam, Ali R. Alborzi, Alan D. Payne, Anthony C. Willis,, Michael N. Paddon- Row and Michael S.

More information

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi* Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2015 Solvent-controlled Nucleophilic Trifloromethylthiolation of Morita- Baylis-Hillman

More information

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in Supplementary Figure 1. Optical properties of 1 in various solvents. UV/Vis (left axis) and fluorescence spectra (right axis, ex = 420 nm) of 1 in hexane (blue lines), toluene (green lines), THF (yellow

More information

Palladium-Catalyzed Asymmetric [3+2] Cycloaddition to Construct 1,3-Indandione and Oxindole-Fused Spiropyrazolidine Scaffolds

Palladium-Catalyzed Asymmetric [3+2] Cycloaddition to Construct 1,3-Indandione and Oxindole-Fused Spiropyrazolidine Scaffolds Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Palladium-Catalyzed Asymmetric [3+2] Cycloaddition to Construct 1,3-Indandione

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information Enantioselective Synthesis of Axially Chiral Vinyl arenes through Palladium-catalyzed

More information

Supporting Information

Supporting Information Supporting Information for Engineering of indole-based tethered biheterocyclic alkaloid meridianin into -carboline-derived tetracyclic polyheterocycles via amino functionalization/6-endo cationic π-cyclization

More information

All solvents and reagents were used as obtained. 1H NMR spectra were recorded with a Varian

All solvents and reagents were used as obtained. 1H NMR spectra were recorded with a Varian SUPPLEMETARY OTE Chemistry All solvents and reagents were used as obtained. 1H MR spectra were recorded with a Varian Inova 600 MR spectrometer and referenced to dimethylsulfoxide. Chemical shifts are

More information

Synthesis of Aminophenanthrenes and Benzoquinolines via Hauser-Kraus Annulation of Sulfonyl Phthalide with Rauhut- Currier Adducts of Nitroalkenes

Synthesis of Aminophenanthrenes and Benzoquinolines via Hauser-Kraus Annulation of Sulfonyl Phthalide with Rauhut- Currier Adducts of Nitroalkenes Synthesis of Aminophenanthrenes and Benzoquinolines via Hauser-Kraus Annulation of Sulfonyl Phthalide with Rauhut- Currier Adducts of Nitroalkenes Tarun Kumar, Vaijinath Mane and Irishi N. N. Namboothiri*

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Asymmetric Vinylogous aza-darzens Approach to Vinyl Aziridines Isaac Chogii, Pradipta Das, Michael D. Delost, Mark N. Crawford and Jon T. Njardarson* Department of Chemistry and

More information

SYNTHESIS OF A 3-THIOMANNOSIDE

SYNTHESIS OF A 3-THIOMANNOSIDE Supporting Information SYNTHESIS OF A 3-THIOMANNOSIDE María B Comba, Alejandra G Suárez, Ariel M Sarotti, María I Mangione* and Rolando A Spanevello and Enrique D V Giordano Instituto de Química Rosario,

More information

First synthesis of heterocyclic allenes benzazecine derivatives

First synthesis of heterocyclic allenes benzazecine derivatives Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 First synthesis of heterocyclic

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information Unmasking Representative Structures of TMP-Active Hauser and Turbo Hauser Bases Pablo García-Álvarez, David V. Graham,

More information

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 24 Supporting Information Poly(4-vinylimidazolium)s: A Highly Recyclable rganocatalyst Precursor

More information

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site

More information

Singapore, #05 01, 28 Medical Drive, Singapore. PR China,

Singapore, #05 01, 28 Medical Drive, Singapore. PR China, Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Catalyst controlled Regioselectivity in Phosphine Catalysis: Synthesis of Spirocyclic Benzofuranones

More information

The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004.

The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004. The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004. Sterically Bulky Thioureas as Air and Moisture Stable Ligands for Pd-Catalyzed Heck Reactions of

More information

Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol

Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol Reaction of Aldehydes in Emulsion Media Qiang Gao, a,b Yan Liu, a Sheng-Mei Lu, a Jun Li a and Can Li* a a State Key Laboratory of Catalysis,

More information

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supporting Information 1,4-Dihydropyridyl Complexes of Magnesium: Synthesis

More information

Supporting Information. Efficient N-arylation and N-alkenylation of the five. DNA/RNA nucleobases

Supporting Information. Efficient N-arylation and N-alkenylation of the five. DNA/RNA nucleobases Supporting Information Efficient -arylation and -alkenylation of the five DA/RA nucleobases Mikkel F. Jacobsen, Martin M. Knudsen and Kurt V. Gothelf* Center for Catalysis and Interdisciplinary anoscience

More information

A Sumanene-based Aryne, Sumanyne

A Sumanene-based Aryne, Sumanyne A Sumanene-based Aryne, Sumanyne Niti Ngamsomprasert, Yumi Yakiyama, and Hidehiro Sakurai* Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871

More information

Asymmetric Synthesis of Tropanes by Rhodium-Catalyzed [4+3] Cycloaddition.

Asymmetric Synthesis of Tropanes by Rhodium-Catalyzed [4+3] Cycloaddition. Asymmetric Synthesis of Tropanes by Rhodium-Catalyzed [4+3] Cycloaddition. Ravisekhara P. Reddy and Huw M. L. Davies* Department of Chemistry, University at Buffalo, The State University of ew York, Buffalo,

More information

Supporting Information

Supporting Information Supporting Information Two Enantiomeric Pairs of Meroterpenoids from Rhododendron capitatum Hai-Bing Liao, Chun Lei, Li-Xin Gao, Jing-Ya Li, Jia Li, and Ai-Jun Hou*, Department of Pharmacognosy, School

More information

Supporting Information for the Article Entitled

Supporting Information for the Article Entitled Supporting Information for the Article Entitled Catalytic Production of Isothiocyanates via a Mo(II) / Mo(IV) Cycle for the Soft Sulfur Oxidation of Isonitriles authored by Wesley S. Farrell, Peter Y.

More information

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues Kang Yuan, Goonay Yousefalizadeh, Felix Saraci, Tai Peng, Igor Kozin, Kevin G. Stamplecoskie, Suning Wang*

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information for Chiral Brönsted Acid Catalyzed Asymmetric Baeyer-Villiger Reaction of 3-Substituted Cyclobutanones Using Aqueous

More information

Supporting Information. for

Supporting Information. for Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department

More information

Supporting Information

Supporting Information Submitted to Cryst. Growth Des. Version 1 of August 22, 2007 Supporting Information Engineering Hydrogen-Bonded Molecular Crystals Built from 1,3,5-Substituted Derivatives of Benzene: 6,6',6''-(1,3,5-Phenylene)tris-1,3,5-triazine-2,4-diamines

More information

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Decomposition of Ruthenium Olefin Metathesis. Catalysts Supporting Information for: Decomposition of Ruthenium Olefin Metathesis Catalysts Soon Hyeok Hong, Anna G. Wenzel, Tina T. Salguero, Michael W. Day and Robert H. Grubbs* The Arnold and Mabel Beckman Laboratory

More information