MATH 18.01, FALL PROBLEM SET # 3A

Size: px
Start display at page:

Download "MATH 18.01, FALL PROBLEM SET # 3A"

Transcription

1 MATH 18.01, FALL PROBLEM SET # 3A Professor: Jared Speck Due: by Friday 1:45pm on (in the boxes outside of Room during the day; stick it under the door if the room is locked; write your name, recitation instructor, and recitation meeting days/time on your homework) Supplementary Notes (including Exercises and Solutions) are available on the course web page: This is where to find the exercises labeled 1A, 1B, etc. You will need these to do the homework. Part I consists of exercises given and solved in the Supplementary Notes. It will be graded quickly, checking that all is there and the solutions not copied. Part II consists of problems for which solutions are not given; it is worth more points. Some of these problems are longer multi-part exercises given here because they do not fit conveniently into an exam or short-answer format. See the guidelines below for what collaboration is acceptable, and follow them. To encourage you to keep up with the lectures, both Part I and Part II tell you for each problem on which day you will have the needed background for it. You are encouraged to use graphing calculators, software, etc. to check your answers and to explore calculus. However, (unless otherwise indicated) we strongly discourage you from using these tools to solve problems, perform computations, graph functions, etc. An extremely important aspect of learning calculus is developing these skills. And you will not be allowed to use any such tools on the exams. Part I (15 points) Notation: The problems come from three sources: the Supplementary Notes, the Simmons book, and problems that are described in full detail inside of this pset. I refer to the former two sources using abbreviations such as the following ones: 2.1 = Section 2.1 of the Simmons textbook; Notes G = Section G of the Supplementary Notes; Notes 1A: 1a, 2 = Exercises 1a and 2 in the Exercise Section 1A of the Supplementary Notes; Section 2.4: 13 = Problem 13 in Section 2.4 of Simmons, etc. Lecture 7. (Thurs., Sept. 20) Linear and quadratic approximations. Read: Notes A. Homework: Notes 2A: 2, 3, 7, 11, 12ade. Lecture 8. (Tues., Sept. 25) Curve-sketching. Read: 4.1, 4.2. Homework: Notes 2B: 1, 2aeh, 4, 6ab, 7ab. 1

2 2 MATH 18.01, FALL PROBLEM SET # 3A Part II (40 points) Directions and Rules: Collaboration on problem sets is encouraged, but: i) Attempt each part of each problem yourself. Read each portion of the problem before asking for help. If you don t understand what is being asked, ask for help interpreting the problem and then make an honest attempt to solve it. ii) Write up each problem independently. On both Part I and II exercises you are expected to write the answer in your own words. You must show your work; bare solutions will receive very little credit. iii) Write on your problem set whom you consulted and the sources you used. If you fail to do so, you may be charged with plagiarism and subject to serious penalties. iv) It is illegal to consult materials from previous semesters. 0. (not until due date; 3 points) Write the names of all the people you consulted or with whom you collaborated and the resources you used, or say none or no consultation. This includes visits outside recitation to your recitation instructor. If you don t know a name, you must nevertheless identify the person, as in, tutor in Room 2-106, or the student next to me in recitation. Optional: note which of these people or resources, if any, were particularly helpful to you. This Problem 0 will be assigned with every problem set. Its purpose is to make sure that you acknowledge (to yourself as well as others) what kind of help you require and to encourage you to pay attention to how you learn best (with a tutor, in a group, alone). It will help us by letting us know what resources you use. 1. (Sept. 26.; quadratic approximations; = 8 points) Your electric guitar speaker has a continuous dial that varies from 0 to 11. Assume that the volume output v of the speaker is a twice differentiable function of the dial number d. Using your decibel meter, you have measured the volume output of your speaker at the following three settings: d = 8 d = 9 d = 10 v (in decibels) You are very curious to know the volume output when d = 11, but since you live in a dorm, you don t dare turn the dial to 11. Luckily, you are enrolled in and are therefore able to estimate the output using the following procedure. a) Estimate v (9) and v (10) by using difference quotients of the form f(x) f(x x) x for x = 1. We compute that v (9) v (10) v(9) v(8) = , 9 8 v(10) v(9) = b) Use part a) and a similar procedure to estimate v (10). We compute that

3 MATH 18.01, FALL PROBLEM SET # 3A 3 v (10) v (10) v (9) c) Derive a quadratic approximation of v(d) near d = 10. In your quadratic approximation, you can use the approximate values for v and v from parts a) and b). Then use your quadratic approximation to estimate v(11). We use the quadratic approximation formula to deduce that when d is near d 0, we have v(d) v(d 0 ) + v (d 0 )(d d 0 ) v (d 0 )(d d 0 ) 2 Setting d 0 = 10 and d = 11, we therefore have that (d 10) (.426)(d 10)2. v(d) (11 10) + 1 (.426)(11 10)2 2 = (Sept. 26.; limits; continuity; quadratic approximations; = 10 points) In this problem, you will investigate what happens to the surface area of a sphere when you slightly squash it. A perfect unit sphere can be visualized in the following way: consider the set of points in the (x, y) plane that satisfy the equation x 2 + y 2 = 1. This curve describes a sphere of radius 1 centered at the origin. Now imagine that this circle is continuously rotated about the y axis until it has spun a full 360 degrees. The resulting 3 d object that is traced out is a sphere of radius 1 in three-dimensional space centered at the origin. Now instead of the circle, consider the curve ( y ) 2 x 2 + = 1, a where a is some positive constant with 0 < a < 1. This curve describes an ellipse in the (x, y) plane centered at the origin. The horizontal axis of the ellipse has length 2 and the vertical axis has length 2a. Now imagine that this ellipse is rotated about the y axis in the manner described above. The resulting 3 d object that gets traced out is called an oblate ellipsoid, which means that it is a sphere that has been squashed in one direction (in this case the y axis is the squashed direction). This geometric object comes up when one studies the shape of the earth: the earth s rotation gives it a slightly squashed character (in reality the earth is quite bumpy, and therefore the oblate ellipsoid model of the earth may not be accurate enough for all applications). There is an important quantity associated to the oblate ellipsoid called the eccentricity E. It is 0 for a perfect sphere, and for a oblate ellipsoid, it measures how squashed it is: E = 1 a 2.

