Bipolar Junction Transistor (BJT) Model. Model Kind. Model Sub-Kind. SPICE Prefix. SPICE Netlist Template Format

Size: px
Start display at page:

Download "Bipolar Junction Transistor (BJT) Model. Model Kind. Model Sub-Kind. SPICE Prefix. SPICE Netlist Template Format"

Transcription

1 Bipolar Junction Transistor (BJT) Model Old Content - visit altiumcom/documentation Modified by Admin on Sep 13, 2017 Model Kind Transistor Model Sub-Kind BJT SPICE Prefix Q SPICE Netlist Template %1 %2 &"AREA FACTOR" &"STARTING CONDITION"?"INITIAL B- E VOLTAGE" IC=@"INITIAL B-E C-E VOLTAGE"?TEMPERATURE TEMP=@TEMPERATURE Parameters (definable at component level) The following component-level parameters are definable for this model type and are listed on the Parameters tab of the Sim Model dialog To access this dialog, simply double-click on the entry for the simulation model link in the Models region of the Component Properties dialog Area Factor Starting Condition Initial B-E Voltage Initial C-E Voltage Temperature specifies the number of equivalent parallel devices of the specified model This setting affects a number of parameters in the model set to OFF to set terminal voltages to zero during operating point analysis Can be useful as an aid in convergence time-zero voltage across base-emitter terminals (in Volts) time-zero voltage across collector-emitter terminals (in Volts) temperature at which the device is to operate (in Degrees Celsius) If no value is specified, the default value assigned to TEMP on the SPICE Options page of the Analyses Setup dialog will be used (Default = 27) Parameters (definable within model file) The following is a list of parameters that can be stored in the associated model file:

2 IS transport saturation current (in Amps) (Default = 10e-16) BF ideal maximum forward beta (Default = 100) NF forward current emission coefficient (Default = 1) VAF IKF forward Early voltage (in Volts) (Default = infinite) corner for forward beta high current roll-off (in Amps) (Default = infinite) ISE B-E leakage saturation current (in Amps) (Default = 0) NE B-E leakage emission coefficient (Default = 15) BR ideal maximum reverse beta (Default = 1) NR reverse current emission coefficient (Default = 1) VAR IKR reverse Early voltage (in Volts) (Default = infinite) corner for reverse beta high current roll-off (in Amps) (Default = infinite) ISC B-C leakage saturation current (in Amps) (Default = 0) NC B-C leakage emission coefficient (Default = 2) RB zero bias base resistance (in Ohms) (Default = 0) IRB RBM current where base resistance falls halfway to it minimum value (in Amps) (Default = infinite) minimum base resistance at high currents (in Ohms) (Default = RB) RE emitter resistance (in Ohms) (Default = 0) RC collector resistance (in Ohms) (Default = 0) CJE B-E zero-bias depletion capacitance (in Farads) (Default = 0) VJE B-E built-in potential (in Volts) (Default = 075) MJE B-E junction exponential factor (Default = 033) TF ideal forward transit time (in seconds) (Default = 0) XTF coefficient for bias dependence of TF (Default = 0) VTF voltage describing VBC dependence of TF (in Volts) (Default = infinite) ITF high-current parameter for effect on TF (in Amps) (Default = 0) PTF excess phase at freq=10/(tf*2pi) Hz (in Degrees) (Default = 0) CJC B-C zero-bias depletion capacitance (in Farads) (Default = 0) VJC B-C built-in potential (in Volts) (Default = 075) MJC B-C junction exponential factor (Default = 033) XCJC fraction of B-C depletion capacitance connected to internal base node (Default = 1) TR ideal reverse transit time (in seconds) (Default = 0) CJS zero-bias collector-substrate capacitance (in Farads) (Default = 0) VJS substrate junction built-in potential (in Volts) (Default = 075) MJS substrate junction exponential factor (Default = 0) XTB forward and reverse beta temperature exponent (Default = 0)

