Nesterov s Acceleration

Size: px
Start display at page:

Download "Nesterov s Acceleration"

Transcription

1 Nesterov s Acceleration Nesterov Accelerated Gradient min X f(x)+ (X) f -smooth. Set s 1 = 1 and = 1. Set y 0. Iterate by increasing t: g t t ) s t+1 = 1+p 1+4s 2 t 2 y t = x t + s t 1 s t+1 (x t x t 1 ) x t+1 =prox(y t g t ) 1 a.k.a FISTA

2 Nesterov s Acceleration f -smooth. Set s 1 = 1 and = 1. Set y 0. Iterate: g t t ) x t =prox(y t g t ) f(x t ) f(x ) apple 2 kx t x k t 2 s t+1 = 1+p 1+4s 2 t 2 y t = x t + s t 1 s t+1 (x t x t 1 ) 2 source: T. Suzuki

3 Nesterov s Acceleration min 1 n P i ( T x i y i ) 2 + k k Normal Nesterov 10 2 Relative objective (f(x t ) - f * ) Iteration 3 source: T. Suzuki

4 Stochastic Gradient We want to minimize min L( ) :=E[l (Z)] 2R p Due to practical constraints, samples only come one by one, each at a time t, and cannot be stored. Only previous parameter is stored. We use a double approximation E[l(,Z)] l(,z t ) l( t 1,z t )+hrl( t 1,z t ), i 4

5 Stochastic Gradient To approximate the minimization of min E[l (Z)] 2R p we use the approximated problem, only valid around the previous iterate t := arg min 2R phrl( t 1,z t ), i t k t 1 k 2 5

6 SG (no regularization) min L( ) :=E[l (Z)] 2R p Stochastic Gradient Method (regularization) Set 0 and sequence t. Repeat: Sample z t P (Z). Compute subgradient g t l(,z t ) Update t = t 1 t g t Output : T = 1 T +1 P T t=0 t 6

7 SG (regularization) We want to minimize now: min L ( ) :=E[l (Z)] + ( ) 2R p Stochastic Gradient Method (regularization) Set 0 and sequence t. Repeat: Sample z t P (Z). Compute subgradient g t l(,z t ) Update t =prox( t 1 t g t t ) Output : T = 1 T +1 P T t=0 t 7

8 Polynomial Averaging Stochastic Gradient Method (regularization) Set 0 and sequence t. Repeat: Sample z t P (Z). Compute subgradient g t l(,z t ) Update t =prox( t 1 t g t t ) Output : T = 2 (T +1)(T +2) P T t=0 (t + 1) t 8

9 Batch Problems SGMethods have several drawbacks, chief among them is the choice of a stepsize. Is there a setting where this can be mitigated? Yes, when the expectation is in fact a large sum: min L ( ) :=E[l (Z)] + ( ) 2R p + 1 min 2R p n nx i=1 l(,z i )+ ( ) 9

10 Batch Methods We would like to have the benefits of SGM (low cost per iteration) without the disadvantages (slow convergence near optimum, step size selection) 10 source:

11 Batch Methods Trainig error SGD Batch Elaplsed time (s) Generalization error Elaplsed time (s) Logistic Regression L1 regularization 11 source: T. Suzuki

12 Three Methods Primal methods! Stochastic Average Gradient (A) descent, SAG(A) (Le Roux et al., 2012, Schmidt et al., 2013, Defazio et al., 2014)! Stochastic Variance Reduced Gradient descent, SVRG (Johnson and Zhang, 2013, Xiao and Zhang, 2014)! Dual methods (see Fenchel duality) Stochastic Dual Coordinate ascent, SDCA (Shalev-Shwartz and Zhang, 2013a) 12

13 Primal Methods 1 min 2R p n nx l i ( )+ ( ) i=1 strongly! smooth convex We want to approximate r 1 n P n i=1 l i( ) 13

14 Primal Methods 1 min 2R p n nx l i ( )+ ( ) i=1 strongly! smooth convex We want to approximate r 1 n P n i=1 l i( ) X E i unif{1,...,n} [rl i ( )] = 1 n rl i ( ) =rl( ) Randomizing points in the dataset gives a way to get an unbiased estimator of the gradient. 13 i

15 Primal Methods 1 min 2R p n nx l i ( )+ ( ) i=1 strongly! smooth convex We want to approximate r 1 n P n i=1 l i( ) X E i unif{1,...,n} [rl i ( )] = 1 n rl i ( ) =rl( ) Problem: Variance! i 13

16 SVRG nx g = rl i ( ) rl i (ˆ )+ 1 n rl j (ˆ ) j=1 easy to show that this gradient estimate is unbiased Variance is controlled by how far, ˆ are. 14

