Lattice rules and sequences for non periodic smooth integrands

Size: px
Start display at page:

Download "Lattice rules and sequences for non periodic smooth integrands"

Transcription

1 Lattice rules and sequences for non periodic smooth integrands Department of Computer Science KU Leuven, Belgium Joint work with Josef Dick (UNSW) and Friedrich Pillichshammer (Linz) MCQMC 2012 February 13 17, 2012 Sydney, NSW Australia

2 Outline 1 Lattice rules and sequences 2 Basis functions 3 Method I: Symmetrization 4 Method II: Tent transform 5 Numerical examples

3 Multivariate integration Multivariate integration by lattice rules Approximate the s-dimensional integral I(f ) := f (x) dx [0,1] s by an N -point (rank-1) lattice rule Q(f ; g, N ) := 1 N N 1 n=0 with good generating vector g Z s N. f ({ gn }) N Aim: Non periodic functions and lattice rules. Result: Function space H(K cos ).

4 Preliminaries Imagery of good lattice rules and sequences fixed lattice rules (a) rank-1 rule (b) Fibonacci lattice (c) rank-2 copy rule lattice sequence in base 3 (d) 3 3 seq points (e) 64 seq points (f) 3 4 seq points

5 Preliminaries Error of integration for lattice rule For f with Fourier series representation f (x) = h Z s ˆf (h) exp(2πi h x), ˆf (h) = [0,1] s f (x) exp( 2πi h x) dx, we have Q(f ; g, N ) I(f ) = 1 ˆf (h) N h Z s = 0 h Z s h g 0 (mod N ) N 1 n=0 ˆf (h). exp(2πi (h g)n/n ) ˆf (0) The error is given as a sum, h 0, over the dual lattice: L := {h Z s : h g 0 (mod N )} Z s. See Sloan & Joe (1994), Sloan & Kachoyan (1987), Niederreiter (1992).

6 The classical Korobov space A reproducing kernel Hilbert space... Traditional setting for lattice rules: Korobov space. Absolutely convergent Fourier series representation f (x) = h Z s ˆf (h) exp(2πi h x). Then f H(K α ), for α > 1/2, if with r α (h) := f 2 K α := h Z s ˆf (h) 2 r α (h) < { s 1, if hj = 0, r α (h j ), r α (h j ) := h j 2α, otherwise. j=1

7 The classical Korobov space... and its worst case error The worst case error of QMC integration using a point set P = {x 0, x 1,..., x N 1 } is defined as e(h(k ); P) := sup f H(K ) f K 1 f (x) dx 1 [0,1] s N N 1 n=0 f (x n ). For Korobov space using a lattice rule P this can be written e(h(k α ); P) 2 = r α (h). 0 h Z s h g 0 (mod N ) Construction of rules with e(h(k α ); P) = O(N α ) using CBC. (Korobov, Kuo, Sloan, Joe, Dick,... )

8 The classical Korobov space So all is nice? Are your functions periodic? Thought so... Classical solution: randomly shifted spaces (create shift-invariant kernel); or periodization and symmetrization; or tent transform (bakers transform). (Kuo, Sloan, Joe, Hickernell (2002), Zaremba, Korobov,... )

9 Building reproducing kernels Kernels build from orthogonal bases If {ϕ k (x)} k is an ONB w.r.t. a specified inner product, then K (x, y) = k ϕ k (x) ϕ k (y), (*) conditions apply to make it a RKHS. E.g. could take {φ k (x)} k is an ONB w.r.t. L 2 ([0, 1]) and take K α (x, y) = k r α (k) φ k (x) φ k (y), then (f, g) Kα = k f (k) ĝ(k), with f (k) = f (x) φ r α (k) k (x) dx. [0,1]

10 Korobov space Korobov space What is the basis of the Korobov space of real functions? K (x, y) = h Z = 1 + = h Z k=1 exp(2πi h(x y)) h 2α exp(2πi hx) exp(2πi hy) h α h α 2 cos(2πkx) cos(2πky) h 2α + k=1 So we have, w.r.t. L 2 ([0, 1]): { } { } { } 1 2 cos(2πkx) 2 sin(2πkx) k=1 k=1 2 sin(2πkx) sin(2πky) h 2α

11 Korobov space Basis of Korobov space (periodic)

12 Korobov space A half-period cosine space Suppose we want to take the L 2 ([0, 1]) ONB: { } { } 1 2 cos(πkx) and define f (k) := [0,1] f (x) ( 2) k 0 where k 0 counts the non-zero entries, i.e., k 0 is 1 if k 0 and 0 otherwise. Why? Well, for starters: x = π 2 k=1 k odd k=1 cos(πkx) dx, cos(πkx) k 2.