4 4 MATH 18.01, FALL PROBLEM SET # 3A In vector calculus, you will develop the tools necessary to calculate the surface area of the oblate ellipsoid. Here, I will only provide you with the formula. The surface area S can be expressed in terms of E as follows: where S = 2π ( 1 + f(e) (1 E 2 ) ), f(e) = { tanh 1 (E) E if E 0, 1 if E = 0. In the above formula, tanh 1 (E) is the inverse of the hyperbolic tangent function. That is, y = tanh 1 (E) if and only if tanh(y) = E, where tanh(e) = sinh(e)/ cosh(e). a) Show that f(e) is continuous at E = 0. We first investigate lim y 0 tanh(y)/y. We use the linear approximations e y 1 + y and e y 1 y for y near 0. Therefore, sinh(y) = 1 2 (ey e y ) y, cosh(y) = 1 2 (ey + e y ) 1, and tanh(y) = sinh(y)/ cosh(y) = y + O(y 2 ). It follows that lim y 0 y + O(y 2 ) tanh(y)/y = lim tanh(y)/y = lim y 0 y 0 y = lim {1 + O(y)} = 1. y 0 We now use the above limit to investigate the limit of interest. We set y = tanh 1 (E), which implies that tanh(y) = E. We note that when E 0, it follows that y 0. Therefore, with the help of the above limit, we compute that Therefore, y lim E 0 tanh 1 (E)/E = lim y 0 tanh(y) = 1. Hence, f(e) is continuous at E = 0 by definition. b) Show that (d/de) tanh 1 (E) = 1/(1 E 2 ). lim f(e) = lim E 0 E 0 tanh 1 (E)/E = 1 = f(0). We set y = tanh 1 (E). Our goal is to compute dy/de. To this end, we consider the equation E = tanh(y). We take the derivative with respect to E of both sides and use the quotient rule, the chain rule, and the relation cosh 2 y sinh 2 (y) = 1 in order to deduce that

5 MATH 18.01, FALL PROBLEM SET # 3A 5 Therefore, 1 = d { dy d tanh(y) dy de = dy ( )} sinh(y) dy cosh(y) de = cosh(y) d d sinh(y) sinh(y) cosh(y) dy dy cosh 2 dy (y) de = cosh2 (y) sinh 2 (y) cosh 2 (y) 1 = cosh 2 (y) dy de. dy de dy de = cosh2 (y). We would like to express the right-hand side in terms of E. To this end, use first use the relation cosh 2 y sinh 2 (y) = 1 to deduce that that cosh 2 (y) = sinh2 (y). We can use the first and last = cosh2 y 1 tanh 2 (y) tanh 2 y equalities in this equation to solve for cosh 2 (y) in terms of tanh 2 (y) = E 2 : We conclude that as desired. cosh 2 (y) = 1 1 tanh 2 (y) = 1 1 E. 2 dy de = 1 1 E 2 c) Find the quadratic approximation to 1/(1 E 2 ) near E = 0. That is, find the constants A 0, A 1 and A 2 such that 1/(1 E 2 ) = A 0 + A 1 E + A 2 E 2 + O(E 3 ) near E = 0. In class, we saw that 1/(1 x) = (1 x) 1 = 1 + x + O(x 2 ) for x near 0. Applying this expansion with x = E 2, we deduce that 1/(1 E 2 ) = 1+E 2 +O(E 4 ). It follows that A 0 = 1, A 1 = 0, and A 2 = 1. d) Imagine that you have made a cubic approximation to tanh 1 (E) near E = 0. That is, assume that you have approximated tanh 1 (E) = B 0 + B 1 E + B 2 E 2 + B 3 E 3 + O(E 4 ) for constants B 0, B 1, B 2, B 3. Assume that B 0 +B 1 E +B 2 E 2 is the usual quadratic approximation to tanh 1 (E) near E = 0. Assume in addition that the derivative of your cubic approximation to tanh 1 (E) is precisely the quadratic approximation to 1/(1 E 2 ) = (d/de) tanh 1 (E) that you found in part b). Under these assumptions, find the constants B 0, B 1, B 2, B 3. We take the derivative of the cubic approximation and set it equal to the quadratic approximation, which was found in part c):