3 EG energy gap for temperature effect on IS (in ev) (Default = 111) XTI temperature exponent for effect on IS (Default = 3) KF flicker noise coefficient (Default = 0) AF flicker noise exponent (Default = 1) FC coefficient for forward-bias depletion capacitance formula (Default = 05) TNOM parameter measurement temperature (in C) - If no value is specified, the default value assigned to TNOM on the SPICE Options page of the Analyses Setup dialog will be used (Default = 27) Notes 1 The model for the BJT is an adaptation of the integral charge control model of Gummel and Poon This enhanced version of the original Gummel-Poon model includes several effects at high bias levels When certain parameters are not specified, the model automatically defaults to that of the simpler Ebers-Moll model 2 Ground is used as the substrate node 3 The values for Initial B-E Voltage and Initial C-E Voltage only apply if the Use Initial Conditions option is enabled on the Transient/Fourier Analysis Setup page of the Analyses Setup dialog 4 The Area Factor affects the following model parameters: transport saturation current (IS) corner for forward beta high current roll-off (IKF) B-E leakage saturation current (ISE) corner for reverse beta high current roll-off (IKR) B-C leakage saturation current (ISC) zero bias base resistance (RB) current where base resistance falls halfway to its minimum value (IRB) minimum base resistance at high currents (RBM) emitter resistance (RE) collector resistance (RC) B-E zero-bias depletion capacitance (CJE) high-current parameter for effect on TF (ITF) B-C zero-bias depletion capacitance (CJC) zero-bias collector-substrate capacitance (CJS) If the Area Factor is omitted, a value of 10 is assumed 5 The link to the required model file (*mdl) is specified on the Model Kind tab of the Sim Model dialog The Model Name is used in the netlist to reference this file 6 Where a parameter has an indicated default (as part of the SPICE model definition), that default will be used if no value is specifically entered The default should be applicable to most simulations Generally you do not need to change this value Examples

4 Consider the BJT in the above image, with the following characteristics: Pin1 (collector) is connected to net C Pin2 (base) is connected to net GND Pin3 (emitter) is connected to net E Designator is Q1 The linked simulation model file is 2N3904mdl If no values are entered for the parameters in the Sim Model dialog, the entries in the SPICE netlist would be: *Schematic Netlist: Q1 C 0 E 2N3904 *Models and Subcircuit: MODEL 2N3904 NPN(IS=14E-14 BF=300 VAF=100 IKF=0025 ISE=3E-13 BR=75 RC=24 + CJE=45E-12 TF=4E-10 CJC=35E-12 TR=21E-8 XTB=15 KF=9E-16 ) and the SPICE engine would use the indicated parameter information defined in the model file, along with default parameter values inherent to the model for those parameters not specified in the file If the following parameter values were specified on the Parameters tab of the Sim Model dialog: Area Factor = 3 Starting Condition = OFF Temperature = 24 then the entries in the SPICE netlist would be: *Schematic Netlist: Q1 C 0 E 2N OFF TEMP=24 *Models and Subcircuit:

5 MODEL 2N3904 NPN(IS=14E-14 BF=300 VAF=100 IKF=0025 ISE=3E-13 BR=75 RC=24 + CJE=45E-12 TF=4E-10 CJC=35E-12 TR=21E-8 XTB=15 KF=9E-16 ) In this case, the SPICE engine would use this information, in conjunction with the indicated parameters defined in the model file (and any defaults for parameters not specified) PSpice Support Many of the parameters that can be included in a linked model file for this type of device are common to both Spice3f5 and PSpice Those that are supported can be found in the previous section Parameters (definable within model file) The following PSpice-based parameters are not supported for this device type: CN D GAMMA ISS NK NS QCO QUASIMOD RCO TRB1 TRB2 TRC1 TRC2 TRE1 TRE2 TRM1 TRM2 VG VO XCJC2 XCJS quasi-saturation temperature coefficient for hole mobility quasi-saturation temperature coefficient for scattering-limited hole carrier velocity epitaxial region doping factor substrate p-n saturation current high-current roll-off coefficient substrate p-n emission coefficient epitaxial region charge factor quasi-saturation model flag for temperature dependence epitaxial region resistance RB temperature coefficient (linear) RB temperature coefficient (quadratic) RC temperature coefficient (linear) RC temperature coefficient (quadratic) RE temperature coefficient (linear) RE temperature coefficient (quadratic) RBM temperature coefficient (linear) RBM temperature coefficient (quadratic) quasi-saturation extrapolated bandgap voltage at 0 K carrier mobility knee voltage fraction of CJC connected internally to Rb fraction of CJS connected internally to Rc Source URL:

****** bjt model parameters tnom= temp= *****

****** bjt model parameters tnom= temp= ***** ****** HSPICE H 2013.03 64 BIT (Feb 27 2013) RHEL64 ****** Copyright (C) 2013 Synopsys, Inc. All Rights Reserved. Unpublished rights reserved under US copyright laws. This program is protected by law and

More information

Charge-Storage Elements: Base-Charging Capacitance C b

Charge-Storage Elements: Base-Charging Capacitance C b Charge-Storage Elements: Base-Charging Capacitance C b * Minority electrons are stored in the base -- this charge q NB is a function of the base-emitter voltage * base is still neutral... majority carriers

More information

DATA SHEET. PRF957 UHF wideband transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Mar 01.

DATA SHEET. PRF957 UHF wideband transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Mar 01. DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D1 Supersedes data of 1999 Mar 1 1999 Jul 3 FEATURES PINNING Small size Low noise Low distortion High gain Gold metallization ensures excellent reliability.

More information

BIPOLAR JUNCTION TRANSISTOR MODELING

BIPOLAR JUNCTION TRANSISTOR MODELING BIPOLAR JUNCTION TRANSISTOR MODELING Introduction Operating Modes of the Bipolar Transistor The Equivalent Schematic and the Formulas of the SPICE Gummel-Poon Model A Listing of the Gummel-Poon Parameters

More information

BFR93A. NPN Silicon RF Transistor. For low-noise, high-gain broadband amplifiers at collector currents from 2 ma to 30 ma

BFR93A. NPN Silicon RF Transistor. For low-noise, high-gain broadband amplifiers at collector currents from 2 ma to 30 ma NPN Silicon RF Transistor For lownoise, highgain broadband amplifiers at collector currents from ma to ma VPS5 ESD: Electrostatic discharge sensitive device, observe handling precaution! Type Marking Pin

More information

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002 Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L15 05Mar02 1 Charge components in the BJT From Getreau,

More information

BFP193. NPN Silicon RF Transistor*

BFP193. NPN Silicon RF Transistor* NPN Silicon RF Transistor* For low noise, highgain amplifiers up to GHz For linear broadband amplifiers f T = 8 GHz, F = db at 900 MHz * Short term description ESD (Electrostatic discharge) sensitive device,

More information

Berkeley. Two-Port Noise. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad. September 13, 2014

Berkeley. Two-Port Noise. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad. September 13, 2014 Berkeley Two-Port Noise Prof. Ali M. U.C. Berkeley Copyright c 2014 by Ali M. September 13, 2014 Noise Figure Review Recall that the noise figure of a two-port is defined by F = P N s + P Na P Ns = 1 +

More information

Type Marking Pin Configuration Package BFR92P GFs 1=B 2=E 3=C SOT23

Type Marking Pin Configuration Package BFR92P GFs 1=B 2=E 3=C SOT23 NPN Silicon RF Transistor* For broadband amplifiers up to GHz and fast nonsaturated switches at collector currents from 0.5 ma to 0 ma Complementary type: BFT9 (PNP) * Short term description ESD (Electrostatic

More information

BFP196W. NPN Silicon RF Transistor*

BFP196W. NPN Silicon RF Transistor* NPN Silicon RF Transistor* For low noise, low distortion broadband amplifiers in antenna and telecommunications systems up to 1.5 GHz at collector currents from 20 ma to 80 ma Power amplifier for DECT

More information

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR183W RHs 1=B 2=E 3=C SOT323

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR183W RHs 1=B 2=E 3=C SOT323 NPN Silicon RF Transistor* For low noise, highgain broadband amplifiers at collector currents from ma to 0 ma f T = 8 GHz, F = 0.9 db at 900 MHz Pbfree (RoHS compliant) package ) Qualified according AEC

More information

BFP193. NPN Silicon RF Transistor* For low noise, high-gain amplifiers up to 2 GHz For linear broadband amplifiers f T = 8 GHz, F = 1 db at 900 MHz

BFP193. NPN Silicon RF Transistor* For low noise, high-gain amplifiers up to 2 GHz For linear broadband amplifiers f T = 8 GHz, F = 1 db at 900 MHz NPN Silicon RF Transistor* For low noise, highgain amplifiers up to GHz For linear broadband amplifiers f T = 8 GHz, F = db at 900 MHz Pbfree (RoHS compliant) package ) Qualified according AEC Q * Short

