C. C. Briggs Center for Academic Computing, Penn State University, University Park, PA Tuesday, August 18, 1998

Size: px
Start display at page:

Download "C. C. Briggs Center for Academic Computing, Penn State University, University Park, PA Tuesday, August 18, 1998"

Transcription

1 SOME POSSIBLE FEATURES OF GENERAL EXPRESSIONS FOR LOVELOCK TENSORS AND FOR THE COEFFICIENTS OF LOVELOCK LAGRANGIANS UP TO THE 15 th ORDER IN CURVATURE (AND BEYOND) C. C. Briggs Center for Academic Computing, Penn State University, University Park, PA Tuesday, August 18, 1998 Astract. This paper presents some possile features of general expressions for Lovelock tensors for the coefficients of Lovelock Lagrangians up to the 15 th order in curvature ( eyond) in terms of the Riemann-Christoffel Ricci curvature tensors the Riemann curvature scalar for n-dimensional differentiale manifolds having a general linear connection. PACS numers: k, Cv, Fy The sheer size of many of these calculations oggles the mind. At times, several million terms are manipulated in such calculations, whereas the final result is often quite small. Boyle, A., B. F. Caviness, Future Directions for Research in Symolic Computation, Society for Industrial Applied Mathematics, Philadelphia, PA (1990), p. 42. This paper presents an assortment of possile features of general expressions for Lovelock tensors G (p)a the coefficients L (p) of Lovelock Lagrangians up to the 15 th order in curvature ( eyond) in terms of the Riemann- Christoffel Ricci curvature tensors R d ac R a, respectively, the Riemann curvature scalar R for n-dimensional differentiale manifolds having a general linear connection, the features having een otained, for 0 p 5, y inspection of complete expressions presented elsewhere 1, for p 6, y extrapolation of the results otained for 0 p 5. In accordance with various general definitions given y Müller-Hoissen 2 Verwimp, 3 general expressions for L (p) G (p)a are given y L (p) = 1, if p = 0 (2p)! i R 1 i 2 i 2 p [i1 i Ri3 3 i 4 2 i Ri2p 4 1 i 2p ] i 2p 1 i (1) 2p, ifp > 0 G (p)a = δ a, ifp = 0 (2p 1)! 2 p 1 p δ [a R i 1 i 2 i i 1 i Ri3 3 i 4 2 i Ri2 4 p 1 i 2 p ] i 2 p 1 i, (2) 2 p, ifp > 0 respectively, which formulas comprise (2p)! (2p 1)! covariant index permutations, respectively, where δ a is the Kronecker delta; R a cd = g ce R d ae ; g a is the contravariant metric tensor (the possily non-vanishing covariant derivative of which vanishes identically if the connection under consideration is Riemannian), which satisfies the equation g ac g c = δ a, where g a is the covariant metric tensor. Following Schouten, 4 the Riemann-Christoffel curvature tensor R d ac is defined y R d d d e e d ac 2( [a Γ ] c Γ [a e Γ ] c Ω a Γ e c ) (3) using anholonomic coordinates (of which holonomic coordinates are a special case), where a is the Pfaffian derivative, Γ a c the connection coefficient, Ω a c the oject of anholonomity; the Ricci curvature tensor R a y R a R c ca = R c ac = R c ca 2 ( [c Q c a] S d ca Q c d ), (4) where a is the covariant derivative, Q c a the nonmetricity tensor, S d ca the torsion tensor; the Riemann curvature scalar R y R R a a = R a a = R a a = R a a = R a a. (5) Now let a p = numer of terms in general expression for L (p), (6) c p = numer of partitions of p, (7) = a p c p, (8) p = numer of terms in general expression for G (p)a. (9) Values for a p, c p,, p for 0 p 5 determined empirically appear elow in Tales (1) through (4). TABLE (1). 0 th THROUGH 5 th DIFFERENCES OF a p FOR 0 p 5 a p a p a p a p a p a p TABLE (2). 0 th THROUGH 5 th DIFFERENCES OF c p FOR 0 p 5 c p c p c p c p c p c p... 4 TABLE (3). 0 th THROUGH 5 th DIFFERENCES OF = a p c p FOR 0 p TABLE (4). 0 th THROUGH 5 th DIFFERENCES OF p FOR 0 p 5 p p p p p p In Tale (3) for, it can e seen that 3 = 2 2 p 1 (10) where 0 p 2, which yields the recurrence 3 = p 1, (11) where 0 p 2. In addition, Eq. (10) yields the formula 4 = 3 3, (12) where 0 p 1, which yields the recurrence 4 = , (13) where 0 p 1. In Tale (4) for p, it can e seen that p 2 = 7 p 9 p, (14) where 0 p 3, which yields the recurrence p 2 = 7 p 1 7 p 9 p, (15) where 0 p 3. In addition, Eq. (14) yields the formula 2 p 2 = 7 3 p, (16) where 0 p 2, which yields the recurrence p 4 = 9 p 3 22 p 2 21 p 1 7 p, (17) where 0 p 1. 1 Briggs, C. C., A General Expression for the Quartic Lovelock Tensor, Preprint gr-qc/ ; A General Expression for the Quintic Lovelock Tensor, Preprint gr-qc/ Müller-Hoissen, F., Spontaneous Compactification with Quadratic Cuic Curvature Terms, Phys. Lett., 163B (1985) 106; From Chern-Simons to Gauss-Bonnet, Nucl. Phys. B, 346 (1990) Verwimp, T., On higher dimensional gravity: the Lagrangian, its dimensional reduction a cosmological model, Class. Quantum Grav., 6 (1989) Schouten, J. A., Ricci-Calculus, Second Edition, Springer-Verlag, Berlin, Germany (1954), pp

2 2 Tuesday, August 18, 1998 Z-15 Values for a p, c p,, p for 0 p 15 calculated y means as needs e of either of the foregoing recurrences for for p appear elow in Tales (5) through (8). TABLE (5). 0 th THROUGH 15 th DIFFERENCES OF a p FOR 0 p a p a p a p a p a p a p a p a p a p a p a p a p a p a p a p a p TABLE (6). 0 th THROUGH 15 th DIFFERENCES OF c p FOR 0 p c p c p c p c p c p c p c p c p c p c p c p c p c p c p c p c p TABLE (7). 0 th THROUGH 15 th DIFFERENCES OF = a p c p FOR 0 p TABLE (8). 0 th THROUGH 15 th DIFFERENCES OF p FOR 0 p p p p p p p p p p p p p p p p p