17 SVRG g = rl i ( ) var[g] = 1 n rl i (ˆ )+ 1 n nx rl j (ˆ ) j=1 easy to show i=1that this gradient estimate is unbiased Variance is controlled by how far = 1 n apple 1 n nx nx i=1 nx i=1 apple 2 k ˆ k 2 krl i ( ) rl i (ˆ )+rl(ˆ ) rl( )k 2, ˆ are. krl i ( ) rl i (ˆ )k 2 krl(ˆ ) rl( )k 2 krl i ( ) rl i (ˆ )k 2 14

18 SVRG SVRG Set ˆ 0. For t =1,...,T, Set ˆ = ˆ t 1. 0 = ˆ. ĝ = 1 P n n i=1 rl i(ˆ ) : full gradient, at ˆ. For k =1,...,m Sample i {1,...,n} g = rl i ( k 1 ) rl i (ˆ )+ĝ : variance reduction k =prox( k 1 g ) ˆ t = 1 m P m k=1 k 15

19 SAGA ˆ depends on the data index. (SVRG) g = rl i ( t 1 ) rl i (ˆ )+ 1 n P n j=1 rl j(ˆ ) (SAGA) g = rl i ( t 1 ) rl i (ˆ i )+ 1 n P n j=1 rl j(ˆ j ) ˆ i is updated at every iteration. (ˆ i = t 1 i chosen ˆ i unchanged otherwise. onsequence: larger storage is necessary, but no double loop 16

20 SAGA SAGA Set ĝ i =ḡ =0,i2 {1,...,n}, Set.. Pick i 2 {1,...,n} randomly. Update g i = rl i ( ) Estimate gradient ĝ = g i ĝ i +ḡ Update average gradient ḡ =ḡ + 1 n (g i ĝ i ). Update stored gradients ĝ i = g i. Update prox( ĝ ) Step size: ~1/γ, convergence guaranteed. In practice: important to use mini-batches. 17

21 Recent Extensions: Point SAGA No regularizer required, proximal operator of each function. 18

22 Dual Methods Set x 0 =(x 0 1,...,x 0 n), For k =1,...,K x k+1 i = arg min y2r f(x k+1 1,...,x k+1 i 1,y,xk i+1,...,xk n) 19 source: wikipedia

23 Dual Methods Reminders on Coordinate Descent Set x 0 =(x 0 1,...,x 0 n), For k =1,...,K x k+1 i = arg min y2r f(x k+1 1,...,x k+1 i 1,y,xk i+1,...,xk n) 19 source: wikipedia

24 Dual Methods Reminders on Coordinate Descent 19 source: wikipedia

25 Dual Methods Reminders on Coordinate Descent 19 source: wikipedia

26 Dual Methods Reminders on Coordinate Descent 19 source: wikipedia

27 Dual Methods Reminders on Coordinate Descent To ensure success of CD, some progress must be guaranteed. Separability of the objective function helps. 19 source: wikipedia

28 Dual Methods Set 0 =( 0 1,..., 0 p), For k =1,...,K Sample j. Compute g j )/@ j j arg min y2r g j y + j (y)+ 1 2 t ky j k 2 20 source: wikipedia

29 Dual Methods Coordinate Descent on Primal Problem Set 0 =( 0 1,..., 0 p), For k =1,...,K Sample j. Compute g j )/@ j j arg min y2r g j y + j (y)+ 1 2 t ky j k 2 Regularizer must be separable. 20 source: wikipedia

30 Fenchel Duality Theorem Theorem Let f : R p! R and g : R q! R be closed convex, and A 2 R q p a linear map. Suppose that either condition (a) or (b) is satisfied. Then inf f(x)+g(ax) = sup f (A T y) g ( y) x2rp y2r q 1 min 2R p n nx i=1 l (z i )+ ( ) l (z i )=l(y i,x T i ) 1 sup y2r n n X i l i (y i )+ ( X T y/n) = r ( X T y /n) 21

Big Data Analytics: Optimization and Randomization

Big Data Analytics: Optimization and Randomization Big Data Analytics: Optimization and Randomization Tianbao Yang Tutorial@ACML 2015 Hong Kong Department of Computer Science, The University of Iowa, IA, USA Nov. 20, 2015 Yang Tutorial for ACML 15 Nov.