13 Half-period cosine space Basis of half-period cosine space (non periodic)

14 Half-period cosine space Half-period cosine RKHS Define Set and 1 if h = 0, r α,β (h) := h/2 2α if h is even, h/2 2β if h is odd, K cos (x, y) = 1 + f 2 K cos = k=0 r α,β (k) 2 cos(πkx) cos(πky), k=1 f (k) 2 r α,β (k) = 2 h f ( h ) 2 0 r α,β (h). h Z

15 Half-period cosine space Further motivation for the cosine space... The unanchored Sobolev space of smoothness a = 1 has kernel K a (x, y) = 1 + B 2 ( x y ) + (x 1 2 )(y 1 2 ) 1 2 cos(πkx) cos(πky) = 1 + π 2 k 2. k=1 Compare with, taking α = β in r α,β, for cos kernel K cos (x, y) = 1 + k=1 2α 2 cos(πkx) cos(πky) 2 k 2α. Now take α = 1 and imagine product weights on K cos of the form γ j (2π) 2...

16 Half-period cosine space In pictures... = K a=1 K cos,γ = K a=1 K cos,γ

17 Definition Method I: The symmetrization operation Define sym u (x) = (y 1,..., y s ) with y j = We define the symmetrized lattice rule { 1 x j if j u, x j if j u. Q sym (f ; g, N ) := 1 N 1 2 s N n=0 u 1:s f ( ({ ng })) sym u. N Note that for k Z and x R: { 2 cos(2πk x) if k = 2k is even, cos(πkx) + cos(πk(1 x)) = 0 if k is odd. (Use of symmetrization: Korobov (1963), Genz & Malik (1983))

18 Analysis Error in cos space with symmetrization Proposition Let f be given as f (x) = f (h) ( 2) k 0 k {0,1,...} s Then Q sym (f ; g, N ) f (x) dx = [0,1] s s cos(πk j x j ). j=1 0 h Z s h g 0 (mod N ) ( 2) h 0 f ( 2h ).

19 Analysis Worst case error in cos space with symmetrization Worst case error is the same as in the Korobov space with smoothness α. The parameter β does not matter. Corollary e 2 (H(K cos ); P sym (g, N )) = e 2 (H(K α ); P(g, N )) = r α,β (2h). h Z s \{0} h g 0 (mod N ) We can construct lattice rules by (fast) CBC such that, δ > 0, e(h(k cos ); P sym (g, N )) = e(h(k α ); P(g, N )) C α,s,δ N α+δ C α,s,δ 2 sα M α+δ.

20 Method II: The tent transform Define φ(x) := 1 2x 1, and the tent transformed lattice point set { ({ ng }) } P φ (g, N ) := φ : 0 n < N. N Used by Hickernell (2002) for randomly shifted unanchored Sobolev spaces. NB: Here we don t shift! Note that for h Z and x R: cos(πhφ(x)) = cos(2πhx).

21 Error in cos space with tent transform Proposition Let f be given as f (x) = f (k)( 2) k 0 k {0,1,...} s s cos(πk j x j ), j=1 then the error for numerical integration using the tent transformed lattice point set P φ (g, N ) is given by Q φ (f ; g, N ) f (x) dx = [0,1] s 0 h Z s h g 0 (mod N ) ( 2) h 0 f ( h ).

22 Worst case error in the cos space with tent transform Corollary e 2 (H(K cos ); P φ (g, N )) = 0 h Z s h g 0 (mod N ) r α,β (h) and for α := min(α, β) and β := max(α, β) we have e(h(k α ); P(g, N )) e(h(k cos ); P φ (g, N )) 2 sβ e(h(k α ); P(g, N )). We can construct lattice rules by (fast) CBC such that, δ > 0, e(h(k cos ); P φ (g, N )) C α,β,s,δ N α +δ.

23 Unweighted Consider the function s f (x) = in 5 dimensions: 10 4 j=1 ( 1 + ( )) x2 j 2xj 5 + xj relative error lat latper latsym latbak number of function evaluations

24 Unweighted Consider the function s f (x) = in 10 dimensions: 10 4 j=1 ( 1 + ( )) x2 j 2xj 5 + xj relative error lat latper latsym latbak number of function evaluations

25 Weighted With weights γ j = 0.9 j : s ( ( )) f (x) = j x2 j 2xj 5 + xj 6 in 5 dimensions: 10 4 j= relative error lat latper latsym latbak Lattice rules and sequences for non periodic smooth number integrands of function evaluations

26 Weighted With weights γ j = 0.9 j : s ( ( )) f (x) = j x2 j 2xj 5 + xj 6 j=1 in 10 dimensions: relative error lat latper latsym latbak Lattice rules and sequences for non periodic smooth number integrands of function evaluations

27 Thank you for your attention.

Integration of permutation-invariant. functions

Integration of permutation-invariant. functions permutation-invariant Markus Weimar Philipps-University Marburg Joint work with Dirk Nuyens and Gowri Suryanarayana (KU Leuven, Belgium) MCQMC2014, Leuven April 06-11, 2014 un Outline Permutation-invariant

More information

A Belgian view on lattice rules

A Belgian view on lattice rules A Belgian view on lattice rules Ronald Cools Dept. of Computer Science, KU Leuven Linz, Austria, October 14 18, 2013 Atomium Brussels built in 1958 height 103m figure = 2e coin 5 10 6 in circulation Body

More information

Tutorial on quasi-monte Carlo methods

Tutorial on quasi-monte Carlo methods Tutorial on quasi-monte Carlo methods Josef Dick School of Mathematics and Statistics, UNSW, Sydney, Australia josef.dick@unsw.edu.au Comparison: MCMC, MC, QMC Roughly speaking: Markov chain Monte Carlo