3 Z-15 Tuesday, August 18, In Tale (7) for it can e seen that 1. p 0, (mod 2) = 1 2 [1 ( 1)p(p 1)/2 ]; (18) 2. p 0, = 4 1 (p 2); (19) 3. p 0, (mod 10) = 2 p 1 2 [1 ( 1)p ], (20) whence 0, if p 0 (mod 10) 1, if p 1 (mod 10) 4, if p 2 (mod 10) 5, if p 3 (mod 10) 8, if p 4 (mod 10) ; (21) 9, if p 5 (mod 10) 2, if p 6 (mod 10) 3, if p 7 (mod 10) 6, if p 8 (mod 10) 7, if p 9 (mod 10) 4. p 0, 2 = 3 (p 1); (22) 5. p 0, 2 = ; (23) 6. p 0, 2 1, if 2p 0 (mod 4) ; (24) 3, if 2p 1 (mod 4) 7. p 0, 3 = 3 2 1; (25) 8. k 4 p 0, k = 3 k 1, (26) whence, q 0, k q = 3 q 1 k 1 ; (27) 9. k 3 p 0, k = 4 k 1, (28) whence, q 0, k q = 4 q 1 k 1 ; (29) 10. k 3 p 0, 6, if k 2p 0 (mod 4) k 8, if k 2p 1 (mod 4). (30) 4, if k 2p 2 (mod 4) 2, if k 2p 3 (mod 4) In Tale (8) for p it can e seen that 1. p 0, p (mod 2) = 1 2 [1 ( 1)p 1 ]; (31) 2. p 0, 1, if p 0 (mod 4) 5, if p 1 (mod 4) p ; (32) 9, if p 2 (mod 4) 9, if p 3 (mod 4) 3. k 2 (mod 4) p 0, 4, if p 0 (mod 4) k 4, if p 1 (mod 4) p ; (33) 0, if p 2 (mod 4) 2, if p 3 (mod 4) 4. k 3 (mod 4) p 0, 0, if p 0 (mod 4) k 6, if p 1 (mod 4) p ; (34) 2, if p 2 (mod 4) 2, if p 3 (mod 4) 5. 0<k 0 (mod 4) p 0, 6, if p 0 (mod 4) k 6, if p 1 (mod 4) p ; (35) 0, if p 2 (mod 4) 8, if p 3 (mod 4) 6. 1<k 1 (mod 4) p 0, 0 (= 1 1), ifp 0 (mod 4) k 4 (= 5 1), ifp 1 (mod 4) p ; (36) 8 (= 9 1), ifp 2 (mod 4) 8 (= 9 1), ifp 3 (mod 4) 7. k 0 p 0, k 2 p 2 = 7 k 3 p, (37) whence, 2q p, k 2 p 2 = 7 q 1 k q 3 p 2 q. (38) Values for the numers a p p together with some other features of the general expressions for L (p) G (p)a, such as the numers of covariant index permutations per Eqs. (1) (2) comprehended y, the overall sums of the magnitudes of the numerical coefficients of the terms appearing in, the expressions in question appear elow in Tales (9) (10). The 1 st a p 1 terms of general expressions for L (p) can e calculated directly (for p 1) y means of the inverse of the formula R L (p) = p L (p 1). (39) The initial terms (up to 10) of expressions for L (p) for 0 p 15 calculated y means as needs e of the inverse of Eq. (39) appear elow in Eqs. (40) through (55). L (0) = 1; (40) L (1) = R; (41) L (2) = R 2 4 R a R a R a cd R cd a ; (42) L (3) = R 3 12 R R a R a 3 R R a cd R cd a 16 R a R c R c a 24 R a c R d R cd a 24 R a e 2 R a cd R ef a 8 R a ce R cd af R ef d ; (43) L (4) = R 4 24 R 2 R a R a 6 R 2 R cd a R a cd 64 R R c a R a R c 96 R R a c R d R cd a 96 R R a e 8 R R ef a R a cd 32 R R cd af R ef d R a ce 48 R a R a 96 R d a R a R c, (44) there eing 15 additional terms, the 1 st of which is positive; L (5) = R 5 40 R 3 R a R a 10 R 3 R cd a R a cd 160 R 2 R c a R a R c 240 R 2 R a c R d R cd a 240 R 2 R a e 20 R 2 R ef a R a cd 80 R 2 R cd af R ef d R a ce 240 R R a R a 480 R R d a R a R c, (45) there eing 75 additional terms, the 1 st of which is negative; L (6) = R 6 60 R 4 R a R a 15 R 4 R cd a R a cd 320 R 3 R c a R a R c 480 R 3 R a c R d R cd a 480 R 3 R a e 40 R 3 R ef a R a cd 160 R 3 R cd af R ef d R a ce 720 R 2 R a R a 1440 R 2 R d a R a R c, (46)

4 4 Tuesday, August 18, 1998 Z-15 TABLE (9). SOME PROPERTIES OF L (p) FOR 0 p 15 OR- DER CURVATURE DEPENDENCE QUAN- TITY TERMS PERMUTATIONS COMPREHENDED p L (p) a p (2p)! OVERALL SUM OF THE MAGNITUDES OF THE NUMERICAL FACTORS (2p)! 2 p 0 Zero L (0) Linear L (1) Quadratic L (2) Cuic L (3) Quartic L (4) 25 40, Quintic L (5) 85 3,628, ,400 6 Sextic L (6) ,001,600 7,484,400 7 Septic L (7) ,178,291, ,080,400 8 Octic L (8) ,922,789,888,000 81,729,648,000 9 Nonic L (9) 19,458 6,402,373,705,728,000 12,504,636,144, Decic L (10) 77,727 2,432,902,008,176,640,000 2,375,880,867,360, Undecic L (11) 310,761 1,124,000,727,777,607,680, ,828,480,360,160, Duodecic L (12) 1,242, ,448,401,733,239,439,360, ,476,660,579,404,160, Tredecic L (13) 4,971, ,291,461,126,605,635,584,000,000 49,229,914,688,306,352,000, Quattuordecic L (14) 19,884, ,888,344,611,713,860,501,504,000,000 18,608,907,752,179,801,056,000, Quindecic L (15) 79,536, ,252,859,812,191,058,636,308,480,000,000 8,094,874,872,198,213,459,360,000,000 TABLE (10). SOME PROPERTIES OF G (p)a FOR 0 p 15 OR- DER CURVATURE DEPENDENCE QUAN- TITY p G (p)a 0 Zero G (0)a 1 Linear G (1)a 2 Quadratic G (2)a 3 Cuic G (3)a 4 Quartic G (4)a 5 Quintic G (5)a 6 Sextic G (6)a 7 Septic G (7)a 8 Octic G (8)a 9 Nonic G (9)a 10 Decic G (10)a 11 Undecic G (11)a 12 Duodecic G (12)a 13 Tredecic G (13)a 14 Quattuordecic G (14)a 15 Quindecic G (15)a TERMS PERMUTATIONS COMPREHENDED OVERALL SUM OF THE MAGNITUDES OF THE NUMERICAL FACTORS (2p 1)! p (2p 1)! 1 if p = 0; 2 p 1 p if p / / , ,916, , ,227,020,800 8,108,100 19,100 1,307,674,368, ,729, , ,687,428,096,000 86,837,751, , ,645,100,408,832,000 13,199,338,152,000 3,697,405 51,090,942,171,709,440,000 2,494,674,910,728,000 21,411,974 25,852,016,738,884,976,640, ,775,229,467,440, ,001,893 15,511,210,043,330,985,984,000, ,788,188,103,546,000, ,129,334 10,888,869,450,418,352,160,768,000,000 51,123,372,945,548,904,000,000 4,158,891,979 8,841,761,993,739,701,954,543,616,000,000 19,273,511,600,471,936,808,000,000 24,085,338,398 8,222,838,654,177,922,817,725,562,880,000,000 8,364,704,034,604,820,574,672,000,000