6 6 MATH 18.01, FALL PROBLEM SET # 3A d de (B 0 + B 1 E + B 2 E 2 + B 3 E 3 ) = B 1 + 2B 2 E + 3B 3 E 2 = 1 + E 2. We then equate powers of E to discover that B 1 = 1, B 2 = 0, B 3 = 1/3. The last thing to determine is B 0. By assumption, B 0 is the term one gets from the usual quadratic approximation of tanh 1 (E) near E = 0. That is, B 0 = tanh 1 (0) = 0. In total, the cubic approximation to tanh 1 (E) near E = 0 is tanh 1 (E) = E + (1/3)E 3 + O(E 4 ). e) Use part d) to find the quadratic approximation to f(e) near E = 0. We simply divide the cubic approximation from part d) by E to discover that f(e) = tanh 1 (E) E = E2 + O(E 3 ). f) Use part e) to find the quadratic approximation to S near E = 0. Remark: The quadratic approximation procedure outlined in this problem can be rigorously justified. It turns out that the quadratic approximations you are deriving are in some sense the best possible ones. These ideas fall under the umbrella of Taylor series, which we will discuss at the end of the course. Using part e), we see that Therefore, f(e) (1 E 2 ) = ( ) 3 E2 + O(E 3 ) ( 1 E 2 ) ) = E2 + O(E 3 ). S = 2π ( 1 + f(e)(1 E 2 ) ) ( = 2π ) 3 E2 + O(E 3 ) = 4π 4π 3 E2 + O(E 3 ). g) When E is positive but near 0, does your quadratic approximation predict that the surface area of the ellipsoid will be greater than or less than the surface area of the perfect sphere of radius 1 (the perfect sphere has E = 0)? When E is positive and near 0, the quadratic approximation part from f) predicts that S(E) < 4π because of the 4π 3 E2 term. 3. (Sept. 28.; = 10 points) Section 4.1: 18abc, 20ab

7 MATH 18.01, FALL PROBLEM SET # 3A 7 18) We recall that f(x) = x m (1 x) n, where m, n are positive integers. a) If m is even and x is near 0, then f(x) is non-negative because x m is a square and (1 x) n is near 1. Since f(0) = 0, x = 0 must be a minimum. b) Similarly, if n is even and x is near 1, then f(x) is non-negative because (1 x) n is a square and x m is near 1. Since f(1) = 0, x = 1 must be a minimum. c) Using the product and chain rules, we compute that f (x) = mx m 1 (1 x) n n(1 x) n 1. To find the critical points of f, we set f (x) = 0, which yields the equation mx m 1 (1 x) n nx m (1 x) n 1 = 0. Assuming that x 0 and x 1, we may divide both sides by mx m 1 (1 x) n 1, thus arriving at the following equation: f (x) mx m 1 (1 x) n 1 = (1 x) n m x = 0. The above equation has only the solution x = m, which means that aside from the possibility of m+n x = 0 or x = 1, x = m is the only critical point of f. Note that the expression (1 x) n x is strictly m+n m positive for 0 < x < m and strictly negative for 1 > x > m. Therefore, the first equality in the m+n m+n previous equation implies that the same statement is also true for f (x). Hence, f(x) is increasing for 0 < x < m and decreasing for 1 > x > m. We conclude that x = m is a maximum. m+n m+n m+n 20) a) See the figure below. b) See the figure below. 4. (Sept. 28.; = 9 points) Section 4.2: 12, 16, 18 12) Set y = f(x) = 12/x 2 12/x. Note that there is a discontinuity at x = 0. We compute that y = f (x) = 24x x 2, y = f (x) = 72x 4 24x 3. To find the inflection points, we set y = 0 and multiply the equation by x 4 (for convenience) to derive the equation 72 24x = 0. The above equation has only the solution x = 3, which is the inflection point. For x < 3, we have that f (x) is positive, while for x > 3, we have that f (x) is negative. The graph of f(x) is therefore concave up for x < 3 and concave down for x > 3. See the figure below for a sketch. 16) The question is: Is it possible for a function f(x) defined for all x to have the properties i) f(x) > 0, ii) f (x) < 0, and iii) f (x) < 0? The answer is no.

8 8 MATH 18.01, FALL PROBLEM SET # 3A Figure 1. Section 4.1: 20 a) Here is an explanation. By assumption, f (0) is equal to some negative number N. Since f (x) < 0, f (x) is a decreasing function for all x. Therefore, f (x) < N holds for all x > 0. Let us give a geometric interpretation of this. Let L be the tangent line to the graph of f at x = 0. Then L has a (negative) slope equal to N and is above the x axis at x = 0, so L must intersect the x axis at some point x 0 > 0. Since f (x) < N holds for all x > 0, the graph of f is more negatively sloped than L for all x > 0. It follows that the graph of f lies below the line L for all x > 0. Therefore, the graph of f(x) must intersect the x axis at some x value in between x = 0 and x 0. This contradicts property i) and therefore shows that the three properties are not mutually compatible. 18) Note that x 2 + y 2 = a 2 describes a circle of radius a centered at the origin. We differentiate each side of the equation with respect to x and use the chain rule relation (d/dx)(y 2 ) = 2yy to obtain 2x + 2yy = 0. We then differentiate the above equation with respect to x to obtain

9 MATH 18.01, FALL PROBLEM SET # 3A 9 Figure 2. Section 4.1: 20 b) We now use the above equation to solve for y : 2 + 2(y ) 2 + 2yy = 0. y = (y ) 2 1 y y. Note that the above formula agrees with the graph of the circle: above the x axis, y is positive and the circle is concave down. This agrees with the above formula, which shows that y < 0 when y > 0. On the other hand, below the x axis, y is negative and the circle is concave up. This also agrees with the above formula, which shows that y > 0 when y < 0.