More information

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR181 RFs 1=B 2=E 3=C SOT23

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR181 RFs 1=B 2=E 3=C SOT23 NPN Silicon RF Transistor* For low noise, highgain broadband amplifiers at collector currents from 0.5 ma to ma f T = 8 GHz, F = 0.9 db at 900 MHz Pbfree (RoHS compliant) package ) Qualified according

More information

BFP196W. NPN Silicon RF Transistor*

BFP196W. NPN Silicon RF Transistor* NPN Silicon RF Transistor* For low noise, low distortion broadband amplifiers in antenna and telecommunications systems up to 1.5 GHz at collector currents from 20 ma to 80 ma Power amplifier for DECT

More information

Lecture Notes for ECE 215: Digital Integrated Circuits

Lecture Notes for ECE 215: Digital Integrated Circuits Lecture Notes for ECE 215: Digital Integrated Circuits J. E. Ayers Electrical and Computer Engineering Department University of Connecticut 2002 All rights reserved University of Connecticut 1 Introduction

More information

Type Marking Pin Configuration Package BGA427 BMs 1, IN 2, GND 3, +V 4, Out SOT343. Maximum Ratings Parameter Symbol Value Unit Device current I D

Type Marking Pin Configuration Package BGA427 BMs 1, IN 2, GND 3, +V 4, Out SOT343. Maximum Ratings Parameter Symbol Value Unit Device current I D BGA7 SiMMICAmplifier in SIEGET Technologie Cascadable 0 Ωgain block Unconditionally stable Gain S = 8. db at.8 GHz (Appl.) gain S = db at.8 GHz (Appl.) IP out = +7 dbm at.8 GHz (V D =V, I D =9.mA) Noise

More information

Symbolic SPICE TM Circuit Analyzer and Approximator

Symbolic SPICE TM Circuit Analyzer and Approximator Symbolic SPICE Symbolic SPICE TM Circuit Analyzer and Approximator Application Note AN-006: Magnetic Microphone Amplifier by Gregory M. Wierzba Rev 072010 A) Introduction The schematic shown below in Fig.

More information

PSpice components for CAD

PSpice components for CAD PSpice components for CAD POLITEHNICA University of Bucharest, UPB-CETTI, Spl. Independentei 313, 060042-Bucharest, Romania, Phone: +40 21 3169633, Fax: +40 21 3169634, email: norocel.codreanu@cetti.ro

More information

Realization of Tunable Pole-Q Current-Mode OTA-C Universal Filter

Realization of Tunable Pole-Q Current-Mode OTA-C Universal Filter Circuits Syst Signal Process (2010) 29: 913 924 DOI 10.1007/s00034-010-9189-1 Realization of Tunable Pole-Q Current-Mode OTA-C Universal Filter Pipat Prommee Thanate Pattanatadapong Received: 23 February

More information

Physical resistor model n subtype

Physical resistor model n subtype Physical resistor model n subtype ResistorPhyN Terminal0 Terminal1 Terminal2 Description: This element implements a semiconductor resistor based on the n subtype of the Cadence physical resistor model.

More information

Diode Model (PN-Junction Diode Model)

Diode Model (PN-Junction Diode Model) Diode Model (PN-Junction Diode Model) Diode_Model (PN-Junction Diode Model) Symbol Parameters Model parameters must be specified in SI units. Name Description Units Default Level Model level selector (1=standard,

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BFT93W PNP 4 GHz wideband transistor. Product specification Supersedes data of November 1992

DISCRETE SEMICONDUCTORS DATA SHEET. BFT93W PNP 4 GHz wideband transistor. Product specification Supersedes data of November 1992 DISCRETE SEMICONDUCTORS DATA SHEET Supersedes data o November 199 March 1994 FEATURES High power gain Gold metallization ensures excellent reliability SOT33 (S-mini) package. APPLICATIONS It is intended

More information

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002 Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/ L16 07Mar02 1 Gummel-Poon Static npn Circuit Model C RC Intrinsic

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

About Modeling the Reverse Early Effect in HICUM Level 0

About Modeling the Reverse Early Effect in HICUM Level 0 About Modeling the Reverse Early Effect in HICUM Level 0 6 th European HICUM Workshop, June 12-13, 2006, Heilbronn Didier CELI, STMicroelectronics 1/21 D. Céli Purpose According to the bipolar models,