5 Z-15 Tuesday, August 18, there eing 308 additional terms, the 1 st of which is positive; L (7) = R 7 84 R 5 R a R a 21 R 5 R cd a R a cd 560 R 4 R c a R a R c 840 R 4 R a c R d R cd a 840 R 4 R a e 70 R 4 R ef a R a cd 280 R 4 R cd af R ef d R a ce 1680 R 3 R a R a 3360 R 3 R d a R a R c, (47) there eing 1224 additional terms, the 1 st of which is negative; L (8) = R R 6 R a R a 28 R 6 R cd a R a cd 896 R 5 R c a R a R c 1344 R 5 R a c R d R cd a 1344 R 5 R a e 112 R 5 R ef a R a cd 448 R 5 R cd af R ef d R a ce 3360 R 4 R a R a 6720 R 4 R d a R a R c, (48) there eing 4874 additional terms, the 1 st of which is positive; L (9) = R R 7 R a R a 36 R 7 R cd a R a cd 1344 R 6 R c a R a R c 2016 R 6 R a c R d R cd a 2016 R 6 R a e 168 R 6 R ef a R a cd 672 R 6 R cd af R ef d R a ce 6048 R 5 R a R a 12,096 R 5 R d a R a R c, (49) there eing 19,448 additional terms, the 1 st of which is negative; L (10) = R R 8 R a R a 45 R 8 R cd a R a cd 1920 R 7 R c a R a R c 2880 R 7 R a c R d R cd a 2880 R 7 R a e 240 R 7 R ef a R a cd 960 R 7 R cd af R ef d R a ce 10,080 R 6 R a R a 20,160 R 6 R d a R a R c, (50) there eing 77,717 additional terms, the 1 st of which is positive; L (11) = R R 9 R a R a 55 R 9 R cd a R a cd 2640 R 8 R c a R a R c 3960 R 8 R a c R d R cd a 3960 R 8 R a e 330 R 8 R ef a R a cd 1320 R 8 R cd af R ef d R a ce 15,840 R 7 R a R a 31,680 R 7 R d a R a R c, (51) there eing 310,751 additional terms, the 1 st of which is negative; L (12) = R R 10 R a R a 66 R 10 R cd a R a cd 3520 R 9 R c a R a R c 5280 R 9 R a c R d R cd a 5280 R 9 R a e 440 R 9 R ef a R a cd 1760 R 9 R cd af R ef d R a ce 23,760 R 8 R a R a 47,520 R 8 R d a R a R c, (52) there eing 1,242,843 additional terms, the 1 st of which is positive; L (13) = R R 11 R a R a 78 R 11 R cd a R a cd 4576 R 10 R c a R a R c 6864 R 10 R a c R d R cd a 6864 R 10 R a e 572 R 10 R ef a R a cd 2288 R 10 R cd af R ef d R a ce 34,320 R 9 R a R a 68,640 R 9 R d a R a R c, (53) there eing 4,971,141 additional terms, the 1 st of which is negative; L (14) = R R 12 R a R a 91 R 12 R cd a R a cd 5824 R 11 R c a R a R c 8736 R 11 R a c R d R cd a 8736 R 11 R a e 728 R 11 R ef a R a cd 2912 R 11 R cd af R ef d R a ce 48,048 R 10 R a R a 96,096 R 10 R d a R a R c, (54) there eing 19,884,260 additional terms, the 1 st of which is positive; L (15) = R R 13 R a R a 105 R 13 R cd a R a cd 7280 R 12 R c a R a R c 10,920 R 12 R a c R d R cd a 10,920 R 12 R a e 910 R 12 R ef a R a cd 3640 R 12 R cd af R ef d R a ce 65,520 R 11 R a R a 131,040 R 11 R d a R a R c, (55) there eing 79,536,629 additional terms, the 1 st of which is negative. In general, the initial terms (up to 10) of expressions for L (p) are given y L (p) = ( 1) p R p 4 ( 1) p 1 ( p p 2 ) Rp 2 R a R a ( 1) p ( p p 2 ) Rp 2 R cd a R a cd 16 ( 1) p ( p p 3 ) Rp 3 R c a R a R c 24 ( 1) p 1 ( p p 3 ) Rp 3 R a c R d R cd a 24 ( 1) p 1 ( p p 3 ) Rp 3 R a e 2 ( 1) p 1 ( p p 3 ) Rp 3 R ef a R a cd 8 ( 1) p ( p p 3 ) Rp 3 R cd af R ef d R a ce 48 ( 1) p ( p p 4 ) Rp 4 R a R a 96 ( 1) p 1 ( p p 4 ) Rp 4 R d a R a R c, (56) there eing a p 10 additional terms, the sign of the 1 st of which equals ( 1) p. The 1 st a p 1 terms (in addition to p 1 a p 1 of the last p a p of the remaining p a p 1 terms) of general expressions for G (p)a can e calculated directly (for p 2) y means of the inverse of the formula R G (p)a = (p 1) G (p 1)a. (57) The initial terms (up to 10) of expressions for G (p)a for 0 p 15 calculated y means as needs e of the inverse of Eq. (57) appear elow in Eqs. (58) through (73). G (0)a = δ a ; (58) G (1)a = 1 2 ( δ a R 2 R a ); (59) G (2)a = 1 4 (δ a R 2 4 δ a δ a R ef cd 4 R a R 8 R a c R c 8 R ad c 4 R ae cd R cd e ); (60) G (3)a = 1 6 ( δ a R 3 12 δ a R 3 δ a R R ef cd 16 δ a R e d R c e 24 δ a R e c R f d 24 δ a R fg de R ce fg 2 δ a R ef cd R gh ef R cd gh 8 δ a R eg cd R ch ef R df gh 6 R a R 2 24 R a c R R c ), (61) there eing 16 additional terms, the 1 st of which is negative; G (4)a = 1 8 (δa R4 24 δ a R2 6 δ a R2 R ef cd 64 δ a R R c e R e d 96 δ a R R e c R f d 96 δ a R R ce fg R fg de