10 10 MATH 18.01, FALL PROBLEM SET # 3A Figure 3. Section 4.2: 12

MATH 18.01, FALL PROBLEM SET # 2

MATH 18.01, FALL PROBLEM SET # 2 MATH 18.01, FALL 2012 - PROBLEM SET # 2 Professor: Jared Speck Due: by Thursday 4:00pm on 9-20-12 (in the boxes outside of Room 2-255 during the day; stick it under the door if the room is locked; write

More information

MATH 18.01, FALL PROBLEM SET # 8

MATH 18.01, FALL PROBLEM SET # 8 MATH 18.01, FALL 01 - PROBLEM SET # 8 Professor: Jared Speck Due: by 1:45pm on Tuesday 11-7-1 (in the boxes outside of Room -55 during the day; stick it under the door if the room is locked; write your

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Problem Set 1 Due Thursday

More information

Week 12: Optimisation and Course Review.

Week 12: Optimisation and Course Review. Week 12: Optimisation and Course Review. MA161/MA1161: Semester 1 Calculus. Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway November 21-22, 2016 Assignments. Problem

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This midterm is a sample midterm. This means: The sample midterm contains problems that are of similar,

More information

Math 121: Final Exam Review Sheet

Math 121: Final Exam Review Sheet Exam Information Math 11: Final Exam Review Sheet The Final Exam will be given on Thursday, March 1 from 10:30 am 1:30 pm. The exam is cumulative and will cover chapters 1.1-1.3, 1.5, 1.6,.1-.6, 3.1-3.6,

More information

Math 41 First Exam October 12, 2010

Math 41 First Exam October 12, 2010 Math 41 First Exam October 12, 2010 Name: SUID#: Circle your section: Olena Bormashenko Ulrik Buchholtz John Jiang Michael Lipnowski Jonathan Lee 03 (11-11:50am) 07 (10-10:50am) 02 (1:15-2:05pm) 04 (1:15-2:05pm)

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This is a midterm from a previous semester. This means: This midterm contains problems that are of

More information

Weekly Activities Ma 110

Weekly Activities Ma 110 Weekly Activities Ma 110 Fall 2008 As of October 27, 2008 We give detailed suggestions of what to learn during each week. This includes a reading assignment as well as a brief description of the main points

More information

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know. Disclaimer: This is meant to help you start studying. It is not necessarily a complete list of everything you need to know. The MTH 132 final exam mainly consists of standard response questions where students

More information

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C)

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C) Math 1120 Calculus Test 3 November 4, 1 Name In the first 10 problems, each part counts 5 points (total 50 points) and the final three problems count 20 points each Multiple choice section Circle the correct

More information

Math 115 Syllabus (Spring 2017 Edition) By: Elementary Courses Committee Textbook: Intermediate Algebra by Aufmann & Lockwood, 9th Edition

Math 115 Syllabus (Spring 2017 Edition) By: Elementary Courses Committee Textbook: Intermediate Algebra by Aufmann & Lockwood, 9th Edition Math 115 Syllabus (Spring 2017 Edition) By: Elementary Courses Committee Textbook: Intermediate Algebra by Aufmann & Lockwood, 9th Edition Students have the options of either purchasing the loose-leaf

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

The First Derivative Test

The First Derivative Test The First Derivative Test We have already looked at this test in the last section even though we did not put a name to the process we were using. We use a y number line to test the sign of the first derivative

More information

Solutions to Math 41 First Exam October 18, 2012

Solutions to Math 41 First Exam October 18, 2012 Solutions to Math 4 First Exam October 8, 202. (2 points) Find each of the following its, with justification. If the it does not exist, explain why. If there is an infinite it, then explain whether it

More information

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1).

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1). Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20 # 18, page 18: If f(x) = x2 x 2 1, find f( 1 2 ), f( 1 2 ), and f(a + 1). # 22, page 18: When a solution of acetylcholine

More information

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2 Answer Key Calculus I Math 141 Fall 2003 Professor Ben Richert Exam 2 November 18, 2003 Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem

More information

SCIENCE PROGRAM CALCULUS III

SCIENCE PROGRAM CALCULUS III SCIENCE PROGRAM CALCULUS III Discipline: Mathematics Semester: Winter 2005 Course Code: 201-DDB-05 Instructor: Objectives: 00UV, 00UU Office: Ponderation: 3-2-3 Tel.: 457-6610 Credits: 2 2/3 Local: Course

More information

University of Connecticut Department of Mathematics

University of Connecticut Department of Mathematics University of Connecticut Department of Mathematics Math 1131 Sample Exam 2 Fall 2015 Name: Instructor Name: Section: TA Name: Discussion Section: This sample exam is just a guide to prepare for the actual

More information

Mon 3 Nov Tuesday 4 Nov: Quiz 8 ( ) Friday 7 Nov: Exam 2!!! Today: 4.5 Wednesday: REVIEW. In class Covers

Mon 3 Nov Tuesday 4 Nov: Quiz 8 ( ) Friday 7 Nov: Exam 2!!! Today: 4.5 Wednesday: REVIEW. In class Covers Mon 3 Nov 2014 Tuesday 4 Nov: Quiz 8 (4.2-4.4) Friday 7 Nov: Exam 2!!! In class Covers 3.9-4.5 Today: 4.5 Wednesday: REVIEW Linear Approximation and Differentials In section 4.5, you see the pictures on

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

Ms. York s AP Calculus AB Class Room #: Phone #: Conferences: 11:30 1:35 (A day) 8:00 9:45 (B day)

Ms. York s AP Calculus AB Class Room #: Phone #: Conferences: 11:30 1:35 (A day) 8:00 9:45 (B day) Ms. York s AP Calculus AB Class Room #: 303 E-mail: hyork3@houstonisd.org Phone #: 937-239-3836 Conferences: 11:30 1:35 (A day) 8:00 9:45 (B day) Course Outline By successfully completing this course,

More information

MIDTERM 1. Name-Surname: 15 pts 20 pts 15 pts 10 pts 10 pts 10 pts 15 pts 20 pts 115 pts Total. Overall 115 points.