More information

13. Bipolar transistors

13. Bipolar transistors Technische Universität Graz Institute of Solid State Physics 13. Bipolar transistors Jan. 16, 2019 Technische Universität Graz Institute of Solid State Physics bipolar transistors npn transistor collector

More information

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes Problem 1: Semiconductor Fundamentals [30 points] A uniformly doped silicon sample of length 100µm and cross-sectional area 100µm 2

More information

The Devices. Devices

The Devices. Devices The The MOS Transistor Gate Oxyde Gate Source n+ Polysilicon Drain n+ Field-Oxyde (SiO 2 ) p-substrate p+ stopper Bulk Contact CROSS-SECTION of NMOS Transistor Cross-Section of CMOS Technology MOS transistors

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 1 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.12 Electronic Devices and Circuits Exam No. 1 Wednesday, October 7, 29 7:3 to 9:3

More information

Lecture 19 - p-n Junction (cont.) October 18, Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics

Lecture 19 - p-n Junction (cont.) October 18, Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 19-1 Lecture 19 - p-n Junction (cont.) October 18, 2002 Contents: 1. Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode:

More information

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2 Technische Universität Graz nstitute of Solid State Physics Exam Feb 2, 10:00-11:00 P2 Exam Four questions, two from the online list. Calculator is ok. No notes. Explain some concept: (tunnel contact,

More information

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline Lecture 17 The Bipolar Junction Transistor (II) Regimes of Operation Outline Regimes of operation Large-signal equivalent circuit model Output characteristics Reading Assignment: Howe and Sodini; Chapter

More information

Tutorial #4: Bias Point Analysis in Multisim

Tutorial #4: Bias Point Analysis in Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs

More information

Forward-Active Terminal Currents

Forward-Active Terminal Currents Forward-Active Terminal Currents Collector current: (electron diffusion current density) x (emitter area) diff J n AE qd n n po A E V E V th ------------------------------ e W (why minus sign? is by def.

More information

figure shows a pnp transistor biased to operate in the active mode

figure shows a pnp transistor biased to operate in the active mode Lecture 10b EE-215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the

More information

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model Content- MOS Devices and Switching Circuits Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model A Cantoni 2009-2013 Digital Switching 1 Content- MOS

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009 Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive

More information

1st Year-Computer Communication Engineering-RUC. 4- P-N Junction

1st Year-Computer Communication Engineering-RUC. 4- P-N Junction 4- P-N Junction We begin our study of semiconductor devices with the junction for three reasons. (1) The device finds application in many electronic systems, e.g., in adapters that charge the batteries

More information

Advanced Design System Circuit Components Nonlinear Devices

Advanced Design System Circuit Components Nonlinear Devices Advanced Design System 2002 Circuit Components Nonlinear Devices February 2002 Notice The information contained in this document is subject to change without notice. Agilent Technologies makes no warranty

More information

SPICE Differentiation Mike Engelhardt

SPICE Differentiation Mike Engelhardt SPICE Differentiation Mike Engelhardt Analog design engineers lean heavily on simulation to predict circuit performance. The value of a simulator hangs on how well it can predict physical reality, and

More information

Department of Electrical and Electronic Engineering Imperial College London

Department of Electrical and Electronic Engineering Imperial College London Department of Electrical and Electronic Engineering mperial College London EE 2.3: Semiconductor Modelling in SPCE Course homepage: http://www.imperial.ac.uk/people/paul.mitcheson/teaching Paul D. Mitcheson

More information

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1 Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode

More information

SOT-23 Mark: 1A. = 25 C unless otherwise noted T A. Symbol Parameter Value Units

SOT-23 Mark: 1A. = 25 C unless otherwise noted T A. Symbol Parameter Value Units B E N39 TO-9 MMBT39 SOT-3 Mark: A B E PZT39 B SOT-3 E N39 / MMBT39 / PZT39 This device is designed as a general purpse amplifier and switch. The useful dynamic range extends t ma as a switch and t MHz

More information

The Devices. Jan M. Rabaey

The Devices. Jan M. Rabaey The Devices Jan M. Rabaey Goal of this chapter Present intuitive understanding of device operation Introduction of basic device equations Introduction of models for manual analysis Introduction of models