6 6 Tuesday, August 18, 1998 Z-15 8 δ a R R cd gh R ef cd R gh ef 32 δ a R R ch ef R df gh R eg cd 48 δ a R e f R f e 96 δ a R c f R e d R f e ), (62) there eing 105 additional terms, the 1 st of which is positive; G (5)a = 1 10 ( δ a R5 40 δ a R3 10 δ a R3 R ef cd 160 δ a R2 R c e R e d 240 δ a R2 R e c R f d 240 δ a R2 R ce fg R fg de 20 δ a R2 R cd gh R ef cd R gh ef 80 δ a R2 R ch ef R df gh R eg cd 240 δ a R R e f R f e 480 δ a R R c f R e d R f e ), (63) there eing 586 additional terms, the 1 st of which is negative; G (6)a = 1 12 (δa R6 60 δ a R4 15 δ a R4 R ef cd 320 δ a R3 R c e R e d 480 δ a R3 R e c R f d 480 δ a R3 R ce fg R fg de 40 δ a R3 R cd gh R ef cd R gh ef 160 δ a R3 R ch ef R df gh R eg cd 720 δ a R2 R e f R f e 1440 δ a R2 R c f R e d R f e ), (64) there eing 3321 additional terms, the 1 st of which is positive; G (7)a = 1 14 ( δ a R7 84 δ a R5 21 δ a R5 R ef cd 560 δ a R4 R c e R e d 840 δ a R4 R e c R f d 840 δ a R4 R ce fg R fg de 70 δ a R4 R cd gh R ef cd R gh ef 280 δ a R4 R ch ef R df gh R eg cd 1680 δ a R3 R e f R f e 3360 δ a R3 R c f R e d R f e ), (65) there eing 19,090 additional terms, the 1 st of which is negative; G (8)a = 1 16 (δa R8 112 δ a R6 28 δ a R6 R ef cd 896 δ a R5 R c e R e d 1344 δ a R5 R e c R f d 1344 δ a R5 R ce fg R fg de 112 δ a R5 R cd gh R ef cd R gh ef 448 δ a R5 R ch ef R df gh R eg cd 3360 δ a R4 R e f R f e 6720 δ a R4 R c f R e d R f e ), (66) there eing 110,319 additional terms, the 1 st of which is positive; G (9)a = 1 18 ( δ a R9 144 δ a R7 36 δ a R7 R ef cd 1344 δ a R6 R c e R e d 2016 δ a R6 R e c R f d 2016 δ a R6 R ce fg R fg de 168 δ a R6 R cd gh R ef cd R gh ef 672 δ a R6 R ch ef R df gh R eg cd 6048 δ a R5 R e f R f e 12,096 δ a R5 R c f R e d R f e ), (67) there eing 638,530 additional terms, the 1 st of which is negative; G (10)a = 1 20 (δa R δ a R8 45 δ a R8 R ef cd 1920 δ a R7 R c e R e d 2880 δ a R7 R e c R f d 2880 δ a R7 R ce fg R fg de 240 δ a R7 R cd gh R ef cd R gh ef 960 δ a R7 R ch ef R df gh R eg cd 10,080 δ a R6 R e f R f e 20,160 δ a R6 R c f R e d R f e ), (68) there eing 3,697,395 additional terms, the 1 st of which is positive; G (11)a = 1 22 ( δ a R δ a R9 55 δ a R9 R ef cd 2640 δ a R8 R c e R e d 3960 δ a R8 R e c R f d 3960 δ a R8 R ce fg R fg de 330 δ a R8 R cd gh R ef cd R gh ef 1320 δ a R8 R ch ef R df gh R eg cd 15,840 δ a R7 R e f R f e 31,680 δ a R7 R c f R e d R f e ), (69) there eing 21,411,964 additional terms, the 1 st of which is negative; G (12)a = 1 24 (δa R δ a R10 66 δ a R10 R ef cd 3520 δ a R9 R c e R e d 5280 δ a R9 R e c R f d 5280 δ a R9 R ce fg R fg de 440 δ a R9 R cd gh R ef cd R gh ef 1760 δ a R9 R ch ef R df gh R eg cd 23,760 δ a R8 R e f R f e 47,520 δ a R8 R c f R e d R f e ), (70) there eing 124,001,883 additional terms, the 1 st of which is positive; G (13)a = 1 26 ( δ a R δ a R11 78 δ a R11 R ef cd 4576 δ a R10 R c e R e d 6864 δ a R10 R e c R f d 6864 δ a R10 R ce fg R fg de 572 δ a R10 R cd gh R ef cd R gh ef 2288 δ a R10 R ch ef R df gh R eg cd 34,320 δ a R9 R e f R f e 68,640 δ a R9 R c f R e d R f e ), (71) there eing 718,129,324 additional terms, the 1 st of which is negative; G (14)a = 1 28 (δa R δ a R12 91 δ a R12 R ef cd 5824 δ a R11 R c e R e d 8736 δ a R11 R e c R f d 8736 δ a R11 R ce fg R fg de 728 δ a R11 R cd gh R ef cd R gh ef 2912 δ a R11 R ch ef R df gh R eg cd 48,048 δ a R10 R e f R f e 96,096 δ a R10 R c f R e d R f e ), (72) there eing 4,158,891,969 additional terms, the 1 st of which is positive; G (15)a = 1 30 ( δ a R δ a R δ a R13 R ef cd 7280 δ a R12 R c e R e d 10,920 δ a R12 R e c R f d 10,920 δ a R12 R ce fg R fg de 910 δ a R12 R cd gh R ef cd R gh ef 3640 δ a R12 R ch ef R df gh R eg cd 65,520 δ a R11 R e f R f e 131,040 δ a R11 R c f R e d R f e ), (73) there eing 24,085,338,388 additional terms, the 1 st of which is negative. In general, the initial terms (up to 10) of expressions for G (p)a are given y G (p)a = 1 2p (( 1)p δ a R p 4 ( 1) p 1 ( p p 2 ) δ a R p 2 ( 1) p ( p p 2 ) δ a R p 2 R ef cd 16 ( 1) p ( p p 3 ) δ a R p 3 R e c R d e 24 ( 1) p 1 ( p p 3 ) δ a R p 3 R c e R d f R ef cd 24 ( 1) p 1 ( p p 3 ) δ a R p 3 R fg ce R de fg 2 ( 1) p 1 ( p p 3 ) δ a R p 3 R gh cd R ef gh 8 ( 1) p ( p p 3 ) δ a R p 3 R ef ch R gh df R cd eg 48 ( 1) p ( p p 4 ) δ a R p 4 R f e R e f 96 ( 1) p 1 ( p p 4 ) δ a R p 4 R f c R d e R e f ), (74) there eing p 10 additional terms, the sign of the 1 st of which equals ( 1) p.

arxiv:gr-qc/ v1 5 Nov 2004

arxiv:gr-qc/ v1 5 Nov 2004 Mathematical Structure of Tetrad Equations for Vacuum Relativity arxiv:gr-qc/0411029v1 5 Nov 2004 Frank B. Estabrook Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive,

More information

Generalized Semi-Pseudo Ricci Symmetric Manifold

Generalized Semi-Pseudo Ricci Symmetric Manifold International Mathematical Forum, Vol. 7, 2012, no. 6, 297-303 Generalized Semi-Pseudo Ricci Symmetric Manifold Musa A. Jawarneh and Mohammad A. Tashtoush AL-Balqa' Applied University, AL-Huson University

More information

Characterization of the Lovelock gravity

Characterization of the Lovelock gravity PRAMANA c Indian Academy of Sciences Vol. 74, No. 6 journal of June 2010 physics pp. 875 882 Characterization of the Lovelock gravity by Bianchi derivative NARESH DADHICH Inter-University Centre for Astronomy

More information

Nonsingular big-bounce cosmology from spin and torsion

Nonsingular big-bounce cosmology from spin and torsion Nonsingular big-bounce cosmology from spin and torsion Nikodem J. Popławski Department of Physics, Indiana University, Bloomington, IN 22 nd Midwest Relativity Meeting University of Chicago, Chicago, IL

More information

Geometry for Physicists

Geometry for Physicists Hung Nguyen-Schafer Jan-Philip Schmidt Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers 4 i Springer Contents 1 General Basis and Bra-Ket Notation 1 1.1 Introduction to

More information

Non-Abelian and gravitational Chern-Simons densities

Non-Abelian and gravitational Chern-Simons densities Non-Abelian and gravitational Chern-Simons densities Tigran Tchrakian School of Theoretical Physics, Dublin nstitute for Advanced Studies (DAS) and Department of Computer Science, Maynooth University,

More information

The Symmetric Teleparallel Gravity

The Symmetric Teleparallel Gravity The Symmetric Teleparallel Gravity Muzaffer ADAK arxiv:gr-qc/0611077v1 14 Nov 2006 Department of Physics, Faculty of Arts and Sciences, Pamukkale University, 20100 Denizli-TURKEY e-mail: madak@pau.edu.tr

More information

Quintic Quasitopological Gravity

Quintic Quasitopological Gravity Quintic Quasitopological Gravity Luis Guajardo 1 in collaboration with Adolfo Cisterna 2 Mokthar Hassaïne 1 Julio Oliva 3 1 Universidad de Talca 2 Universidad Central de Chile 3 Universidad de Concepción

More information

arxiv:gr-qc/ v1 9 Mar 1993

arxiv:gr-qc/ v1 9 Mar 1993 TORSION AND NONMETRICITY IN SCALAR-TENSOR THEORIES OF GRAVITY BY arxiv:gr-qc/9303013v1 9 Mar 1993 Jean-Paul Berthias and Bahman Shahid-Saless Jet Propulsion Laboratory 301-150 California Institute of Technology