MIDTERM 1. Name-Surname: 15 pts 20 pts 15 pts 10 pts 10 pts 10 pts 15 pts 20 pts 115 pts Total. Overall 115 points. Name-Surname: Student No: Grade: 15 pts 20 pts 15 pts 10 pts 10 pts 10 pts 15 pts 20 pts 115 pts 1 2 3 4 5 6 7 8 Total Overall 115 points. Do as much as you can. Write your answers to all of the questions.

More information

Syllabus for BC Calculus

Syllabus for BC Calculus Syllabus for BC Calculus Course Overview My students enter BC Calculus form an Honors Precalculus course which is extremely rigorous and we have 90 minutes per day for 180 days, so our calculus course

More information

Exam 2 Solutions October 12, 2006

Exam 2 Solutions October 12, 2006 Math 44 Fall 006 Sections and P. Achar Exam Solutions October, 006 Total points: 00 Time limit: 80 minutes No calculators, books, notes, or other aids are permitted. You must show your work and justify

More information

MATH 152 FINAL EXAMINATION Spring Semester 2014

MATH 152 FINAL EXAMINATION Spring Semester 2014 Math 15 Final Eam Spring 1 MATH 15 FINAL EXAMINATION Spring Semester 1 NAME: RAW SCORE: Maimum raw score possible is 8. INSTRUCTOR: SECTION NUMBER: MAKE and MODEL of CALCULATOR USED: Answers are to be

More information

18.01 Final Exam. 8. 3pm Hancock Total: /250

18.01 Final Exam. 8. 3pm Hancock Total: /250 18.01 Final Exam Name: Please circle the number of your recitation. 1. 10am Tyomkin 2. 10am Kilic 3. 12pm Coskun 4. 1pm Coskun 5. 2pm Hancock Problem 1: /25 Problem 6: /25 Problem 2: /25 Problem 7: /25

More information

SCIENCE PROGRAM CALCULUS III

SCIENCE PROGRAM CALCULUS III SCIENCE PROGRAM CALCULUS III Discipline: Mathematics Semester: Winter 2002 Course Code: 201-DDB-05 Instructor: R.A.G. Seely Objectives: 00UV, 00UU Office: H 204 Ponderation: 3-2-3 Tel.: 457-6610 Credits:

More information

Review for Final Exam, MATH , Fall 2010

Review for Final Exam, MATH , Fall 2010 Review for Final Exam, MATH 170-002, Fall 2010 The test will be on Wednesday December 15 in ILC 404 (usual class room), 8:00 a.m - 10:00 a.m. Please bring a non-graphing calculator for the test. No other

More information

Geometry and Motion, MA 134 Week 1

Geometry and Motion, MA 134 Week 1 Geometry and Motion, MA 134 Week 1 Mario J. Micallef Spring, 2007 Warning. These handouts are not intended to be complete lecture notes. They should be supplemented by your own notes and, importantly,

More information

SOLUTIONS 1 (27) 2 (18) 3 (18) 4 (15) 5 (22) TOTAL (100) PROBLEM NUMBER SCORE MIDTERM 2. Form A. Recitation Instructor : Recitation Time :

SOLUTIONS 1 (27) 2 (18) 3 (18) 4 (15) 5 (22) TOTAL (100) PROBLEM NUMBER SCORE MIDTERM 2. Form A. Recitation Instructor : Recitation Time : Math 5 March 8, 206 Form A Page of 8 Name : OSU Name.# : Lecturer:: Recitation Instructor : SOLUTIONS Recitation Time : SHOW ALL WORK in problems, 2, and 3. Incorrect answers with work shown may receive

More information

College Algebra: Midterm Review

College Algebra: Midterm Review College Algebra: A Missive from the Math Department Learning College Algebra takes effort on your part as the student. Here are some hints for studying that you may find useful. Work Problems If you do,

More information

Mathematics 1 Lecture Notes Chapter 1 Algebra Review

Mathematics 1 Lecture Notes Chapter 1 Algebra Review Mathematics 1 Lecture Notes Chapter 1 Algebra Review c Trinity College 1 A note to the students from the lecturer: This course will be moving rather quickly, and it will be in your own best interests to

More information

MATH 341, Section 001 FALL 2014 Introduction to the Language and Practice of Mathematics

MATH 341, Section 001 FALL 2014 Introduction to the Language and Practice of Mathematics MATH 341, Section 001 FALL 2014 Introduction to the Language and Practice of Mathematics Class Meetings: MW 9:30-10:45 am in EMS E424A, September 3 to December 10 [Thanksgiving break November 26 30; final

More information

Math 41 First Exam October 15, 2013

Math 41 First Exam October 15, 2013 Math 41 First Exam October 15, 2013 Name: SUID#: Circle your section: Valentin Buciumas Jafar Jafarov Jesse Madnick Alexandra Musat Amy Pang 02 (1:15-2:05pm) 08 (10-10:50am) 03 (11-11:50am) 06 (9-9:50am)

More information

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002 171, Calculus 1 Summer 1, 018 CRN 5048, Section 001 Time: MTWR, 6:0 p.m. 8:0 p.m. Room: BR-4 CRN 5048, Section 00 Time: MTWR, 11:0 a.m. 1:0 p.m. Room: BR-4 CONTENTS Syllabus Reviews for tests 1 Review