More information

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn

More information

Memories Bipolar Transistors

Memories Bipolar Transistors Technische Universität Graz nstitute of Solid State Physics Memories Bipolar Transistors Technische Universität Graz nstitute of Solid State Physics Exams February 5 March 7 April 18 June 27 Exam Four

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 21: Bipolar Junction Transistor Administrative Midterm Th 6:30-8pm in Sibley Auditorium Covering everything

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

Device Physics: The Bipolar Transistor

Device Physics: The Bipolar Transistor Monolithic Amplifier Circuits: Device Physics: The Bipolar Transistor Chapter 4 Jón Tómas Guðmundsson tumi@hi.is 2. Week Fall 2010 1 Introduction In analog design the transistors are not simply switches

More information

Appendix 1: List of symbols

Appendix 1: List of symbols Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination

More information

LEVEL 61 RPI a-si TFT Model

LEVEL 61 RPI a-si TFT Model LEVEL 61 RPI a-si TFT Model Star-Hspice LEVEL 61 is an AIM-SPICE MOS15 amorphous silicon (a-si) thin-film transistor (TFT) model. Model Features AIM-SPICE MOS15 a-si TFT model features include: Modified

More information

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 17-1 Lecture 17 - The Bipolar Junction Transistor (I) Contents: Forward Active Regime April 10, 2003 1. BJT: structure and basic operation

More information

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.) 6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 35-1 Lecture 35 - Bipolar Junction Transistor (cont.) November 27, 2002 Contents: 1. Current-voltage characteristics of ideal BJT (cont.)

More information

Digital Integrated CircuitDesign

Digital Integrated CircuitDesign Digital Integrated CircuitDesign Lecture 5a Bipolar Transistor Dep. Region Neutral Base n(0) b B C n b0 P C0 P e0 P C xn 0 xp 0 x n(w) b W B Adib Abrishamifar EE Department IUST Contents Bipolar Transistor

More information

Model derivation of Mextram 504

Model derivation of Mextram 504 Nat.Lab. Unclassified Report NL-UR 2002/806 Date of issue: March 2005 Model derivation of Mextram 504 The physics behind the model J.C.J. Paasschens, W.J. Kloosterman, and R. v.d. Toorn Unclassified report

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time

More information

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

BJT - Mode of Operations

BJT - Mode of Operations JT - Mode of Operations JTs can be modeled by two back-to-back diodes. N+ P N- N+ JTs are operated in four modes. HO #6: LN 251 - JT M Models Page 1 1) Forward active / normal junction forward biased junction

More information

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model HICUM HICUM / L2 A geometry scalable physics-based compact bipolar transistor model M. Schroter, A. Pawlak, A. Mukherjee Documentation of model version 2.32 August, 2013 M. Schroter 16/5/14 1 HICUM List

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 6: January 30, 2018 MOS Operating Regions, pt. 2 Lecture Outline! Operating Regions (review) " Subthreshold " Resistive " Saturation! Intro.

More information

Overcoming limitations of SPICE's built-in models for high speed bipolar processes

Overcoming limitations of SPICE's built-in models for high speed bipolar processes Lehigh University Lehigh Preserve Theses and Dissertations 1992 Overcoming limitations of SPICE's built-in models for high speed bipolar processes Kenneth E. Gross Lehigh University Follow this and additional

More information

Bipolar junction transistor operation and modeling

Bipolar junction transistor operation and modeling 6.01 - Electronic Devices and Circuits Lecture 8 - Bipolar Junction Transistor Basics - Outline Announcements Handout - Lecture Outline and Summary; Old eam 1's on Stellar First Hour Eam - Oct. 8, 7:30-9:30

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 6, 01 MOS Transistor Basics Today MOS Transistor Topology Threshold Operating Regions Resistive Saturation

More information

MOS CAPACITOR AND MOSFET

MOS CAPACITOR AND MOSFET EE336 Semiconductor Devices 1 MOS CAPACITOR AND MOSFET Dr. Mohammed M. Farag Ideal MOS Capacitor Semiconductor Devices Physics and Technology Chapter 5 EE336 Semiconductor Devices 2 MOS Capacitor Structure

More information

N Channel MOSFET level 3

N Channel MOSFET level 3 N Channel MOSFET level 3 mosn3 NSource NBulk NSource NBulk NSource NBulk NSource (a) (b) (c) (d) NBulk Figure 1: MOSFET Types Form: mosn3: instance name n 1 n n 3 n n 1 is the drain node, n is the gate