More information

New Multilevel Algorithms Based on Quasi-Monte Carlo Point Sets

New Multilevel Algorithms Based on Quasi-Monte Carlo Point Sets New Multilevel Based on Quasi-Monte Carlo Point Sets Michael Gnewuch Institut für Informatik Christian-Albrechts-Universität Kiel 1 February 13, 2012 Based on Joint Work with Jan Baldeaux (UTS Sydney)

More information

Quasi-Monte Carlo Methods for Applications in Statistics

Quasi-Monte Carlo Methods for Applications in Statistics Quasi-Monte Carlo Methods for Applications in Statistics Weights for QMC in Statistics Vasile Sinescu (UNSW) Weights for QMC in Statistics MCQMC February 2012 1 / 24 Quasi-Monte Carlo Methods for Applications

More information

arxiv: v2 [math.na] 15 Aug 2018

arxiv: v2 [math.na] 15 Aug 2018 Noname manuscript No. (will be inserted by the editor) Lattice rules in non-periodic subspaces of Sobolev spaces Takashi Goda Kosuke Suzuki Takehito Yoshiki arxiv:72.2572v2 [math.na] 5 Aug 28 Received:

More information

Application of QMC methods to PDEs with random coefficients

Application of QMC methods to PDEs with random coefficients Application of QMC methods to PDEs with random coefficients a survey of analysis and implementation Frances Kuo f.kuo@unsw.edu.au University of New South Wales, Sydney, Australia joint work with Ivan Graham

More information

Optimal Randomized Algorithms for Integration on Function Spaces with underlying ANOVA decomposition

Optimal Randomized Algorithms for Integration on Function Spaces with underlying ANOVA decomposition Optimal Randomized on Function Spaces with underlying ANOVA decomposition Michael Gnewuch 1 University of Kaiserslautern, Germany October 16, 2013 Based on Joint Work with Jan Baldeaux (UTS Sydney) & Josef

More information

Ian Sloan and Lattice Rules

Ian Sloan and Lattice Rules www.oeaw.ac.at Ian Sloan and Lattice Rules P. Kritzer, H. Niederreiter, F. Pillichshammer RICAM-Report 2016-34 www.ricam.oeaw.ac.at Ian Sloan and Lattice Rules Peter Kritzer, Harald Niederreiter, Friedrich

More information

APPLIED MATHEMATICS REPORT AMR04/2 DIAPHONY, DISCREPANCY, SPECTRAL TEST AND WORST-CASE ERROR. J. Dick and F. Pillichshammer

APPLIED MATHEMATICS REPORT AMR04/2 DIAPHONY, DISCREPANCY, SPECTRAL TEST AND WORST-CASE ERROR. J. Dick and F. Pillichshammer APPLIED MATHEMATICS REPORT AMR4/2 DIAPHONY, DISCREPANCY, SPECTRAL TEST AND WORST-CASE ERROR J. Dick and F. Pillichshammer January, 24 Diaphony, discrepancy, spectral test and worst-case error Josef Dick

More information

Quadrature using sparse grids on products of spheres

Quadrature using sparse grids on products of spheres Quadrature using sparse grids on products of spheres Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at ANZIAM NSW/ACT Annual Meeting, Batemans Bay. Joint

More information

Exponential Convergence and Tractability of Multivariate Integration for Korobov Spaces

Exponential Convergence and Tractability of Multivariate Integration for Korobov Spaces Exponential Convergence and Tractability of Multivariate Integration for Korobov Spaces Josef Dick, Gerhard Larcher, Friedrich Pillichshammer and Henryk Woźniakowski March 12, 2010 Abstract In this paper

More information

Quasi-Monte Carlo integration over the Euclidean space and applications

Quasi-Monte Carlo integration over the Euclidean space and applications Quasi-Monte Carlo integration over the Euclidean space and applications f.kuo@unsw.edu.au University of New South Wales, Sydney, Australia joint work with James Nichols (UNSW) Journal of Complexity 30

More information

Digital lattice rules

Digital lattice rules Digital lattice rules Multivariate integration and discrepancy estimates A thesis presented to The University of New South Wales in fulfilment of the thesis requirement for the degree of Doctor of Philosophy

More information

APPLIED MATHEMATICS REPORT AMR04/16 FINITE-ORDER WEIGHTS IMPLY TRACTABILITY OF MULTIVARIATE INTEGRATION. I.H. Sloan, X. Wang and H.

APPLIED MATHEMATICS REPORT AMR04/16 FINITE-ORDER WEIGHTS IMPLY TRACTABILITY OF MULTIVARIATE INTEGRATION. I.H. Sloan, X. Wang and H. APPLIED MATHEMATICS REPORT AMR04/16 FINITE-ORDER WEIGHTS IMPLY TRACTABILITY OF MULTIVARIATE INTEGRATION I.H. Sloan, X. Wang and H. Wozniakowski Published in Journal of Complexity, Volume 20, Number 1,

More information

Quadrature using sparse grids on products of spheres

Quadrature using sparse grids on products of spheres Quadrature using sparse grids on products of spheres Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at 3rd Workshop on High-Dimensional Approximation UNSW,

More information

Hot new directions for QMC research in step with applications

Hot new directions for QMC research in step with applications Hot new directions for QMC research in step with applications Frances Kuo f.kuo@unsw.edu.au University of New South Wales, Sydney, Australia Frances Kuo @ UNSW Australia p.1 Outline Motivating example

More information

On the existence of higher order polynomial. lattices with large figure of merit ϱ α.