More information

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations Outline General Relativity from Basic Principles General Relativity as an Extended Canonical Gauge Theory Jürgen Struckmeier GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany j.struckmeier@gsi.de,

More information

Relativity Discussion

Relativity Discussion Relativity Discussion 4/19/2007 Jim Emery Einstein and his assistants, Peter Bergmann, and Valentin Bargmann, on there daily walk to the Institute for advanced Study at Princeton. Special Relativity The

More information

Richard A. Mould. Basic Relativity. With 144 Figures. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest

Richard A. Mould. Basic Relativity. With 144 Figures. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Richard A. Mould Basic Relativity With 144 Figures Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Contents Preface vii PARTI 1. Principles of Relativity 3 1.1

More information

th Aegean Summer School / Paros Minás Tsoukalás (CECs-Valdivia)

th Aegean Summer School / Paros Minás Tsoukalás (CECs-Valdivia) 013-09-4 7th Aegean Summer School / Paros Minás Tsoukalás (CECs-Valdivia Higher Dimensional Conformally Invariant theories (work in progress with Ricardo Troncoso 1 Modifying gravity Extra dimensions (string-theory,

More information

Symmetric teleparallel general relativity

Symmetric teleparallel general relativity NCU-CCS-980904 /xxx.lanl.gov/gr-qc/9809049 Symmetric teleparallel general relativity James M. Nester* and Hwei-Jang Yo** Department of Physics and Center for Complex Systems, National Central University,

More information

Cosmic Strings in Dilaton Gravity and in Brans-Dicke Theory

Cosmic Strings in Dilaton Gravity and in Brans-Dicke Theory Bulg. J. Phys. 32 (2005) 257 262 Cosmic Strings in Dilaton Gravity and in Brans-Dicke Theory F. Rahaman, K. Gayen and A. Ghosh Dept. of Mathematics, Jadavpur University, Kolkata-700032, India Received

More information

The Divergence Myth in Gauss-Bonnet Gravity. William O. Straub Pasadena, California November 11, 2016

The Divergence Myth in Gauss-Bonnet Gravity. William O. Straub Pasadena, California November 11, 2016 The Divergence Myth in Gauss-Bonnet Gravity William O. Straub Pasadena, California 91104 November 11, 2016 Abstract In Riemannian geometry there is a unique combination of the Riemann-Christoffel curvature

More information

arxiv: v1 [hep-th] 3 Feb 2016

arxiv: v1 [hep-th] 3 Feb 2016 Noname manuscript No. (will be inserted by the editor) Thermodynamics of Asymptotically Flat Black Holes in Lovelock Background N. Abbasvandi M. J. Soleimani Shahidan Radiman W.A.T. Wan Abdullah G. Gopir

More information

Tensor Calculus, Relativity, and Cosmology

Tensor Calculus, Relativity, and Cosmology Tensor Calculus, Relativity, and Cosmology A First Course by M. Dalarsson Ericsson Research and Development Stockholm, Sweden and N. Dalarsson Royal Institute of Technology Stockholm, Sweden ELSEVIER ACADEMIC

More information

arxiv:gr-qc/ v1 29 Nov 1994

arxiv:gr-qc/ v1 29 Nov 1994 QUANTUM COSMOLOGY FOR A QUADRATIC THEORY OF GRAVITY Luis O. Pimentel 1 and Octavio Obregón 1,2 arxiv:gr-qc/9411072v1 29 Nov 1994 1 Departamento de Física, Universidad Autónoma Metropolitana, Apartado Postal

More information

arxiv:hep-th/ v2 15 Jan 2004

arxiv:hep-th/ v2 15 Jan 2004 hep-th/0311240 A Note on Thermodynamics of Black Holes in Lovelock Gravity arxiv:hep-th/0311240v2 15 Jan 2004 Rong-Gen Cai Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735,

More information

Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity

Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity Eduardo Rodríguez Departamento de Matemática y Física Aplicadas Universidad Católica de la Santísima Concepción Concepción, Chile CosmoConce,

More information

Cosmological Implications of Spinor-Torsion Coupling

Cosmological Implications of Spinor-Torsion Coupling Cosmological Implications of Spinor-Torsion Coupling Nikodem J. Popławski Department of Physics, Indiana University, Bloomington, IN Astrophysics-Relativity Seminar Department of Physics and Astronomy

More information

arxiv:gr-qc/ v1 30 Jan 2006

arxiv:gr-qc/ v1 30 Jan 2006 Torsion induces Gravity Rodrigo Aros Departamento de Ciencias Físicas, Universidad Andrés Bello, Av. Republica 252, Santiago,Chile Mauricio Contreras Facultad de ciencias y tecnología Universidad Adolfo

More information

First structure equation

First structure equation First structure equation Spin connection Let us consider the differential of the vielbvein it is not a Lorentz vector. Introduce the spin connection connection one form The quantity transforms as a vector

More information

Lecture II: Hamiltonian formulation of general relativity

Lecture II: Hamiltonian formulation of general relativity Lecture II: Hamiltonian formulation of general relativity (Courses in canonical gravity) Yaser Tavakoli December 16, 2014 1 Space-time foliation The Hamiltonian formulation of ordinary mechanics is given

More information

Lagrange formulation of the symmetric teleparallel gravity

Lagrange formulation of the symmetric teleparallel gravity Lagrange formulation of the symmetric teleparallel gravity arxiv:gr-qc/0505025v2 10 Nov 2005. Adak Department of Physics, Faculty of Arts and Sciences, Pamukkale University, 20100 Denizli, Turkey madak@pamukkale.edu.tr.

More information

IOSR Journal of Engineering (IOSRJEN) ISSN (e): , ISSN (p): Vol. 04, Issue 09 (September. 2014), V4 PP 32-37

IOSR Journal of Engineering (IOSRJEN) ISSN (e): , ISSN (p): Vol. 04, Issue 09 (September. 2014), V4 PP 32-37 IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 09 (September. 2014), V4 PP 32-37 www.iosrjen.org A Quarter-Symmetric Non-Metric Connection In A Lorentzian

More information

Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]]

Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]] Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv:0909.2159 [gr-qc]] HORIBA INTERNATIONAL CONFERENCE COSMO/CosPA 2010 Hongo campus (Koshiba Hall), The University

More information

Perelman s Dilaton. Annibale Magni (TU-Dortmund) April 26, joint work with M. Caldarelli, G. Catino, Z. Djadly and C.

Perelman s Dilaton. Annibale Magni (TU-Dortmund) April 26, joint work with M. Caldarelli, G. Catino, Z. Djadly and C. Annibale Magni (TU-Dortmund) April 26, 2010 joint work with M. Caldarelli, G. Catino, Z. Djadly and C. Mantegazza Topics. Topics. Fundamentals of the Ricci flow. Topics. Fundamentals of the Ricci flow.