More information

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed) ECE-342 Test 2 Solutions, Nov 4, 2008 6:00-8:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free

More information

ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000

ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000 Your Name: ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000 1. Review questions a) Illustrate the generation of a photocurrent in a p-n diode by drawing an energy band diagram. Indicate

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices The pn Junction 1) Charge carriers crossing the junction. 3) Barrier potential Semiconductor Physics and Devices Chapter 8. The pn Junction Diode 2) Formation of positive and negative ions. 4) Formation

More information

Skalierbares Varaktormodell zur layoutabhängigen Simulation von integrierten Varaktoren

Skalierbares Varaktormodell zur layoutabhängigen Simulation von integrierten Varaktoren Skalierbares Varaktormodell zur layoutabhängigen Simulation von integrierten Varaktoren Gliederung I) Längenskalierbarer Varaktor: Grundanforderungen und Anwendungsbereiche. II) Technologischer Aufbau.

More information

DC and AC modeling of minority carriers currents in ICs substrate

DC and AC modeling of minority carriers currents in ICs substrate DC and AC modeling of minority carriers currents in ICs substrate Camillo Stefanucci, Pietro Buccella, Maher Kayal and Jean-Michel Sallese Swiss Federal Institute of Technology Lausanne, Switzerland MOS-AK

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Vrg Qgd Gdg Vrd Gate Rg Rd Vgd Vgs Qds Ids = f(vds,vgs,t Qgs Ids Vds Idiode_f = f(vds Idiode_r = f(vdiode_r,t Ggs Qds = f(vds,t Qgs = f(vgs,t Vrs Rs Q

Vrg Qgd Gdg Vrd Gate Rg Rd Vgd Vgs Qds Ids = f(vds,vgs,t Qgs Ids Vds Idiode_f = f(vds Idiode_r = f(vdiode_r,t Ggs Qds = f(vds,t Qgs = f(vgs,t Vrs Rs Q Motorola s Electro Thermal (MET LDMOS Model 1. Description of the Model The MET LDMOS model [1] is an electro thermal model that can account for dynamic selfheating effects and was specifically tailored

More information

ECE PN Junctions and Diodes

ECE PN Junctions and Diodes ECE 342 2. PN Junctions and iodes Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu ECE 342 Jose Schutt Aine 1 B: material dependent parameter = 5.4 10

More information

A study of the silicon Bulk-Barrier Diodes designed in planar technology by means of simulation

A study of the silicon Bulk-Barrier Diodes designed in planar technology by means of simulation Journal of Engineering Science and Technology Review 2 (1) (2009) 157-164 Research Article JOURNAL OF Engineering Science and Technology Review www.jestr.org A study of the silicon Bulk-Barrier Diodes

More information

ECE-305: Spring 2018 Final Exam Review

ECE-305: Spring 2018 Final Exam Review C-305: Spring 2018 Final xam Review Pierret, Semiconductor Device Fundamentals (SDF) Chapters 10 and 11 (pp. 371-385, 389-403) Professor Peter Bermel lectrical and Computer ngineering Purdue University,

More information

Diodes for Power Electronic Applications

Diodes for Power Electronic Applications Lecture Notes Diodes for Power Electronic Applications William P. Robbins Professor, Dept. of Electrical and Computer Engineering University of Minnesota OUTLINE PN junction power diode construction Breakdown

More information

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models LC 3908, Physical lectronics, Lecture 17 Bipolar Transistor njection Models Lecture Outline Last lecture looked at qualitative operation of the BJT, now want to develop a quantitative model to predict

More information

VBIC MODELING HANDBOOK

VBIC MODELING HANDBOOK -- VBIC MODELING HANDBOOK --------------------------------------------------------------- Keysight Technologies and F.Sischka www.keysight.com www.sisconsult.de VBIC Modeling Handbook /3/27 -2- Foreword

More information

M back can significantly affect the operation of bipolar

M back can significantly affect the operation of bipolar 1368 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 1993 Compact Modeling of BJT Self-Heating in SPICE David T. Zweidinger, Sang-Gug Lee, Member,

More information

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs EECS 142 Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs Prof. Ali M. Niknejad University of California, Berkeley Copyright c 2005 by Ali M. Niknejad A. M. Niknejad University of California,