On the existence of higher order polynomial. lattices with large figure of merit ϱ α. On the existence of higher order polynomial lattices with large figure of merit Josef Dick a, Peter Kritzer b, Friedrich Pillichshammer c, Wolfgang Ch. Schmid b, a School of Mathematics, University of

More information

Adapting quasi-monte Carlo methods to simulation problems in weighted Korobov spaces

Adapting quasi-monte Carlo methods to simulation problems in weighted Korobov spaces Adapting quasi-monte Carlo methods to simulation problems in weighted Korobov spaces Christian Irrgeher joint work with G. Leobacher RICAM Special Semester Workshop 1 Uniform distribution and quasi-monte

More information

Part III. Quasi Monte Carlo methods 146/349

Part III. Quasi Monte Carlo methods 146/349 Part III Quasi Monte Carlo methods 46/349 Outline Quasi Monte Carlo methods 47/349 Quasi Monte Carlo methods Let y = (y,...,y N ) be a vector of independent uniform random variables in Γ = [0,] N, u(y)

More information

Reliable Error Estimation for Quasi-Monte Carlo Methods

Reliable Error Estimation for Quasi-Monte Carlo Methods Reliable Error Estimation for Quasi-Monte Carlo Methods Department of Applied Mathematics, Joint work with Fred J. Hickernell July 8, 2014 Outline 1 Motivation Reasons Problem 2 New approach Set-up of

More information

Construction Algorithms for Higher Order Polynomial Lattice Rules

Construction Algorithms for Higher Order Polynomial Lattice Rules Construction Algorithms for Higher Order Polynomial Lattice Rules Jan Baldeaux, Josef Dick, Julia Greslehner and Friedrich Pillichshammer Dedicated to Gerhard Larcher on the occasion of his 50th birthday

More information

Fast evaluation of mixed derivatives and calculation of optimal weights for integration. Hernan Leovey

Fast evaluation of mixed derivatives and calculation of optimal weights for integration. Hernan Leovey Fast evaluation of mixed derivatives and calculation of optimal weights for integration Humboldt Universität zu Berlin 02.14.2012 MCQMC2012 Tenth International Conference on Monte Carlo and Quasi Monte

More information

arxiv: v2 [math.na] 18 May 2011

arxiv: v2 [math.na] 18 May 2011 Efficient calculation of the worst-case error and (fast component-by-component construction of higher order polynomial lattice rules arxiv:1105.2599v2 [math.na] 18 May 2011 Jan Baldeaux Josef Dick Gunther

More information

Low Discrepancy Sequences in High Dimensions: How Well Are Their Projections Distributed?

Low Discrepancy Sequences in High Dimensions: How Well Are Their Projections Distributed? Low Discrepancy Sequences in High Dimensions: How Well Are Their Projections Distributed? Xiaoqun Wang 1,2 and Ian H. Sloan 2 1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084,

More information

Lifting the Curse of Dimensionality

Lifting the Curse of Dimensionality Lifting the Curse of Dimensionality Frances Y. Kuo and Ian H. Sloan Introduction Richard Bellman [1] coined the phrase the curse of dimensionality to describe the extraordinarily rapid growth in the difficulty

More information

FAST QMC MATRIX-VECTOR MULTIPLICATION

FAST QMC MATRIX-VECTOR MULTIPLICATION FAST QMC MATRIX-VECTOR MULTIPLICATION JOSEF DICK, FRANCES Y. KUO, QUOC T. LE GIA, CHRISTOPH SCHWAB Abstract. Quasi-Monte Carlo (QMC) rules 1/N N 1 n=0 f(y na) can be used to approximate integrals of the

More information

FOCM Workshop B5 Information Based Complexity

FOCM Workshop B5 Information Based Complexity FOCM 2014 - Workshop B5 Information Based Complexity B5 - December 15, 14:30 15:00 The ANOVA decomposition of a non-smooth function of an infinite number of variables Ian Sloan University of New South

More information

On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules

On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules Vasile Sinescu and Pierre L Ecuyer Abstract We examine the question of constructing shifted lattice rules of rank one with

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Extensions of Fibonacci lattice rules Ronald Cools Dirk Nuyens Report TW 545, August 2009 Katholieke Universiteit Leuven Department of Computer Science Celestijnenlaan 200A B-3001 Heverlee (Belgium Extensions

More information

Approximation of Functions Using Digital Nets

Approximation of Functions Using Digital Nets Approximation of Functions Using Digital Nets Josef Dick 1, Peter Kritzer 2, and Frances Y. Kuo 3 1 UNSW Asia, 1 Kay Siang Road, Singapore 248922. E-mail: j.dick@unswasia.edu.sg 2 Fachbereich Mathematik,

More information

ANOVA decomposition of convex piecewise linear functions

ANOVA decomposition of convex piecewise linear functions ANOVA decomposition of convex piecewise linear functions W. Römisch Abstract Piecewise linear convex functions arise as integrands in stochastic programs. They are Lipschitz continuous on their domain,

More information

On Infinite-Dimensional Integration in Weighted Hilbert Spaces

On Infinite-Dimensional Integration in Weighted Hilbert Spaces On Infinite-Dimensional Integration in Weighted Hilbert Spaces Sebastian Mayer Universität Bonn Joint work with M. Gnewuch (UNSW Sydney) and K. Ritter (TU Kaiserslautern). HDA 2013, Canberra, Australia.