More information

Math 1190/01 Calculus I Fall 2007

Math 1190/01 Calculus I Fall 2007 Math 1190/01 Calculus I Fall 2007 Instructor: Dr. Sean Ellermeyer, SC 24, (770) 423-6129 (Math dept: (770) 423-6327), email: sellerme@kennesaw.edu, Web Site: http://math.kennesaw.edu/~sellerme. Time and

More information

INTRODUCTION TO DIFFERENTIATION

INTRODUCTION TO DIFFERENTIATION INTRODUCTION TO DIFFERENTIATION GRADIENT OF A CURVE We have looked at the process needed for finding the gradient of a curve (or the rate of change of a curve). We have defined the gradient of a curve

More information

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018 Lecture 10 Partial derivatives Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts February 27, 2018 Last time: functions of two variables f(x, y) x and y are the independent

More information

- - - - - - - - - - - - - - - - - - DISCLAIMER - - - - - - - - - - - - - - - - - - General Information: This is a midterm from a previous semester. This means: This midterm contains problems that are of

More information

Take-Home Exam 1: pick up on Thursday, June 8, return Monday,

Take-Home Exam 1: pick up on Thursday, June 8, return Monday, SYLLABUS FOR 18.089 1. Overview This course is a review of calculus. We will start with a week-long review of single variable calculus, and move on for the remaining five weeks to multivariable calculus.

More information

June Stone Bridge Math Department. Dear Advanced Placement Calculus BC Student,

June Stone Bridge Math Department. Dear Advanced Placement Calculus BC Student, Stone Bridge Math Department June 06 Dear Advanced Placement Calculus BC Student, Congratulations on your wisdom in taking the BC course. I know you will find it rewarding and a great way to spend your

More information

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities 1 MATH 1 REVIEW SOLVING AN ABSOLUTE VALUE EQUATION Absolute value is a measure of distance; how far a number is from zero. In practice,

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 1A! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {2, 4, 6, 8, 10, 12, 14, 16,...} and let B = {3, 6, 9, 12, 15, 18,

More information

Calculus and Parametric Equations

Calculus and Parametric Equations Calculus and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Given a pair a parametric equations x = f (t) y = g(t) for a t b we know how

More information

Math 164-1: Optimization Instructor: Alpár R. Mészáros

Math 164-1: Optimization Instructor: Alpár R. Mészáros Math 164-1: Optimization Instructor: Alpár R. Mészáros First Midterm, April 20, 2016 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By writing

More information

A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3

A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3 A.P. Calculus BC Test Three Section Two Free-Response No Calculators Time 45 minutes Number of Questions 3 Each of the three questions is worth 9 points. The maximum possible points earned on this section

More information

Module 2: Reflecting on One s Problems

Module 2: Reflecting on One s Problems MATH55 Module : Reflecting on One s Problems Main Math concepts: Translations, Reflections, Graphs of Equations, Symmetry Auxiliary ideas: Working with quadratics, Mobius maps, Calculus, Inverses I. Transformations

More information

LAKELAND COMMUNITY COLLEGE COURSE OUTLINE FORM

LAKELAND COMMUNITY COLLEGE COURSE OUTLINE FORM LAKELAND COMMUNITY COLLEGE COURSE OUTLINE FORM ORIGINATION DATE: 8/2/99 APPROVAL DATE: 3/22/12 LAST MODIFICATION DATE: 3/28/12 EFFECTIVE TERM/YEAR: FALL/ 12 COURSE ID: COURSE TITLE: MATH2500 Calculus and

More information

Math 115 Practice for Exam 2

Math 115 Practice for Exam 2 Math 115 Practice for Exam Generated October 30, 017 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 5 questions. Note that the problems are not of equal difficulty, so you may want to skip

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

Review Guideline for Final

Review Guideline for Final Review Guideline for Final Here is the outline of the required skills for the final exam. Please read it carefully and find some corresponding homework problems in the corresponding sections to practice.

More information

Successful completion of the core function transformations unit. Algebra manipulation skills with squares and square roots.

Successful completion of the core function transformations unit. Algebra manipulation skills with squares and square roots. Extension A: Circles and Ellipses Algebra ; Pre-Calculus Time required: 35 50 min. Learning Objectives Math Objectives Students will write the general forms of Cartesian equations for circles and ellipses,

More information

MA 113 Calculus I Fall 2012 Exam 3 13 November Multiple Choice Answers. Question

MA 113 Calculus I Fall 2012 Exam 3 13 November Multiple Choice Answers. Question MA 113 Calculus I Fall 2012 Exam 3 13 November 2012 Name: Section: Last 4 digits of student ID #: This exam has ten multiple choice questions (five points each) and five free response questions (ten points

More information

Math 41 Second Exam November 4, 2010

Math 41 Second Exam November 4, 2010 Math 41 Second Exam November 4, 2010 Name: SUID#: Circle your section: Olena Bormashenko Ulrik Buchholtz John Jiang Michael Lipnowski Jonathan Lee 03 (11-11:50am) 07 (10-10:50am) 02 (1:15-2:05pm) 04 (1:15-2:05pm)

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

Math 51 Second Exam May 18, 2017

Math 51 Second Exam May 18, 2017 Math 51 Second Exam May 18, 2017 Name: SUNet ID: ID #: Complete the following problems. In order to receive full credit, please show all of your work and justify your answers. You do not need to simplify

More information

Math 115 Practice for Exam 3

Math 115 Practice for Exam 3 Math 115 Practice for Exam 3 Generated November 17, 2017 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 6 questions. Note that the problems are not of equal difficulty, so you may want to

More information

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4.