More information

Fast Stochastic Optimization Algorithms for ML

Fast Stochastic Optimization Algorithms for ML Fast Stochastic Optimization Algorithms for ML Aaditya Ramdas April 20, 205 This lecture is about efficient algorithms for minimizing finite sums min w R d n i= f i (w) or min w R d n f i (w) + λ 2 w 2

More information

Accelerating Stochastic Optimization

Accelerating Stochastic Optimization Accelerating Stochastic Optimization Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem and Mobileye Master Class at Tel-Aviv, Tel-Aviv University, November 2014 Shalev-Shwartz

More information

Stochastic and online algorithms

Stochastic and online algorithms Stochastic and online algorithms stochastic gradient method online optimization and dual averaging method minimizing finite average Stochastic and online optimization 6 1 Stochastic optimization problem

More information

Accelerated Randomized Primal-Dual Coordinate Method for Empirical Risk Minimization

Accelerated Randomized Primal-Dual Coordinate Method for Empirical Risk Minimization Accelerated Randomized Primal-Dual Coordinate Method for Empirical Risk Minimization Lin Xiao (Microsoft Research) Joint work with Qihang Lin (CMU), Zhaosong Lu (Simon Fraser) Yuchen Zhang (UC Berkeley)

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Lecture 3-A - Convex) SUVRIT SRA Massachusetts Institute of Technology Special thanks: Francis Bach (INRIA, ENS) (for sharing this material, and permitting its use) MPI-IS

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

Stochastic Optimization Part I: Convex analysis and online stochastic optimization

Stochastic Optimization Part I: Convex analysis and online stochastic optimization Stochastic Optimization Part I: Convex analysis and online stochastic optimization Taiji Suzuki Tokyo Institute of Technology Graduate School of Information Science and Engineering Department of Mathematical

More information

Proximal Minimization by Incremental Surrogate Optimization (MISO)

Proximal Minimization by Incremental Surrogate Optimization (MISO) Proximal Minimization by Incremental Surrogate Optimization (MISO) (and a few variants) Julien Mairal Inria, Grenoble ICCOPT, Tokyo, 2016 Julien Mairal, Inria MISO 1/26 Motivation: large-scale machine

More information

SVRG++ with Non-uniform Sampling

SVRG++ with Non-uniform Sampling SVRG++ with Non-uniform Sampling Tamás Kern András György Department of Electrical and Electronic Engineering Imperial College London, London, UK, SW7 2BT {tamas.kern15,a.gyorgy}@imperial.ac.uk Abstract

More information

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method

Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method Davood Hajinezhad Iowa State University Davood Hajinezhad Optimizing Nonconvex Finite Sums by a Proximal Primal-Dual Method 1 / 35 Co-Authors

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Stochastic Gradient Descent with Variance Reduction

Stochastic Gradient Descent with Variance Reduction Stochastic Gradient Descent with Variance Reduction Rie Johnson, Tong Zhang Presenter: Jiawen Yao March 17, 2015 Rie Johnson, Tong Zhang Presenter: JiawenStochastic Yao Gradient Descent with Variance Reduction

More information

Modern Stochastic Methods. Ryan Tibshirani (notes by Sashank Reddi and Ryan Tibshirani) Convex Optimization

Modern Stochastic Methods. Ryan Tibshirani (notes by Sashank Reddi and Ryan Tibshirani) Convex Optimization Modern Stochastic Methods Ryan Tibshirani (notes by Sashank Reddi and Ryan Tibshirani) Convex Optimization 10-725 Last time: conditional gradient method For the problem min x f(x) subject to x C where

More information

Lecture 3: Minimizing Large Sums. Peter Richtárik

Lecture 3: Minimizing Large Sums. Peter Richtárik Lecture 3: Minimizing Large Sums Peter Richtárik Graduate School in Systems, Op@miza@on, Control and Networks Belgium 2015 Mo@va@on: Machine Learning & Empirical Risk Minimiza@on Training Linear Predictors

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization

Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization Shai Shalev-Shwartz and Tong Zhang School of CS and Engineering, The Hebrew University of Jerusalem Optimization for Machine

More information

Barzilai-Borwein Step Size for Stochastic Gradient Descent

Barzilai-Borwein Step Size for Stochastic Gradient Descent Barzilai-Borwein Step Size for Stochastic Gradient Descent Conghui Tan The Chinese University of Hong Kong chtan@se.cuhk.edu.hk Shiqian Ma The Chinese University of Hong Kong sqma@se.cuhk.edu.hk Yu-Hong

More information

Finite-sum Composition Optimization via Variance Reduced Gradient Descent

Finite-sum Composition Optimization via Variance Reduced Gradient Descent Finite-sum Composition Optimization via Variance Reduced Gradient Descent Xiangru Lian Mengdi Wang Ji Liu University of Rochester Princeton University University of Rochester xiangru@yandex.com mengdiw@princeton.edu