More information

Uniform Distribution and Quasi-Monte Carlo Methods

Uniform Distribution and Quasi-Monte Carlo Methods Workshop on Uniform Distribution and Quasi-Monte Carlo Methods October 14-18, 2013 as part of the Radon Special Semester 2013 on Applications of Algebra and Number Theory Metric number theory, lacunary

More information

Progress in high-dimensional numerical integration and its application to stochastic optimization

Progress in high-dimensional numerical integration and its application to stochastic optimization Progress in high-dimensional numerical integration and its application to stochastic optimization W. Römisch Humboldt-University Berlin Department of Mathematics www.math.hu-berlin.de/~romisch Short course,

More information

QMC methods in quantitative finance. and perspectives

QMC methods in quantitative finance. and perspectives , tradition and perspectives Johannes Kepler University Linz (JKU) WU Research Seminar What is the content of the talk Valuation of financial derivatives in stochastic market models using (QMC-)simulation

More information

Generalizing the Tolerance Function for Guaranteed Algorithms

Generalizing the Tolerance Function for Guaranteed Algorithms Generalizing the Tolerance Function for Guaranteed Algorithms Lluís Antoni Jiménez Rugama Joint work with Professor Fred J. Hickernell Room 120, Bldg E1, Department of Applied Mathematics Email: lluisantoni@gmail.com

More information

What s new in high-dimensional integration? designing for applications

What s new in high-dimensional integration? designing for applications What s new in high-dimensional integration? designing for applications Ian H. Sloan i.sloan@unsw.edu.au The University of New South Wales UNSW Australia ANZIAM NSW/ACT, November, 2015 The theme High dimensional

More information

Construction algorithms for good extensible lattice rules

Construction algorithms for good extensible lattice rules Construction algorithms for good extensible lattice rules Harald Niederreiter and Friedrich Pillichshammer Dedicated to Ian H. Sloan on the occasion of his 70th birthday Abstract Extensible olynomial lattice

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

Regularization in Reproducing Kernel Banach Spaces

Regularization in Reproducing Kernel Banach Spaces .... Regularization in Reproducing Kernel Banach Spaces Guohui Song School of Mathematical and Statistical Sciences Arizona State University Comp Math Seminar, September 16, 2010 Joint work with Dr. Fred

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 2 Part 3: Native Space for Positive Definite Kernels Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2014 fasshauer@iit.edu MATH

More information

On lower bounds for integration of multivariate permutation-invariant functions

On lower bounds for integration of multivariate permutation-invariant functions On lower bounds for of multivariate permutation-invariant functions Markus Weimar Philipps-University Marburg Oberwolfach October 2013 Research supported by Deutsche Forschungsgemeinschaft DFG (DA 360/19-1)

More information

Quasi-Monte Carlo methods with applications in finance

Quasi-Monte Carlo methods with applications in finance Finance Stoch (2009) 13: 307 349 DOI 10.1007/s00780-009-0095-y Quasi-Monte Carlo methods with applications in finance Pierre L Ecuyer Received: 30 May 2008 / Accepted: 20 August 2008 / Published online:

More information

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Classification Logistic regression models for classification problem We consider two class problem: Y {0, 1}. The Bayes rule for the classification is I(P(Y = 1 X = x) > 1/2) so

More information

QMC designs and covering of spheres by spherical caps

QMC designs and covering of spheres by spherical caps QMC designs and covering of spheres by spherical caps Ian H. Sloan University of New South Wales, Sydney, Australia Joint work with Johann Brauchart, Josef Dick, Ed Saff (Vanderbilt), Rob Womersley and

More information

arxiv: v1 [math.na] 13 Jul 2017

arxiv: v1 [math.na] 13 Jul 2017 Richardson extrapolation of polynomial lattice rules Josef Dick, Takashi Goda, Takehito Yoshiki arxiv:707.03989v [math.na] 3 Jul 207 July 4, 207 Abstract We study multivariate numerical integration of

More information

Low-discrepancy point sets lifted to the unit sphere

Low-discrepancy point sets lifted to the unit sphere Low-discrepancy point sets lifted to the unit sphere Johann S. Brauchart School of Mathematics and Statistics, UNSW MCQMC 2012 (UNSW) February 17 based on joint work with Ed Saff (Vanderbilt) and Josef

More information

Applicability of Quasi-Monte Carlo for lattice systems

Applicability of Quasi-Monte Carlo for lattice systems Applicability of Quasi-Monte Carlo for lattice systems Andreas Ammon 1,2, Tobias Hartung 1,2,Karl Jansen 2, Hernan Leovey 3, Andreas Griewank 3, Michael Müller-Preussker 1 1 Humboldt-University Berlin,