More information

The D 2 Limit of General Relativity

The D 2 Limit of General Relativity arxiv:gr-qc/908004v1 13 Aug 199 The D Limit of General Relativity R.B. Mann and S.F. Ross Department of Physics University of Waterloo Waterloo, Ontario NL 3G1 August 11, 199 WATPHYS TH 9/06 Abstract A

More information

arxiv:hep-th/ v1 31 Jan 2006

arxiv:hep-th/ v1 31 Jan 2006 hep-th/61228 arxiv:hep-th/61228v1 31 Jan 26 BTZ Black Hole with Chern-Simons and Higher Derivative Terms Bindusar Sahoo and Ashoke Sen Harish-Chandra Research Institute Chhatnag Road, Jhusi, Allahabad

More information

On the stabilization of modulus in Randall Sundrum model by R 2 interaction

On the stabilization of modulus in Randall Sundrum model by R 2 interaction PRAMANA c Indian Academy of Sciences Vol. 86, No. 3 journal of March 206 physics pp. 537 543 On the stabilization of modulus in Randall Sundrum model by R 2 interaction A TOFIGHI Department of Nuclear

More information

The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity

The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity G.W. Gibbons and S. Ichinose Laboratoire de Physique Théorique de l Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex

More information

Giinter Ludyk. Einstein in Matrix. Form. Exact Derivation of the Theory of Special. without Tensors. and General Relativity.

Giinter Ludyk. Einstein in Matrix. Form. Exact Derivation of the Theory of Special. without Tensors. and General Relativity. Giinter Ludyk Einstein in Matrix Form Exact Derivation of the Theory of Special and General Relativity without Tensors ^ Springer Contents 1 Special Relativity 1 1.1 Galilei Transformation 1 1.1.1 Relativity

More information

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity

Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Colliding scalar pulses in the Einstein-Gauss-Bonnet gravity Hisaaki Shinkai 1, and Takashi Torii 2, 1 Department of Information Systems, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan

More information

The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity

The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity arxiv:hep-th/9911167v2 6 Feb 2000 The Finiteness Requirement for Six-Dimensional Euclidean Einstein Gravity G.W. Gibbons and S. Ichinose Laboratoire de Physique Théorique de l Ecole Normale Supérieure,

More information

Conserved cosmological structures in the one-loop superstring effective action

Conserved cosmological structures in the one-loop superstring effective action PHYSICAL REVIEW D, VOLUME 6, 0435 Conserved cosmological structures in the one-loop superstring effective action Jai-chan Hwang Department of Astronomy and Atmospheric Sciences, Kyungpook National University,

More information

Numerical Bianchi I solutions in semi-classical gravitation

Numerical Bianchi I solutions in semi-classical gravitation Numerical Bianchi I solutions in semi-classical gravitation Sandro D. P. Vitenti Instituto de Física, UnB Campus Universitário Darcy Ribeiro Cxp 4455, 7919-97, Brasília DF Brasil arxiv:gr-qc/64127 v2 15

More information

p-adic AND ADELIC GRAVITY AND COSMOLOGY

p-adic AND ADELIC GRAVITY AND COSMOLOGY p-adic AND ADELIC GRAVITY AND COSMOLOGY Branko Dragovich http://www.phy.bg.ac.yu/ dragovich dragovich@ipb.ac.rs Institute of Physics University of Belgrade Belgrade, Serbia ISAAC2013: 9th International

More information

Limite di Campo Debole per una Gravitazione del Quarto Ordine

Limite di Campo Debole per una Gravitazione del Quarto Ordine Gravitazione del Quarto Ordine A. Stabile 1, S. Capozziello 2 1 Dipartimento di Ingegneria Universita' del Sannio, Benevento 2 Dipartimento di Scienze Fisiche Universita' Federico II, Napoli SOCIETÀ ITALIANA

More information

Towards a manifestly diffeomorphism invariant Exact Renormalization Group

Towards a manifestly diffeomorphism invariant Exact Renormalization Group Towards a manifestly diffeomorphism invariant Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for UK QFT-V, University of Nottingham,

More information

Thermodynamics in Modified Gravity Theories Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]]

Thermodynamics in Modified Gravity Theories Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]] Thermodynamics in Modified Gravity Theories Reference: Physics Letters B 688, 101 (2010) [e-print arxiv:0909.2159 [gr-qc]] 2nd International Workshop on Dark Matter, Dark Energy and Matter-antimatter Asymmetry

More information

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 BRX TH-386 Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 S. Deser Department of Physics Brandeis University, Waltham, MA 02254, USA The usual equivalence between the Palatini

More information

Static wormhole solution for higher-dimensional gravity in vacuum. Abstract

Static wormhole solution for higher-dimensional gravity in vacuum. Abstract Static wormhole solution for higher-dimensional gravity in vacuum Gustavo Dotti 1, Julio Oliva 2,3, and Ricardo Troncoso 3 1 Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba,

More information

On the Geometry of Planar Domain Walls. F. M. Paiva and Anzhong Wang y. Abstract. The Geometry of planar domain walls is studied.

On the Geometry of Planar Domain Walls. F. M. Paiva and Anzhong Wang y. Abstract. The Geometry of planar domain walls is studied. On the Geometry of Planar Domain Walls F. M. Paiva and Anzhong Wang y Departmento de Astrofsica, Observatorio Nacional { CNPq, Rua General Jose Cristino 77, 091-400 Rio de Janeiro { RJ, Brazil Abstract

More information

On Torsion Fields in Higher Derivative Quantum Gravity

On Torsion Fields in Higher Derivative Quantum Gravity Annales de la Fondation Louis de Broglie, Volume 3 no -3, 007 33 On Torsion Fields in Higher Derivative Quantum Gravity S.I. Kruglov University of Toronto at Scarborough, Physical and Environmental Sciences

More information

Representation theory and the X-ray transform

Representation theory and the X-ray transform AMSI Summer School on Integral Geometry and Imaging at the University of New England, Lecture 1 p. 1/18 Representation theory and the X-ray transform Differential geometry on real and complex projective

More information

Gravitation, cosmology and space-time torsion

Gravitation, cosmology and space-time torsion Annales de la Fondation Louis de Broglie, Volume 32 no 2-3, 2007 253 Gravitation, cosmology and space-time torsion A.V. Minkevich Department of Theoretical Physics, Belarussian State University, Minsk,

More information

Chapter 2 Lorentz Connections and Inertia

Chapter 2 Lorentz Connections and Inertia Chapter 2 Lorentz Connections and Inertia In Special Relativity, Lorentz connections represent inertial effects present in non-inertial frames. In these frames, any relativistic equation acquires a manifestly

More information

Riemannian Curvature Functionals: Lecture I

Riemannian Curvature Functionals: Lecture I Riemannian Curvature Functionals: Lecture I Jeff Viaclovsky Park City athematics Institute July 16, 2013 Overview of lectures The goal of these lectures is to gain an understanding of critical points of

More information

LANL xxx E-print archive No. gr-qc/ IS THE PRINCIPLE OF EQUIVALENCE A PRINCIPLE? Bozhidar Z. Iliev

LANL xxx E-print archive No. gr-qc/ IS THE PRINCIPLE OF EQUIVALENCE A PRINCIPLE? Bozhidar Z. Iliev LANL xxx E-print archive No. gr-qc/9806062 IS THE PRINCIPLE OF EQUIVALENCE A PRINCIPLE? arxiv:gr-qc/9806062v1 13 Jun 1998 Bozhidar Z. Iliev Ended: December 30, 1995 Revised: April 19, May 2, October 24,

More information

THE MAXWELL LAGRANGIAN IN PURELY AFFINE GRAVITY

THE MAXWELL LAGRANGIAN IN PURELY AFFINE GRAVITY International Journal of Modern Physics A Vol. 23, Nos. 3 & 4 (2008) 567 579 DOI: 10.1142/S0217751X08039578 c World Scientific Publishing Co. THE MAXWELL LAGRANGIAN IN PURELY AFFINE GRAVITY Nikodem J.