More information

Trade-Offs in Distributed Learning and Optimization

Trade-Offs in Distributed Learning and Optimization Trade-Offs in Distributed Learning and Optimization Ohad Shamir Weizmann Institute of Science Includes joint works with Yossi Arjevani, Nathan Srebro and Tong Zhang IHES Workshop March 2016 Distributed

More information

Coordinate Descent and Ascent Methods

Coordinate Descent and Ascent Methods Coordinate Descent and Ascent Methods Julie Nutini Machine Learning Reading Group November 3 rd, 2015 1 / 22 Projected-Gradient Methods Motivation Rewrite non-smooth problem as smooth constrained problem:

More information

Barzilai-Borwein Step Size for Stochastic Gradient Descent

Barzilai-Borwein Step Size for Stochastic Gradient Descent Barzilai-Borwein Step Size for Stochastic Gradient Descent Conghui Tan Shiqian Ma Yu-Hong Dai Yuqiu Qian May 16, 2016 Abstract One of the major issues in stochastic gradient descent (SGD) methods is how

More information

Primal-dual coordinate descent A Coordinate Descent Primal-Dual Algorithm with Large Step Size and Possibly Non-Separable Functions

Primal-dual coordinate descent A Coordinate Descent Primal-Dual Algorithm with Large Step Size and Possibly Non-Separable Functions Primal-dual coordinate descent A Coordinate Descent Primal-Dual Algorithm with Large Step Size and Possibly Non-Separable Functions Olivier Fercoq and Pascal Bianchi Problem Minimize the convex function

More information

Improved Optimization of Finite Sums with Minibatch Stochastic Variance Reduced Proximal Iterations

Improved Optimization of Finite Sums with Minibatch Stochastic Variance Reduced Proximal Iterations Improved Optimization of Finite Sums with Miniatch Stochastic Variance Reduced Proximal Iterations Jialei Wang University of Chicago Tong Zhang Tencent AI La Astract jialei@uchicago.edu tongzhang@tongzhang-ml.org

More information

Linear Convergence under the Polyak-Łojasiewicz Inequality

Linear Convergence under the Polyak-Łojasiewicz Inequality Linear Convergence under the Polyak-Łojasiewicz Inequality Hamed Karimi, Julie Nutini and Mark Schmidt The University of British Columbia LCI Forum February 28 th, 2017 1 / 17 Linear Convergence of Gradient-Based

More information

Minimizing Finite Sums with the Stochastic Average Gradient Algorithm

Minimizing Finite Sums with the Stochastic Average Gradient Algorithm Minimizing Finite Sums with the Stochastic Average Gradient Algorithm Joint work with Nicolas Le Roux and Francis Bach University of British Columbia Context: Machine Learning for Big Data Large-scale

More information

Accelerating SVRG via second-order information

Accelerating SVRG via second-order information Accelerating via second-order information Ritesh Kolte Department of Electrical Engineering rkolte@stanford.edu Murat Erdogdu Department of Statistics erdogdu@stanford.edu Ayfer Özgür Department of Electrical

More information

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization

Stochastic Gradient Descent. Ryan Tibshirani Convex Optimization Stochastic Gradient Descent Ryan Tibshirani Convex Optimization 10-725 Last time: proximal gradient descent Consider the problem min x g(x) + h(x) with g, h convex, g differentiable, and h simple in so

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

Linear Convergence under the Polyak-Łojasiewicz Inequality

Linear Convergence under the Polyak-Łojasiewicz Inequality Linear Convergence under the Polyak-Łojasiewicz Inequality Hamed Karimi, Julie Nutini, Mark Schmidt University of British Columbia Linear of Convergence of Gradient-Based Methods Fitting most machine learning

More information

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade

Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Optimization in the Big Data Regime 2: SVRG & Tradeoffs in Large Scale Learning. Sham M. Kakade Machine Learning for Big Data CSE547/STAT548 University of Washington S. M. Kakade (UW) Optimization for

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Fast-and-Light Stochastic ADMM

Fast-and-Light Stochastic ADMM Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-6) Fast-and-Light Stochastic ADMM Shuai Zheng James T. Kwok Department of Computer Science and Engineering

More information

Mini-Batch Primal and Dual Methods for SVMs

Mini-Batch Primal and Dual Methods for SVMs Mini-Batch Primal and Dual Methods for SVMs Peter Richtárik School of Mathematics The University of Edinburgh Coauthors: M. Takáč (Edinburgh), A. Bijral and N. Srebro (both TTI at Chicago) arxiv:1303.2314

More information

Stochastic optimization: Beyond stochastic gradients and convexity Part I

Stochastic optimization: Beyond stochastic gradients and convexity Part I Stochastic optimization: Beyond stochastic gradients and convexity Part I Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE Joint tutorial with Suvrit Sra, MIT - NIPS