More information

Effective dimension of some weighted pre-sobolev spaces with dominating mixed partial derivatives

Effective dimension of some weighted pre-sobolev spaces with dominating mixed partial derivatives Effective dimension of some weighted pre-sobolev spaces with dominating mixed partial derivatives Art B. Owen Stanford University August 2018 Abstract This paper considers two notions of effective dimension

More information

Error Analysis for Quasi-Monte Carlo Methods

Error Analysis for Quasi-Monte Carlo Methods Error Analysis for Quasi-Monte Carlo Methods Fred J. Hickernell Department of Applied Mathematics, Illinois Institute of Technology hickernell@iit.edu mypages.iit.edu/~hickernell Thanks to the Guaranteed

More information

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets 9.520 Class 22, 2004 Tomaso Poggio and Sayan Mukherjee About this class Goal To introduce an alternate perspective of RKHS via integral operators

More information

Kernel Methods. Jean-Philippe Vert Last update: Jan Jean-Philippe Vert (Mines ParisTech) 1 / 444

Kernel Methods. Jean-Philippe Vert Last update: Jan Jean-Philippe Vert (Mines ParisTech) 1 / 444 Kernel Methods Jean-Philippe Vert Jean-Philippe.Vert@mines.org Last update: Jan 2015 Jean-Philippe Vert (Mines ParisTech) 1 / 444 What we know how to solve Jean-Philippe Vert (Mines ParisTech) 2 / 444

More information

Lattices Part II Dual Lattices, Fourier Transform, Smoothing Parameter, Public Key Encryption

Lattices Part II Dual Lattices, Fourier Transform, Smoothing Parameter, Public Key Encryption Lattices Part II Dual Lattices, Fourier Transform, Smoothing Parameter, Public Key Encryption Boaz Barak May 12, 2008 The first two sections are based on Oded Regev s lecture notes, and the third one on

More information

Lecture 10 February 23

Lecture 10 February 23 EECS 281B / STAT 241B: Advanced Topics in Statistical LearningSpring 2009 Lecture 10 February 23 Lecturer: Martin Wainwright Scribe: Dave Golland Note: These lecture notes are still rough, and have only

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 9, 2011 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

arxiv: v2 [math.na] 15 Oct 2015

arxiv: v2 [math.na] 15 Oct 2015 Optimal quasi-monte Carlo rules on order 2 digital nets for the numerical integration of multivariate periodic functions Aicke Hinrichs a, Lev Markhasin b, Jens Oettershagen c, Tino Ullrich c arxiv:1501.01800v2

More information

Convergence guarantees for kernel-based quadrature rules in misspecified settings

Convergence guarantees for kernel-based quadrature rules in misspecified settings Convergence guarantees for kernel-based quadrature rules in misspecified settings Motonobu Kanagawa, Bharath K Sriperumbudur, Kenji Fukumizu The Institute of Statistical Mathematics, Tokyo 19-856, Japan

More information

Harmonic Analysis for Star Graphs and the Spherical Coordinate Trapezoidal Rule

Harmonic Analysis for Star Graphs and the Spherical Coordinate Trapezoidal Rule Harmonic Analysis for Star Graphs and the Spherical Coordinate Trapezoidal Rule Robert Carlson University of Colorado at Colorado Springs September 24, 29 Abstract Aspects of continuous and discrete harmonic

More information

Elliptic Regularity. Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n.

Elliptic Regularity. Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n. Elliptic Regularity Throughout we assume all vector bundles are smooth bundles with metrics over a Riemannian manifold X n. 1 Review of Hodge Theory In this note I outline the proof of the following Fundamental

More information

Dunkl operators and Clifford algebras II

Dunkl operators and Clifford algebras II Translation operator for the Clifford Research Group Department of Mathematical Analysis Ghent University Hong Kong, March, 2011 Translation operator for the Hermite polynomials Translation operator for

More information

THE CONSTRUCTION OF GOOD EXTENSIBLE RANK-1 LATTICES. 1. Introduction We are interested in approximating a high dimensional integral [0,1]

THE CONSTRUCTION OF GOOD EXTENSIBLE RANK-1 LATTICES. 1. Introduction We are interested in approximating a high dimensional integral [0,1] MATHEMATICS OF COMPUTATION Volue 00, Nuber 0, Pages 000 000 S 0025-578(XX)0000-0 THE CONSTRUCTION OF GOOD EXTENSIBLE RANK- LATTICES JOSEF DICK, FRIEDRICH PILLICHSHAMMER, AND BENJAMIN J. WATERHOUSE Abstract.