More information

Classical differential geometry of two-dimensional surfaces

Classical differential geometry of two-dimensional surfaces Classical differential geometry of two-dimensional surfaces 1 Basic definitions This section gives an overview of the basic notions of differential geometry for twodimensional surfaces. It follows mainly

More information

arxiv: v2 [gr-qc] 1 Oct 2009

arxiv: v2 [gr-qc] 1 Oct 2009 On the cosmological effects of the Weyssenhoff spinning fluid in the Einstein-Cartan framework Guilherme de Berredo-Peixoto arxiv:0907.1701v2 [gr-qc] 1 Oct 2009 Departamento de Física, ICE, Universidade

More information

arxiv:hep-th/ v1 11 Mar 1995

arxiv:hep-th/ v1 11 Mar 1995 New Action Principle for Classical Particle Trajectories in Spaces with Torsion arxiv:hep-th/9503074v1 11 Mar 1995 P. Fiziev and H. Kleinert Institut für Theoretische Physik, Freie Universität Berlin Arnimallee

More information

Nonexistence theorems for traversable wormholes. Abstract

Nonexistence theorems for traversable wormholes. Abstract Nonexistence theorems for traversable wormholes Alberto Saa Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany and Departamento de Matemática Aplicada, IMECC

More information

Gauge Theory of Gravitation: Electro-Gravity Mixing

Gauge Theory of Gravitation: Electro-Gravity Mixing Gauge Theory of Gravitation: Electro-Gravity Mixing E. Sánchez-Sastre 1,2, V. Aldaya 1,3 1 Instituto de Astrofisica de Andalucía, Granada, Spain 2 Email: sastre@iaa.es, es-sastre@hotmail.com 3 Email: valdaya@iaa.es

More information

Generalized Korn s inequality and conformal Killing vectors

Generalized Korn s inequality and conformal Killing vectors Generalized Korn s inequality and conformal Killing vectors arxiv:gr-qc/0505022v1 4 May 2005 Sergio Dain Max-Planck-Institut für Gravitationsphysik Am Mühlenberg 1 14476 Golm Germany February 4, 2008 Abstract

More information

As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing).

As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing). An Interlude on Curvature and Hermitian Yang Mills As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing). Suppose we wanted

More information

Einstein-Cartan Gravity in Particle Physics and Cosmology

Einstein-Cartan Gravity in Particle Physics and Cosmology Einstein-Cartan Gravity in Particle Physics and Cosmology Nikodem J. Popławski Department of Mathematics and Physics University of New Haven West Haven, CT, USA Department of Physics Seminar Indian Institute

More information

A NOTE ON FISCHER-MARSDEN S CONJECTURE

A NOTE ON FISCHER-MARSDEN S CONJECTURE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 3, March 1997, Pages 901 905 S 0002-9939(97)03635-6 A NOTE ON FISCHER-MARSDEN S CONJECTURE YING SHEN (Communicated by Peter Li) Abstract.

More information

An Introduction to Riemann-Finsler Geometry

An Introduction to Riemann-Finsler Geometry D. Bao S.-S. Chern Z. Shen An Introduction to Riemann-Finsler Geometry With 20 Illustrations Springer Contents Preface Acknowledgments vn xiii PART ONE Finsler Manifolds and Their Curvature CHAPTER 1 Finsler

More information

THE HYDRODYNAMICS OF ATOMS OF SPACETIME: GRAVITATIONAL FIELD EQUATION IS NAVIER STOKES EQUATION

THE HYDRODYNAMICS OF ATOMS OF SPACETIME: GRAVITATIONAL FIELD EQUATION IS NAVIER STOKES EQUATION International Journal of Modern Physics D Vol. 20, No. 14 (2011) 2817 2822 c World Scientific Publishing Company DOI: 10.1142/S0218271811020603 THE HYDRODYNAMICS OF ATOMS OF SPACETIME: GRAVITATIONAL FIELD

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title A doubled discretization of Abelian Chern-Simons theory Author(s) Adams, David H. Citation Adams, D.

More information

Geometrical Behaviuors of LRS Bianchi Type-I Cosmological Model

Geometrical Behaviuors of LRS Bianchi Type-I Cosmological Model EJTP 6, No. 22 (2009) 79 84 Electronic Journal of Theoretical Physics Geometrical Behaviuors of LRS Bianchi Type-I Cosmological Model Hassan Amirhashchi 1, Hishamuddin Zainuddin 2 and Hamid Nil Saz Dezfouli

More information

New cosmological solutions in Nonlocal Modified Gravity. Jelena Stanković

New cosmological solutions in Nonlocal Modified Gravity. Jelena Stanković Motivation Large observational findings: High orbital speeds of galaxies in clusters. (F.Zwicky, 1933) High orbital speeds of stars in spiral galaxies. (Vera Rubin, at the end of 1960es) Big Bang Accelerated

More information

The Covariant W 3 Action

The Covariant W 3 Action THU-91/18 10/91 arxiv:hep-th/9110073v1 30 Oct 1991 The Covariant W 3 Action Jan de Boer and Jacob Goeree Institute for Theoretical Physics University of Utrecht Princetonplein 5 P.O. Box 80.006 3508 TA

More information

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are. GRAVITATION F0 S. G. RAJEEV Lecture. Maxwell s Equations in Curved Space-Time.. Recall that Maxwell equations in Lorentz covariant form are. µ F µν = j ν, F µν = µ A ν ν A µ... They follow from the variational

More information

Positive mass theorem for the Paneitz-Branson operator

Positive mass theorem for the Paneitz-Branson operator Positive mass theorem for the Paneitz-Branson operator Emmanuel Humbert, Simon Raulot To cite this version: Emmanuel Humbert, Simon Raulot. Positive mass theorem for the Paneitz-Branson operator. Calculus

More information

arxiv:gr-qc/ v1 28 Sep 1993

arxiv:gr-qc/ v1 28 Sep 1993 IFUSP/P-1072 September, 1993 Einstein-Cartan theory of gravity revisited Alberto Saa Instituto de Física arxiv:gr-qc/9309027v1 28 Sep 1993 Universidade de São Paulo, Caixa Postal 20516 01498-970 São Paulo,

More information

PoS(WC2004)028. Torsion as Alternative to Curvature in the Description of Gravitation

PoS(WC2004)028. Torsion as Alternative to Curvature in the Description of Gravitation in the Description of Gravitation Universidade de Brasília Brasília DF, Brazil E-mail: andrade@fis.unb.br H. I. Arcos and J. G. Pereira Instituto de Física Teórica, UNESP São Paulo SP, Brazil E-mail: hiarcos@ift.unesp.br,

More information

arxiv:gr-qc/ v1 3 Sep 1996

arxiv:gr-qc/ v1 3 Sep 1996 Propagating torsion from first principles Alberto Saa Departamento de Matemática Aplicada IMECC UNICAMP, C.P. 6065, 13081-970 Campinas, SP, Brazil arxiv:gr-qc/9609011v1 3 Sep 1996 Abstract A propagating

More information

Holographic c-theorems and higher derivative gravity

Holographic c-theorems and higher derivative gravity Holographic c-theorems and higher derivative gravity James Liu University of Michigan 1 May 2011, W. Sabra and Z. Zhao, arxiv:1012.3382 Great Lakes Strings 2011 The Zamolodchikov c-theorem In two dimensions,

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

Fourth Order Ricci Gravity

Fourth Order Ricci Gravity Fourth Order Ricci Gravity A. Borowiec a, M. Francaviglia b and V.I. Smirichinski c a Institute of Theoretical Physics, Wroc law University, Poland b Departimento di Matematica, Unversitá di Torino, Italy

More information

THE GEOMETRY OF THE TORUS UNIVERSE

THE GEOMETRY OF THE TORUS UNIVERSE International Journal of Modern Physics D Vol. 16, No. 4 (2007) 681 686 c World Scientific Publishing Company THE GEOMETRY OF THE TORUS UNIVERSE R. MURDZEK Physics Department, Al. I. Cuza University, Iassy,

More information

221A Miscellaneous Notes Continuity Equation

221A Miscellaneous Notes Continuity Equation 221A Miscellaneous Notes Continuity Equation 1 The Continuity Equation As I received questions about the midterm problems, I realized that some of you have a conceptual gap about the continuity equation.