More information

CIRCUIT MODELING IN DYMOLA. Daryl Ralph Hild

CIRCUIT MODELING IN DYMOLA. Daryl Ralph Hild CIRCUIT MODELING IN DYMOLA by Daryl Ralph Hild A Thesis Submitted to the Faculty of the DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING In Partial Fulfillment of the Requirements For the Degree of MASTER

More information

EE 3329 Electronic Devices Syllabus ( Extended Play )

EE 3329 Electronic Devices Syllabus ( Extended Play ) EE 3329 - Electronic Devices Syllabus EE 3329 Electronic Devices Syllabus ( Extended Play ) The University of Texas at El Paso The following concepts can be part of the syllabus for the Electronic Devices

More information

p-n junction biasing, p-n I-V characteristics, p-n currents Norlaili Mohd. Noh EEE /09

p-n junction biasing, p-n I-V characteristics, p-n currents Norlaili Mohd. Noh EEE /09 CLASS 6&7 p-n junction biasing, p-n I-V characteristics, p-n currents 1 p-n junction biasing Unbiased p-n junction: the potential barrier is 0.7 V for Si and 0.3 V for Ge. Nett current across the p-n junction

More information

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor Preliminary Technical Information V CES = 3V 11 = 11A V CE(sat) 3.2V C1 C2 (Electrically Isolated Tab) G1 E1C3 G2 E2C G3 G E3E C1 C2

More information

Chapter 2. The Well. Cross Sections Patterning Design Rules Resistance PN Junction Diffusion Capacitance. Baker Ch. 2 The Well. Introduction to VLSI

Chapter 2. The Well. Cross Sections Patterning Design Rules Resistance PN Junction Diffusion Capacitance. Baker Ch. 2 The Well. Introduction to VLSI Chapter 2 The Well Cross Sections Patterning Design Rules Resistance PN Junction Diffusion Capacitance Joseph A. Elias, Ph.D. Adjunct Professor, University of Kentucky; Modeling MTS, Cypress Semiconductor

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

APPENDIX D: Binning BSIM3v3 Parameters

APPENDIX D: Binning BSIM3v3 Parameters APPENDIX D: Binning BSIM3v3 Parameters Below is a list of all BSIM3v3 model parameters which can or cannot be binned. All model parameters which can be binned follow the following implementation: P L P

More information

CLASS 3&4. BJT currents, parameters and circuit configurations

CLASS 3&4. BJT currents, parameters and circuit configurations CLASS 3&4 BJT currents, parameters and circuit configurations I E =I Ep +I En I C =I Cp +I Cn I B =I BB +I En -I Cn I BB =I Ep -I Cp I E = I B + I C I En = current produced by the electrons injected from

More information

junctions produce nonlinear current voltage characteristics which can be exploited

junctions produce nonlinear current voltage characteristics which can be exploited Chapter 6 P-N DODES Junctions between n-and p-type semiconductors are extremely important foravariety of devices. Diodes based on p-n junctions produce nonlinear current voltage characteristics which can

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor: 16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE Energy bands in Intrinsic and Extrinsic silicon: Energy Band Diagram of Conductor, Insulator and Semiconductor: 1 2 Carrier transport: Any motion

More information

Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model

Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) Model Old Content - visit altium.com/documentation Modified by Phil Loughhead on 4-Mar-2014 Model Kind Transistor Model Sub-Kind MOSFET SPICE

More information

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6 R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling ELEC 3908, Physical Electronics, Lecture 19 BJT Base Resistance and Small Signal Modelling Lecture Outline Lecture 17 derived static (dc) injection model to predict dc currents from terminal voltages This

More information

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating ELEC 3908, Physical Electronics, Lecture 18 The Early Effect, Breakdown and Self-Heating Lecture Outline Previous 2 lectures analyzed fundamental static (dc) carrier transport in the bipolar transistor

More information

ELEC3106 Electronics: lecture 7 summary. SPICE simulations. Torsten Lehmann

ELEC3106 Electronics: lecture 7 summary. SPICE simulations. Torsten Lehmann ELEC3106, Electronics SPICE simulations 1 ELEC3106 Electronics: lecture 7 summary SPICE simulations Torsten Lehmann School of Electrical Engineering and Telecommunication The University of New South Wales

More information