More information

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent April 27, 2018 1 / 32 Outline 1) Moment and Nesterov s accelerated gradient descent 2) AdaGrad and RMSProp 4) Adam 5) Stochastic

More information

Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure

Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure Alberto Bietti Julien Mairal Inria Grenoble (Thoth) March 21, 2017 Alberto Bietti Stochastic MISO March 21,

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

Journal Club. A Universal Catalyst for First-Order Optimization (H. Lin, J. Mairal and Z. Harchaoui) March 8th, CMAP, Ecole Polytechnique 1/19

Journal Club. A Universal Catalyst for First-Order Optimization (H. Lin, J. Mairal and Z. Harchaoui) March 8th, CMAP, Ecole Polytechnique 1/19 Journal Club A Universal Catalyst for First-Order Optimization (H. Lin, J. Mairal and Z. Harchaoui) CMAP, Ecole Polytechnique March 8th, 2018 1/19 Plan 1 Motivations 2 Existing Acceleration Methods 3 Universal

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

Why should you care about the solution strategies?

Why should you care about the solution strategies? Optimization Why should you care about the solution strategies? Understanding the optimization approaches behind the algorithms makes you more effectively choose which algorithm to run Understanding the

More information

Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity

Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity Zheng Qu University of Hong Kong CAM, 23-26 Aug 2016 Hong Kong based on joint work with Peter Richtarik and Dominique Cisba(University

More information

Stochastic Optimization: First order method

Stochastic Optimization: First order method Stochastic Optimization: First order method Taiji Suzuki Tokyo Institute of Technology Graduate School of Information Science and Engineering Department of Mathematical and Computing Sciences JST, PRESTO

More information

Classification Logistic Regression

Classification Logistic Regression Announcements: Classification Logistic Regression Machine Learning CSE546 Sham Kakade University of Washington HW due on Friday. Today: Review: sub-gradients,lasso Logistic Regression October 3, 26 Sham

More information

Simple Optimization, Bigger Models, and Faster Learning. Niao He

Simple Optimization, Bigger Models, and Faster Learning. Niao He Simple Optimization, Bigger Models, and Faster Learning Niao He Big Data Symposium, UIUC, 2016 Big Data, Big Picture Niao He (UIUC) 2/26 Big Data, Big Picture Niao He (UIUC) 3/26 Big Data, Big Picture

More information

A Universal Catalyst for Gradient-Based Optimization

A Universal Catalyst for Gradient-Based Optimization A Universal Catalyst for Gradient-Based Optimization Julien Mairal Inria, Grenoble CIMI workshop, Toulouse, 2015 Julien Mairal, Inria Catalyst 1/58 Collaborators Hongzhou Lin Zaid Harchaoui Publication

More information

Coordinate descent methods

Coordinate descent methods Coordinate descent methods Master Mathematics for data science and big data Olivier Fercoq November 3, 05 Contents Exact coordinate descent Coordinate gradient descent 3 3 Proximal coordinate descent 5

More information

Agenda. Fast proximal gradient methods. 1 Accelerated first-order methods. 2 Auxiliary sequences. 3 Convergence analysis. 4 Numerical examples

Agenda. Fast proximal gradient methods. 1 Accelerated first-order methods. 2 Auxiliary sequences. 3 Convergence analysis. 4 Numerical examples Agenda Fast proximal gradient methods 1 Accelerated first-order methods 2 Auxiliary sequences 3 Convergence analysis 4 Numerical examples 5 Optimality of Nesterov s scheme Last time Proximal gradient method

More information

ONLINE VARIANCE-REDUCING OPTIMIZATION

ONLINE VARIANCE-REDUCING OPTIMIZATION ONLINE VARIANCE-REDUCING OPTIMIZATION Nicolas Le Roux Google Brain nlr@google.com Reza Babanezhad University of British Columbia rezababa@cs.ubc.ca Pierre-Antoine Manzagol Google Brain manzagop@google.com

More information

Logistic Regression. Stochastic Gradient Descent

Logistic Regression. Stochastic Gradient Descent Tutorial 8 CPSC 340 Logistic Regression Stochastic Gradient Descent Logistic Regression Model A discriminative probabilistic model for classification e.g. spam filtering Let x R d be input and y { 1, 1}

More information

Primal-dual coordinate descent

Primal-dual coordinate descent Primal-dual coordinate descent Olivier Fercoq Joint work with P. Bianchi & W. Hachem 15 July 2015 1/28 Minimize the convex function f, g, h convex f is differentiable Problem min f (x) + g(x) + h(mx) x