More information

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I Physics 342 Lecture 2 Linear Algebra I Lecture 2 Physics 342 Quantum Mechanics I Wednesday, January 3th, 28 From separation of variables, we move to linear algebra Roughly speaking, this is the study of

More information

Outline of Fourier Series: Math 201B

Outline of Fourier Series: Math 201B Outline of Fourier Series: Math 201B February 24, 2011 1 Functions and convolutions 1.1 Periodic functions Periodic functions. Let = R/(2πZ) denote the circle, or onedimensional torus. A function f : C

More information

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 04: Features and Kernels. Lorenzo Rosasco

MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications. Class 04: Features and Kernels. Lorenzo Rosasco MIT 9.520/6.860, Fall 2018 Statistical Learning Theory and Applications Class 04: Features and Kernels Lorenzo Rosasco Linear functions Let H lin be the space of linear functions f(x) = w x. f w is one

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

Generated sets as sampling schemes for hyperbolic cross trigonometric polynomials

Generated sets as sampling schemes for hyperbolic cross trigonometric polynomials Generated sets as sampling schemes for hyperbolic cross trigonometric polynomials Lutz Kämmerer Chemnitz University of Technology joint work with S. Kunis and D. Potts supported by DFG-SPP 1324 1 / 16

More information

The Gaussians Distribution

The Gaussians Distribution CSE 206A: Lattice Algorithms and Applications Winter 2016 The Gaussians Distribution Instructor: Daniele Micciancio UCSD CSE 1 The real fourier transform Gaussian distributions and harmonic analysis play

More information

Divide and Conquer Kernel Ridge Regression. A Distributed Algorithm with Minimax Optimal Rates

Divide and Conquer Kernel Ridge Regression. A Distributed Algorithm with Minimax Optimal Rates : A Distributed Algorithm with Minimax Optimal Rates Yuchen Zhang, John C. Duchi, Martin Wainwright (UC Berkeley;http://arxiv.org/pdf/1305.509; Apr 9, 014) Gatsby Unit, Tea Talk June 10, 014 Outline Motivation.

More information

Numerical Methods I Orthogonal Polynomials

Numerical Methods I Orthogonal Polynomials Numerical Methods I Orthogonal Polynomials Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 Nov. 4th and 11th, 2010 A. Donev (Courant Institute)

More information

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I Physics 342 Lecture 2 Linear Algebra I Lecture 2 Physics 342 Quantum Mechanics I Wednesday, January 27th, 21 From separation of variables, we move to linear algebra Roughly speaking, this is the study

More information

Introduction to Curve Estimation

Introduction to Curve Estimation Introduction to Curve Estimation Density 0.000 0.002 0.004 0.006 700 800 900 1000 1100 1200 1300 Wilcoxon score Michael E. Tarter & Micheal D. Lock Model-Free Curve Estimation Monographs on Statistics

More information

arxiv: v3 [math.na] 18 Sep 2016

arxiv: v3 [math.na] 18 Sep 2016 Infinite-dimensional integration and the multivariate decomposition method F. Y. Kuo, D. Nuyens, L. Plaskota, I. H. Sloan, and G. W. Wasilkowski 9 September 2016 arxiv:1501.05445v3 [math.na] 18 Sep 2016

More information

Infinite-Dimensional Integration on Weighted Hilbert Spaces

Infinite-Dimensional Integration on Weighted Hilbert Spaces Infinite-Dimensional Integration on Weighted Hilbert Spaces Michael Gnewuch Department of Computer Science, Columbia University, 1214 Amsterdam Avenue, New Yor, NY 10027, USA Abstract We study the numerical

More information

Discrepancy Bounds for Deterministic Acceptance-Rejection Samplers

Discrepancy Bounds for Deterministic Acceptance-Rejection Samplers Discrepancy Bounds for Deterministic Acceptance-Rejection Samplers Houying Zhu Athesisinfulfilmentoftherequirementsforthedegreeof Doctor of Philosophy School of Mathematics and Statistics Faculty of Science

More information

Convergence Rates of Kernel Quadrature Rules

Convergence Rates of Kernel Quadrature Rules Convergence Rates of Kernel Quadrature Rules Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE NIPS workshop on probabilistic integration - Dec. 2015 Outline Introduction

More information

Discrepancy Bounds for Nets and Sequences

Discrepancy Bounds for Nets and Sequences Discrepancy Bounds for Nets and Sequences Peter Kritzer Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences Linz, Austria Joint work with Henri Faure (Marseille)

More information

Chief factors. Jack Schmidt. University of Kentucky

Chief factors. Jack Schmidt. University of Kentucky Chief factors Jack Schmidt University of Kentucky 2008-03-05 Chief factors allow a group to be studied by its representation theory on particularly natural irreducible modules. Outline What is a chief

More information

Numerical Methods in Economics MIT Press, Chapter 9 Notes Quasi-Monte Carlo Methods. Kenneth L. Judd Hoover Institution.

Numerical Methods in Economics MIT Press, Chapter 9 Notes Quasi-Monte Carlo Methods. Kenneth L. Judd Hoover Institution. 1 Numerical Methods in Economics MIT Press, 1998 Chapter 9 Notes Quasi-Monte Carlo Methods Kenneth L. Judd Hoover Institution October 26, 2002 2 Quasi-Monte Carlo Methods Observation: MC uses random sequences

More information

STRONG TRACTABILITY OF MULTIVARIATE INTEGRATION USING QUASI MONTE CARLO ALGORITHMS

STRONG TRACTABILITY OF MULTIVARIATE INTEGRATION USING QUASI MONTE CARLO ALGORITHMS MATHEMATICS OF COMPUTATION Volume 72, Number 242, Pages 823 838 S 0025-5718(02)01440-0 Article electronically published on June 25, 2002 STRONG TRACTABILITY OF MULTIVARIATE INTEGRATION USING QUASI MONTE

More information

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable.