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4. MATH 23, FALL 2013 Text: Calculus, Early Transcendentals or Multivariable Calculus, 7th edition, Stewart, Brooks/Cole. We will cover chapters 12 through 16, so the multivariable volume will be fine. WebAssign

More information

MATH 120 THIRD UNIT TEST

MATH 120 THIRD UNIT TEST MATH 0 THIRD UNIT TEST Friday, April 4, 009. NAME: Circle the recitation Tuesday, Thursday Tuesday, Thursday section you attend MORNING AFTERNOON A B Instructions:. Do not separate the pages of the exam.

More information

McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS CALCULUS 1

McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS CALCULUS 1 McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION VERSION 1 MATHEMATICS 140 2008 09 CALCULUS 1 EXAMINER: Professor W. G. Brown DATE: Sunday, December 07th, 2008 ASSOCIATE EXAMINER: Dr. D. Serbin TIME:

More information

2017 SUMMER REVIEW FOR STUDENTS ENTERING GEOMETRY

2017 SUMMER REVIEW FOR STUDENTS ENTERING GEOMETRY 2017 SUMMER REVIEW FOR STUDENTS ENTERING GEOMETRY The following are topics that you will use in Geometry and should be retained throughout the summer. Please use this practice to review the topics you

More information

Notes about changes to Approved Syllabus # 43080v2

Notes about changes to Approved Syllabus # 43080v2 Notes about changes to Approved Syllabus # 43080v2 1. An update to the syllabus was necessary because of a county wide adoption of new textbooks for AP Calculus. 2. No changes were made to the Course Outline

More information

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a AP Physics C: Mechanics Greetings, For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a brief introduction to Calculus that gives you an operational knowledge of

More information

Math 116 Second Midterm November 13, 2017

Math 116 Second Midterm November 13, 2017 On my honor, as a student, I have neither given nor received unauthorized aid on this academic work. Initials: Do not write in this area Your Initials Only: Math 6 Second Midterm November 3, 7 Your U-M

More information

The University of British Columbia Final Examination - December 11, 2013 Mathematics 104/184 Time: 2.5 hours. LAST Name.

The University of British Columbia Final Examination - December 11, 2013 Mathematics 104/184 Time: 2.5 hours. LAST Name. The University of British Columbia Final Examination - December 11, 2013 Mathematics 104/184 Time: 2.5 hours LAST Name First Name Signature Student Number MATH 104 or MATH 184 (Circle one) Section Number:

More information

Mathematics 131 Final Exam 02 May 2013

Mathematics 131 Final Exam 02 May 2013 Mathematics 3 Final Exam 0 May 03 Directions: This exam should consist of twelve multiple choice questions and four handgraded questions. Multiple choice questions are worth five points apiece. The first

More information

AP Calculus AB - Course Outline

AP Calculus AB - Course Outline By successfully completing this course, you will be able to: a. Work with functions represented in a variety of ways and understand the connections among these representations. b. Understand the meaning

More information

Math 115 Second Midterm March 25, 2010

Math 115 Second Midterm March 25, 2010 Math 115 Second Midterm March 25, 2010 Name: EXAM SOLUTIONS Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 9 pages including this cover. There are 8 problems.

More information

University of Connecticut Department of Mathematics

University of Connecticut Department of Mathematics University of Connecticut Department of Mathematics Math 1131 Sample Exam 2 Fall 2014 Name: Instructor Name: Section: TA Name: Discussion Section: This sample exam is just a guide to prepare for the actual

More information

Lecture 20: Further graphing

Lecture 20: Further graphing Lecture 20: Further graphing Nathan Pflueger 25 October 2013 1 Introduction This lecture does not introduce any new material. We revisit the techniques from lecture 12, which give ways to determine the

More information

Calculus with business applications, Lehigh U, Lecture 03 notes Summer

Calculus with business applications, Lehigh U, Lecture 03 notes Summer Calculus with business applications, Lehigh U, Lecture 03 notes Summer 01 1 Lines and quadratics 1. Polynomials, functions in which each term is a positive integer power of the independent variable include

More information

MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010)

MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010) Course Prerequisites MATH 100 and MATH 180 Learning Objectives Session 2010W Term 1 (Sep Dec 2010) As a prerequisite to this course, students are required to have a reasonable mastery of precalculus mathematics

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

MAT 146. Semester Exam Part II 100 points (Part II: 50 points) Calculator Used Impact on Course Grade: approximately 30% Score

MAT 146. Semester Exam Part II 100 points (Part II: 50 points) Calculator Used Impact on Course Grade: approximately 30% Score MAT 146 Semester Exam Part II Name 100 points (Part II: 50 points) Calculator Used Impact on Course Grade: approximately 30% Score Questions (17) through (26) are each worth 5 points. See the grading rubric

More information

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I

MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM. Name (Print last name first):... Instructor:... Section:... PART I CALCULUS I, FINAL EXAM 1 MA 125 CALCULUS I FALL 2006 December 08, 2006 FINAL EXAM Name (Print last name first):............................................. Student ID Number:...........................