More information

Accelerated Block-Coordinate Relaxation for Regularized Optimization

Accelerated Block-Coordinate Relaxation for Regularized Optimization Accelerated Block-Coordinate Relaxation for Regularized Optimization Stephen J. Wright Computer Sciences University of Wisconsin, Madison October 09, 2012 Problem descriptions Consider where f is smooth

More information

Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization

Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization Tomoya Murata Taiji Suzuki More recently, several authors have proposed accelerarxiv:70300439v4

More information

Proximal average approximated incremental gradient descent for composite penalty regularized empirical risk minimization

Proximal average approximated incremental gradient descent for composite penalty regularized empirical risk minimization Mach earn 207 06:595 622 DOI 0.007/s0994-06-5609- Proximal average approximated incremental gradient descent for composite penalty regularized empirical risk minimization Yiu-ming Cheung Jian ou Received:

More information

Is the test error unbiased for these programs? 2017 Kevin Jamieson

Is the test error unbiased for these programs? 2017 Kevin Jamieson Is the test error unbiased for these programs? 2017 Kevin Jamieson 1 Is the test error unbiased for this program? 2017 Kevin Jamieson 2 Simple Variable Selection LASSO: Sparse Regression Machine Learning

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Adaptive Probabilities in Stochastic Optimization Algorithms

Adaptive Probabilities in Stochastic Optimization Algorithms Research Collection Master Thesis Adaptive Probabilities in Stochastic Optimization Algorithms Author(s): Zhong, Lei Publication Date: 2015 Permanent Link: https://doi.org/10.3929/ethz-a-010421465 Rights

More information

CS260: Machine Learning Algorithms

CS260: Machine Learning Algorithms CS260: Machine Learning Algorithms Lecture 4: Stochastic Gradient Descent Cho-Jui Hsieh UCLA Jan 16, 2019 Large-scale Problems Machine learning: usually minimizing the training loss min w { 1 N min w {

More information

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence

Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence Parallel and Distributed Stochastic Learning -Towards Scalable Learning for Big Data Intelligence oé LAMDA Group H ŒÆOŽÅ Æ EâX ^ #EâI[ : liwujun@nju.edu.cn Dec 10, 2016 Wu-Jun Li (http://cs.nju.edu.cn/lwj)

More information

Announcements Kevin Jamieson

Announcements Kevin Jamieson Announcements Project proposal due next week: Tuesday 10/24 Still looking for people to work on deep learning Phytolith project, join #phytolith slack channel 2017 Kevin Jamieson 1 Gradient Descent Machine

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

IFT Lecture 6 Nesterov s Accelerated Gradient, Stochastic Gradient Descent

IFT Lecture 6 Nesterov s Accelerated Gradient, Stochastic Gradient Descent IFT 6085 - Lecture 6 Nesterov s Accelerated Gradient, Stochastic Gradient Descent This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor. Scribe(s):

More information

arxiv: v2 [cs.na] 3 Apr 2018

arxiv: v2 [cs.na] 3 Apr 2018 Stochastic variance reduced multiplicative update for nonnegative matrix factorization Hiroyui Kasai April 5, 208 arxiv:70.078v2 [cs.a] 3 Apr 208 Abstract onnegative matrix factorization (MF), a dimensionality

More information

arxiv: v5 [cs.lg] 23 Dec 2017 Abstract

arxiv: v5 [cs.lg] 23 Dec 2017 Abstract Nonconvex Sparse Learning via Stochastic Optimization with Progressive Variance Reduction Xingguo Li, Raman Arora, Han Liu, Jarvis Haupt, and Tuo Zhao arxiv:1605.02711v5 [cs.lg] 23 Dec 2017 Abstract We

More information

Katyusha: The First Direct Acceleration of Stochastic Gradient Methods

Katyusha: The First Direct Acceleration of Stochastic Gradient Methods Journal of Machine Learning Research 8 8-5 Submitted 8/6; Revised 5/7; Published 6/8 : The First Direct Acceleration of Stochastic Gradient Methods Zeyuan Allen-Zhu Microsoft Research AI Redmond, WA 985,

More information

Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm

Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm Stochastic Gradient Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm Deanna Needell Department of Mathematical Sciences Claremont McKenna College Claremont CA 97 dneedell@cmc.edu Nathan

More information

References. --- a tentative list of papers to be mentioned in the ICML 2017 tutorial. Recent Advances in Stochastic Convex and Non-Convex Optimization

References. --- a tentative list of papers to be mentioned in the ICML 2017 tutorial. Recent Advances in Stochastic Convex and Non-Convex Optimization References --- a tentative list of papers to be mentioned in the ICML 2017 tutorial Recent Advances in Stochastic Convex and Non-Convex Optimization Disclaimer: in a quite arbitrary order. 1. [ShalevShwartz-Zhang,

More information

Coordinate Descent Faceoff: Primal or Dual?