More information

arxiv: v1 [gr-qc] 22 Aug 2016

arxiv: v1 [gr-qc] 22 Aug 2016 Black hole at Lovelock gravity with anisotropic fluid. Rodrigo Aros, Danilo Diaz, and Alejandra Montecinos Departamento de Ciencias Físicas, Universidad Andrés Bello, Av. República 252, Santiago,Chile

More information

Diffusive DE & DM. David Benisty Eduardo Guendelman

Diffusive DE & DM. David Benisty Eduardo Guendelman Diffusive DE & DM David Benisty Eduardo Guendelman arxiv:1710.10588 Int.J.Mod.Phys. D26 (2017) no.12, 1743021 DOI: 10.1142/S0218271817430210 Eur.Phys.J. C77 (2017) no.6, 396 DOI: 10.1140/epjc/s10052-017-4939-x

More information

How to recognise a conformally Einstein metric?

How to recognise a conformally Einstein metric? How to recognise a conformally Einstein metric? Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge MD, Paul Tod arxiv:1304.7772., Comm. Math. Phys. (2014).

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013

Theory. V H Satheeshkumar. XXVII Texas Symposium, Dallas, TX December 8 13, 2013 Department of Physics Baylor University Waco, TX 76798-7316, based on my paper with J Greenwald, J Lenells and A Wang Phys. Rev. D 88 (2013) 024044 with XXVII Texas Symposium, Dallas, TX December 8 13,

More information

The Existence of Godel, Einstein and de Sitter Universes

The Existence of Godel, Einstein and de Sitter Universes The Existence of Godel, Einstein and de Sitter Universes Clifton, T; Barrow, JD 2005 American Physical Society This is a pre-copyedited, author-produced PDF of an article accepted for publication in Physical

More information

ON VARIATION OF THE METRIC TENSOR IN THE ACTION OF A PHYSICAL FIELD

ON VARIATION OF THE METRIC TENSOR IN THE ACTION OF A PHYSICAL FIELD ON VARIATION OF THE METRIC TENSOR IN THE ACTION OF A PHYSICAL FIELD L.D. Raigorodski Abstract The application of the variations of the metric tensor in action integrals of physical fields is examined.

More information

Dirac Equation with Self Interaction Induced by Torsion

Dirac Equation with Self Interaction Induced by Torsion Advanced Studies in Theoretical Physics Vol. 9, 2015, no. 12, 587-594 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2015.5773 Dirac Equation with Self Interaction Induced by Torsion Antonio

More information

Holographic Special Relativity:

Holographic Special Relativity: Holographic Special Relativity: Observer Space from Conformal Geometry Derek K. Wise University of Erlangen Based on 1305.3258 International Loop Quantum Gravity Seminar 15 October 2013 1 Holographic special

More information

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields Modern Geometric Structures and Fields S. P. Novikov I.A.TaJmanov Translated by Dmitry Chibisov Graduate Studies in Mathematics Volume 71 American Mathematical Society Providence, Rhode Island Preface

More information

Glimpses of Double Field Theory Geometry

Glimpses of Double Field Theory Geometry Glimpses of Double Field Theory Geometry Strings 2012, Munich Barton Zwiebach, MIT 25 July 2012 1. Doubling coordinates. Viewpoints on the strong constraint. Comparison with Generalized Geometry. 2. Bosonic

More information

Spin connection resonance in gravitational general relativity

Spin connection resonance in gravitational general relativity Chapter 10 Spin connection resonance in gravitational general relativity Abstract (Paper 64) by Myron W. Evans Alpha Institute for Advanced Study (AIAS). (emyrone@aol.com, www.aias.us, www.atomicprecision.com)

More information

MILNOR SEMINAR: DIFFERENTIAL FORMS AND CHERN CLASSES

MILNOR SEMINAR: DIFFERENTIAL FORMS AND CHERN CLASSES MILNOR SEMINAR: DIFFERENTIAL FORMS AND CHERN CLASSES NILAY KUMAR In these lectures I want to introduce the Chern-Weil approach to characteristic classes on manifolds, and in particular, the Chern classes.

More information

Kaluza Klein reduction of a quadratic curvature model

Kaluza Klein reduction of a quadratic curvature model Gen Relativ Gravit 2013 45:359 371 DOI 10.1007/s10714-012-1476-7 RESEARCH ARTICLE Kaluza Klein reduction of a quadratic curvature model Sibel Başkal Halil Kuyrukcu Received: 9 April 2012 / Accepted: 11

More information

PH5011 General Relativity

PH5011 General Relativity PH5011 General Relativity Martinmas 2012/2013 Dr HongSheng Zhao shortened/expanded from notes of MD hz4@st-andrews.ac.uk 0 General issues 0.1 Summation convention dimension of coordinate space pairwise

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Structure of black holes in theories beyond general relativity

Structure of black holes in theories beyond general relativity Structure of black holes in theories beyond general relativity Weiming Wayne Zhao LIGO SURF Project Caltech TAPIR August 18, 2016 Wayne Zhao (LIGO SURF) Structure of BHs beyond GR August 18, 2016 1 / 16

More information

An exotic class of Kaluza Klein models

An exotic class of Kaluza Klein models An exotic class of Kaluza Klein models arxiv:hep-th/9910093v1 1 Oct 1999 Matt Visser Physics Department, University of Southern California, Los Angeles, CA 90080-0484, USA 1 September 1985; L A TEX-ed

More information

FOUR-BY-FOUR PFAFFIANS. This paper is dedicated to Paolo Valabrega on his sixtieth birthday.

FOUR-BY-FOUR PFAFFIANS. This paper is dedicated to Paolo Valabrega on his sixtieth birthday. FOUR-BY-FOUR PFAFFIANS N. MOHAN KUMAR - A. P. RAO - G. V. RAVINDRA This paper is dedicated to Paolo Valabrega on his sixtieth birthday. Abstract. This paper shows that the general hypersurface of degree

More information

Charge, geometry, and effective mass in the Kerr- Newman solution to the Einstein field equations

Charge, geometry, and effective mass in the Kerr- Newman solution to the Einstein field equations Charge, geometry, and effective mass in the Kerr- Newman solution to the Einstein field equations Gerald E. Marsh Argonne National Laboratory (Ret) 5433 East View Park Chicago, IL 60615 E-mail: gemarsh@uchicago.edu

More information

Riemannian geometry - Wikipedia, the free encyclopedia

Riemannian geometry - Wikipedia, the free encyclopedia Page 1 of 5 Riemannian geometry From Wikipedia, the free encyclopedia Elliptic geometry is also sometimes called "Riemannian geometry". Riemannian geometry is the branch of differential geometry that studies

More information

Week 6: Differential geometry I

Week 6: Differential geometry I Week 6: Differential geometry I Tensor algebra Covariant and contravariant tensors Consider two n dimensional coordinate systems x and x and assume that we can express the x i as functions of the x i,

More information