More information

Math 115 Second Midterm November 12, 2018

Math 115 Second Midterm November 12, 2018 EXAM SOLUTIONS Math 5 Second Midterm November, 08. Do not open this eam until you are told to do so.. Do not write your name anywhere on this eam. 3. This eam has 3 pages including this cover. There are

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

AP CALCULUS AB Study Guide for Midterm Exam 2017

AP CALCULUS AB Study Guide for Midterm Exam 2017 AP CALCULUS AB Study Guide for Midterm Exam 2017 CHAPTER 1: PRECALCULUS REVIEW 1.1 Real Numbers, Functions and Graphs - Write absolute value as a piece-wise function - Write and interpret open and closed

More information

Spring /06/2009

Spring /06/2009 MA 123 Elementary Calculus FINAL EXAM Spring 2009 05/06/2009 Name: Sec.: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4.

CHAPTER 1. DIFFERENTIATION 18. As x 1, f(x). At last! We are now in a position to sketch the curve; see Figure 1.4. CHAPTER. DIFFERENTIATION 8 and similarly for x, As x +, fx), As x, fx). At last! We are now in a position to sketch the curve; see Figure.4. Figure.4: A sketch of the function y = fx) =/x ). Observe the

More information

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C)

Since x + we get x² + 2x = 4, or simplifying it, x² = 4. Therefore, x² + = 4 2 = 2. Ans. (C) SAT II - Math Level 2 Test #01 Solution 1. x + = 2, then x² + = Since x + = 2, by squaring both side of the equation, (A) - (B) 0 (C) 2 (D) 4 (E) -2 we get x² + 2x 1 + 1 = 4, or simplifying it, x² + 2

More information

MTH 173 Calculus with Analytic Geometry I and MTH 174 Calculus with Analytic Geometry II

MTH 173 Calculus with Analytic Geometry I and MTH 174 Calculus with Analytic Geometry II MTH 173 Calculus with Analytic Geometry I and MTH 174 Calculus with Analytic Geometry II Instructor: David H. Pleacher Home Phone: 869-4883 School Phone: 662-3471 Room: 212 E-Mail Address: Pleacher.David@wps.k12.va.us

More information

Math 1131 Final Exam Review Spring 2013

Math 1131 Final Exam Review Spring 2013 University of Connecticut Department of Mathematics Math 1131 Final Exam Review Spring 2013 Name: Instructor Name: TA Name: 4 th February 2010 Section: Discussion Section: Read This First! Please read

More information

AP Calculus AB Course Description and Syllabus

AP Calculus AB Course Description and Syllabus AP Calculus AB Course Description and Syllabus Course Objective: This course is designed to prepare the students for the AP Exam in May. Students will learn to use graphical, numerical, verbal and analytical

More information

1S11: Calculus for students in Science

1S11: Calculus for students in Science 1S11: Calculus for students in Science Dr. Vladimir Dotsenko TCD Lecture 21 Dr. Vladimir Dotsenko (TCD) 1S11: Calculus for students in Science Lecture 21 1 / 1 An important announcement There will be no

More information

Math 241 Final Exam, Spring 2013

Math 241 Final Exam, Spring 2013 Math 241 Final Exam, Spring 2013 Name: Section number: Instructor: Read all of the following information before starting the exam. Question Points Score 1 5 2 5 3 12 4 10 5 17 6 15 7 6 8 12 9 12 10 14

More information

Parabolas and lines

Parabolas and lines Parabolas and lines Study the diagram at the right. I have drawn the graph y = x. The vertical line x = 1 is drawn and a number of secants to the parabola are drawn, all centred at x=1. By this I mean

More information

Chemistry 883 Computational Quantum Chemistry

Chemistry 883 Computational Quantum Chemistry Chemistry 883 Computational Quantum Chemistry Instructor Contact Information Professor Benjamin G. Levine levine@chemistry.msu.edu 215 Chemistry Building 517-353-1113 Office Hours Tuesday 9:00-11:00 am

More information

MATH 1190 Exam 4 (Version 2) Solutions December 1, 2006 S. F. Ellermeyer Name

MATH 1190 Exam 4 (Version 2) Solutions December 1, 2006 S. F. Ellermeyer Name MATH 90 Exam 4 (Version ) Solutions December, 006 S. F. Ellermeyer Name Instructions. Your work on this exam will be graded according to two criteria: mathematical correctness and clarity of presentation.

More information

Math 115 Second Midterm November 12, 2013

Math 115 Second Midterm November 12, 2013 Math 5 Second Midterm November 2, 203 Name: EXAM SOLUTIONS Instructor: Section:. Do not open this exam until you are told to do so. 2. This exam has 9 pages including this cover. There are 0 problems.

More information

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Final Exam Review Exercise Set A, Math 1551, Fall 2017 Final Exam Review Exercise Set A, Math 1551, Fall 2017 This review set gives a list of topics that we explored throughout this course, as well as a few practice problems at the end of the document. A complete

More information

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x).

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x). Definition of The Derivative Function Definition (The Derivative Function) Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Exam 1c 1/31/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 8 pages (including this cover page) and 7 problems. Check to see if any pages

More information

MAT 122 Homework 7 Solutions

MAT 122 Homework 7 Solutions MAT 1 Homework 7 Solutions Section 3.3, Problem 4 For the function w = (t + 1) 100, we take the inside function to be z = t + 1 and the outside function to be z 100. The derivative of the inside function

More information

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test. Chapter 4: Applications of Differentiation In this chapter we will cover: 41 Maximum and minimum values The critical points method for finding extrema 43 How derivatives affect the shape of a graph The

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. MTH 33 Solutions to Final Exam May, 8 Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages through. Show

More information