Coordinate Descent Faceoff: Primal or Dual? JMLR: Workshop and Conference Proceedings 83:1 22, 2018 Algorithmic Learning Theory 2018 Coordinate Descent Faceoff: Primal or Dual? Dominik Csiba peter.richtarik@ed.ac.uk School of Mathematics University

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

Day 3 Lecture 3. Optimizing deep networks

Day 3 Lecture 3. Optimizing deep networks Day 3 Lecture 3 Optimizing deep networks Convex optimization A function is convex if for all α [0,1]: f(x) Tangent line Examples Quadratics 2-norms Properties Local minimum is global minimum x Gradient

More information

Comparison of Modern Stochastic Optimization Algorithms

Comparison of Modern Stochastic Optimization Algorithms Comparison of Modern Stochastic Optimization Algorithms George Papamakarios December 214 Abstract Gradient-based optimization methods are popular in machine learning applications. In large-scale problems,

More information

Dual Proximal Gradient Method

Dual Proximal Gradient Method Dual Proximal Gradient Method http://bicmr.pku.edu.cn/~wenzw/opt-2016-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/19 1 proximal gradient method

More information

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Shen-Yi Zhao and Wu-Jun Li National Key Laboratory for Novel Software Technology Department of Computer

More information

Dual and primal-dual methods

Dual and primal-dual methods ELE 538B: Large-Scale Optimization for Data Science Dual and primal-dual methods Yuxin Chen Princeton University, Spring 2018 Outline Dual proximal gradient method Primal-dual proximal gradient method

More information

SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization

SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization Zheng Qu ZHENGQU@HKU.HK Department of Mathematics, The University of Hong Kong, Hong Kong Peter Richtárik PETER.RICHTARIK@ED.AC.UK School of Mathematics, The University of Edinburgh, UK Martin Takáč TAKAC.MT@GMAIL.COM

More information

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal

An Evolving Gradient Resampling Method for Machine Learning. Jorge Nocedal An Evolving Gradient Resampling Method for Machine Learning Jorge Nocedal Northwestern University NIPS, Montreal 2015 1 Collaborators Figen Oztoprak Stefan Solntsev Richard Byrd 2 Outline 1. How to improve

More information

arxiv: v2 [stat.ml] 16 Jun 2015

arxiv: v2 [stat.ml] 16 Jun 2015 Semi-Stochastic Gradient Descent Methods Jakub Konečný Peter Richtárik arxiv:1312.1666v2 [stat.ml] 16 Jun 2015 School of Mathematics University of Edinburgh United Kingdom June 15, 2015 (first version:

More information

Large-scale Machine Learning and Optimization

Large-scale Machine Learning and Optimization 1/84 Large-scale Machine Learning and Optimization Zaiwen Wen http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Dimitris Papailiopoulos and Shiqian Ma lecture notes

More information

CS60021: Scalable Data Mining. Large Scale Machine Learning

CS60021: Scalable Data Mining. Large Scale Machine Learning J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 CS60021: Scalable Data Mining Large Scale Machine Learning Sourangshu Bhattacharya Example: Spam filtering Instance

More information

Stochastic Variance Reduction for Nonconvex Optimization. Barnabás Póczos

Stochastic Variance Reduction for Nonconvex Optimization. Barnabás Póczos 1 Stochastic Variance Reduction for Nonconvex Optimization Barnabás Póczos Contents 2 Stochastic Variance Reduction for Nonconvex Optimization Joint work with Sashank Reddi, Ahmed Hefny, Suvrit Sra, and

More information

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron CS446: Machine Learning, Fall 2017 Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron Lecturer: Sanmi Koyejo Scribe: Ke Wang, Oct. 24th, 2017 Agenda Recap: SVM and Hinge loss, Representer

More information

NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization

NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization ESTT: A onconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization Davood Hajinezhad, Mingyi Hong Tuo Zhao Zhaoran Wang Abstract We study a stochastic and distributed algorithm for

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

Accelerating Online Convex Optimization via Adaptive Prediction

Accelerating Online Convex Optimization via Adaptive Prediction Mehryar Mohri Courant Institute and Google Research New York, NY 10012 mohri@cims.nyu.edu Scott Yang Courant Institute New York, NY 10012 yangs@cims.nyu.edu Abstract We present a powerful general framework

More information

Incremental and Stochastic Majorization-Minimization Algorithms for Large-Scale Machine Learning