Stat542 (F11) Statistical Learning. First consider the scenario where the two classes of points are separable. Linear SVM (separable case) First consider the scenario where the two classes of points are separable. It s desirable to have the width (called margin) between the two dashed lines to be large, i.e., have

More information

Fourier Sin and Cos Series and Least Squares Convergence

Fourier Sin and Cos Series and Least Squares Convergence Fourier and east Squares Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 28 Outline et s look at the original Fourier sin

More information

Analytic families of multilinear operators

Analytic families of multilinear operators Analytic families of multilinear operators Mieczysław Mastyło Adam Mickiewicz University in Poznań Nonlinar Functional Analysis Valencia 17-20 October 2017 Based on a joint work with Loukas Grafakos M.

More information

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University Chapter 9. Support Vector Machine Yongdai Kim Seoul National University 1. Introduction Support Vector Machine (SVM) is a classification method developed by Vapnik (1996). It is thought that SVM improved

More information

The Closed Form Reproducing Polynomial Particle Shape Functions for Meshfree Particle Methods

The Closed Form Reproducing Polynomial Particle Shape Functions for Meshfree Particle Methods The Closed Form Reproducing Polynomial Particle Shape Functions for Meshfree Particle Methods by Hae-Soo Oh Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223 June

More information

Topics in Fourier analysis - Lecture 2.

Topics in Fourier analysis - Lecture 2. Topics in Fourier analysis - Lecture 2. Akos Magyar 1 Infinite Fourier series. In this section we develop the basic theory of Fourier series of periodic functions of one variable, but only to the extent

More information

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Statistical Inference with Reproducing Kernel Hilbert Space Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department

More information

Sparse grid quadrature on products of spheres

Sparse grid quadrature on products of spheres Sparse grid quadrature on products of spheres Markus Hegland a, Paul Leopardi a, a Centre for Mathematics and its Applications, Australian National University. Abstract This paper examines sparse grid

More information

Tractability of Multivariate Problems

Tractability of Multivariate Problems Erich Novak University of Jena Chemnitz, Summer School 2010 1 Plan for the talk Example: approximation of C -functions What is tractability? Tractability by smoothness? Tractability by sparsity, finite

More information

The Seventeen Plane Groups (Two-dimensional Space Groups)

The Seventeen Plane Groups (Two-dimensional Space Groups) Korean J. Crystallography Vol. 16, o. 1, pp.11~20, 2005 The Seventeen Plane Groups (Two-dimensional Space Groups) ƒá Á a Á Ÿ a Á~ a Áªœ a Á ž a ano-œ ª, ªƒ ª œ œ a ˆ ª Ÿ ª ( campus) The Seventeen Plane

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 12, 2007 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Hyperuniformity on the Sphere

Hyperuniformity on the Sphere Hyperuniformity on the Sphere Johann S. Brauchart j.brauchart@tugraz.at 14. June 2018 Week 2 Workshop MATRIX Research Program "On the Frontiers of High Dimensional Computation" MATRIX, Creswick [ 1 / 56

More information

Introduction to (randomized) quasi-monte Carlo

Introduction to (randomized) quasi-monte Carlo 1 aft Introduction to (randomized) quasi-monte Carlo Dr Pierre L Ecuyer MCQMC Conference, Stanford University, August 2016 Program Monte Carlo, Quasi-Monte Carlo, Randomized quasi-monte Carlo QMC point

More information

Super-resolution meets algebraic geometry

Super-resolution meets algebraic geometry Super-resolution meets algebraic geometry Stefan Kunis joint work with H. Michael Möller, Thomas Peter, Tim Römer, and Ulrich von der Ohe Outline Univariate trigonometric moment problem Multivariate trigonometric

More information

Scenario generation Contents

Scenario generation Contents Scenario generation W. Römisch Humboldt-University Berlin Department of Mathematics www.math.hu-berlin.de/~romisch Page 1 of 39 Tutorial, ICSP12, Halifax, August 14, 2010 (1) Aproximation issues (2) Generation

More information

Chapter III Beyond L 2 : Fourier transform of distributions

Chapter III Beyond L 2 : Fourier transform of distributions Chapter III Beyond L 2 : Fourier transform of distributions 113 1 Basic definitions and first examples In this section we generalize the theory of the Fourier transform developed in Section 1 to distributions.

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 11, 2009 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Errata Applied Analysis

Errata Applied Analysis Errata Applied Analysis p. 9: line 2 from the bottom: 2 instead of 2. p. 10: Last sentence should read: The lim sup of a sequence whose terms are bounded from above is finite or, and the lim inf of a sequence

More information

CIS 520: Machine Learning Oct 09, Kernel Methods

CIS 520: Machine Learning Oct 09, Kernel Methods CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed

More information

Kernel-Based Contrast Functions for Sufficient Dimension Reduction

Kernel-Based Contrast Functions for Sufficient Dimension Reduction Kernel-Based Contrast Functions for Sufficient Dimension Reduction Michael I. Jordan Departments of Statistics and EECS University of California, Berkeley Joint work with Kenji Fukumizu and Francis Bach

More information