Incremental and Stochastic Majorization-Minimization Algorithms for Large-Scale Machine Learning Incremental and Stochastic Majorization-Minimization Algorithms for Large-Scale Machine Learning Julien Mairal Inria, LEAR Team, Grenoble Journées MAS, Toulouse Julien Mairal Incremental and Stochastic

More information

Lecture 1: Supervised Learning

Lecture 1: Supervised Learning Lecture 1: Supervised Learning Tuo Zhao Schools of ISYE and CSE, Georgia Tech ISYE6740/CSE6740/CS7641: Computational Data Analysis/Machine from Portland, Learning Oregon: pervised learning (Supervised)

More information

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods

Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Coordinate Update Algorithm Short Course Subgradients and Subgradient Methods Instructor: Wotao Yin (UCLA Math) Summer 2016 1 / 30 Notation f : H R { } is a closed proper convex function domf := {x R n

More information

Primal-dual Subgradient Method for Convex Problems with Functional Constraints

Primal-dual Subgradient Method for Convex Problems with Functional Constraints Primal-dual Subgradient Method for Convex Problems with Functional Constraints Yurii Nesterov, CORE/INMA (UCL) Workshop on embedded optimization EMBOPT2014 September 9, 2014 (Lucca) Yu. Nesterov Primal-dual

More information

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee

Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Fast Asynchronous Parallel Stochastic Gradient Descent: A Lock-Free Approach with Convergence Guarantee Shen-Yi Zhao and

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information

Iterative Convex Regularization

Iterative Convex Regularization Iterative Convex Regularization Lorenzo Rosasco Universita di Genova Universita di Genova Istituto Italiano di Tecnologia Massachusetts Institute of Technology Optimization and Statistical Learning Workshop,

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

Nesterov s Optimal Gradient Methods

Nesterov s Optimal Gradient Methods Yurii Nesterov http://www.core.ucl.ac.be/~nesterov Nesterov s Optimal Gradient Methods Xinhua Zhang Australian National University NICTA 1 Outline The problem from machine learning perspective Preliminaries

More information

arxiv: v1 [math.oc] 18 Mar 2016

arxiv: v1 [math.oc] 18 Mar 2016 Katyusha: Accelerated Variance Reduction for Faster SGD Zeyuan Allen-Zhu zeyuan@csail.mit.edu Princeton University arxiv:1603.05953v1 [math.oc] 18 Mar 016 March 18, 016 Abstract We consider minimizing

More information

Stochastic gradient methods for machine learning

Stochastic gradient methods for machine learning Stochastic gradient methods for machine learning Francis Bach INRIA - Ecole Normale Supérieure, Paris, France Joint work with Eric Moulines, Nicolas Le Roux and Mark Schmidt - January 2013 Context Machine

More information

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725

Subgradient Method. Guest Lecturer: Fatma Kilinc-Karzan. Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization /36-725 Subgradient Method Guest Lecturer: Fatma Kilinc-Karzan Instructors: Pradeep Ravikumar, Aarti Singh Convex Optimization 10-725/36-725 Adapted from slides from Ryan Tibshirani Consider the problem Recall:

More information

Pavel Dvurechensky Alexander Gasnikov Alexander Tiurin. July 26, 2017

Pavel Dvurechensky Alexander Gasnikov Alexander Tiurin. July 26, 2017 Randomized Similar Triangles Method: A Unifying Framework for Accelerated Randomized Optimization Methods Coordinate Descent, Directional Search, Derivative-Free Method) Pavel Dvurechensky Alexander Gasnikov

More information

FAST DISTRIBUTED COORDINATE DESCENT FOR NON-STRONGLY CONVEX LOSSES. Olivier Fercoq Zheng Qu Peter Richtárik Martin Takáč

FAST DISTRIBUTED COORDINATE DESCENT FOR NON-STRONGLY CONVEX LOSSES. Olivier Fercoq Zheng Qu Peter Richtárik Martin Takáč FAST DISTRIBUTED COORDINATE DESCENT FOR NON-STRONGLY CONVEX LOSSES Olivier Fercoq Zheng Qu Peter Richtárik Martin Takáč School of Mathematics, University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 15. Suvrit Sra. (Gradient methods III) 12 March, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 15 (Gradient methods III) 12 March, 2013 Suvrit Sra Optimal gradient methods 2 / 27 Optimal gradient methods We saw following efficiency estimates for

More information

Distributed Stochastic Variance Reduced Gradient Methods and A Lower Bound for Communication Complexity

Distributed Stochastic Variance Reduced Gradient Methods and A Lower Bound for Communication Complexity Noname manuscript No. (will be inserted by the editor) Distributed Stochastic Variance Reduced Gradient Methods and A Lower Bound for Communication Complexity Jason D. Lee Qihang Lin Tengyu Ma Tianbao

More information