Linear Algebra. Rekha Santhanam. April 3, Johns Hopkins Univ. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

Size: px
Start display at page:

Download "Linear Algebra. Rekha Santhanam. April 3, Johns Hopkins Univ. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7"

Transcription

1 Linear Algebra Rekha Santhanam Johns Hopkins Univ. April 3, 2009 Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

2 Dynamical Systems Denote owl and wood rat populations at time k by O k and R k respectively. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

3 Dynamical Systems Denote owl and wood rat populations at time k by O k and R k respectively. The owl preys on the wood rat, so if there are no wood rats the population of owls will go down by 50%. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

4 Dynamical Systems Denote owl and wood rat populations at time k by O k and R k respectively. The owl preys on the wood rat, so if there are no wood rats the population of owls will go down by 50%. If there are no owls to prey on the rats, then the rat population will increase by 10%. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

5 Dynamical Systems Denote owl and wood rat populations at time k by O k and R k respectively. The owl preys on the wood rat, so if there are no wood rats the population of owls will go down by 50%. If there are no owls to prey on the rats, then the rat population will increase by 10%. In particular, the rat and owl populations dependence is as follows. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

6 Dynamical Systems Denote owl and wood rat populations at time k by O k and R k respectively. The owl preys on the wood rat, so if there are no wood rats the population of owls will go down by 50%. If there are no owls to prey on the rats, then the rat population will increase by 10%. In particular, the rat and owl populations dependence is as follows. O k+1 = 0.5O k + 0.4R k R k+1 = po k + 1.1R k Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

7 Dynamical Systems Denote owl and wood rat populations at time k by O k and R k respectively. The owl preys on the wood rat, so if there are no wood rats the population of owls will go down by 50%. If there are no owls to prey on the rats, then the rat population will increase by 10%. In particular, the rat and owl populations dependence is as follows. O k+1 = 0.5O k + 0.4R k R k+1 = po k + 1.1R k The term p calculates the rats preyed by the owls. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

8 Dynamical Systems Denote owl and wood rat populations at time k by O k and R k respectively. The owl preys on the wood rat, so if there are no wood rats the population of owls will go down by 50%. If there are no owls to prey on the rats, then the rat population will increase by 10%. In particular, the rat and owl populations dependence is as follows. O k+1 = 0.5O k + 0.4R k R k+1 = po k + 1.1R k The term p calculates the rats preyed by the owls. If we start with a certain initial population of owls and rats, how many will be there in, say, 50 years.? Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

9 Dynamical Systems Examples More generally, we are trying to solve systems of the form x k+1 = A x k, Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

10 Dynamical Systems Examples More generally, we are trying to solve systems of the form x k+1 = A x k, where A is a n n matrix and x R n. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

11 Dynamical Systems Examples More generally, we are trying to solve systems of the form x k+1 = A x k, where A is a n n matrix and x R n. Let us consider the examples when [ ] 2 0 A = Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

12 Dynamical Systems Examples More generally, we are trying to solve systems of the form x k+1 = A x k, where A is a n n matrix and x R n. Let us consider the examples when [ ] 2 0 A = [ ] A = Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

13 Dynamical Systems Examples More generally, we are trying to solve systems of the form x k+1 = A x k, where A is a n n matrix and x R n. Let us consider the examples when [ ] 2 0 A = [ ] A = [ ] 2 0 A = Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

14 Let A be a n n matrix. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

15 Let A be a n n matrix. Then a real number λ is said to be an eigenvalue of A if there exists a non-zero vector x R n such that A x = λ x. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

16 Let A be a n n matrix. Then a real number λ is said to be an eigenvalue of A if there exists a non-zero vector x R n such that A x = λ x. The non-zero vector x corresponding to λ is called an eigenvector. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

17 Let A be a n n matrix. Then a real number λ is said to be an eigenvalue of A if there exists a non-zero vector x R n such that A x = λ x. The non-zero vector x corresponding to λ is called an eigenvector. Note there are infinitely many eigenvectors corresponding to λ. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

18 To compute an eigenvalue λ of A, we note that having a nonzero vector x, A x = λ x. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

19 To compute an eigenvalue λ of A, we note that having a nonzero vector x, A x = λ x. Then this means we need a λ such that the Kernel of the transformation described by A λi n is non-trivial. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

20 To compute an eigenvalue λ of A, we note that having a nonzero vector x, A x = λ x. Then this means we need a λ such that the Kernel of the transformation described by A λi n is non-trivial. This implies we want to find λ such that det(a λi n ) = 0. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

21 To compute an eigenvalue λ of A, we note that having a nonzero vector x, A x = λ x. Then this means we need a λ such that the Kernel of the transformation described by A λi n is non-trivial. This implies we want to find λ such that det(a λi n ) = 0. This is known as the characteristic equations and the solutions to this equation are the eigenvalues of A. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

22 To compute an eigenvalue λ of A, we note that having a nonzero vector x, A x = λ x. Then this means we need a λ such that the Kernel of the transformation described by A λi n is non-trivial. This implies we want to find λ such that det(a λi n ) = 0. This is known as the characteristic equations and the solutions to this equation are the eigenvalues of A. The algebraic multiplicity of λ is its multplicity as a root of the characteristic equation. Note a matrix A is invertible if and only if 0 is not an eigenvalue of A. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

23 Example Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

24 Eigenspace Let A be an n n matrix and λ be an eigenvalue of A. Then the eigenspace corresponding to λ is defined to be Ker (A λi n ). Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

25 Eigenspace Let A be an n n matrix and λ be an eigenvalue of A. Then the eigenspace corresponding to λ is defined to be Ker (A λi n ). Note any two similar matrices have the same eigenvalues. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

26 Eigenspace Let A be an n n matrix and λ be an eigenvalue of A. Then the eigenspace corresponding to λ is defined to be Ker (A λi n ). Note any two similar matrices have the same eigenvalues. A matrix A is said to be diagonalizable if it is similar to a diagonal matrix. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

27 Eigenspace Let A be an n n matrix and λ be an eigenvalue of A. Then the eigenspace corresponding to λ is defined to be Ker (A λi n ). Note any two similar matrices have the same eigenvalues. A matrix A is said to be diagonalizable if it is similar to a diagonal matrix. A n n matrix A is diagonalizable if it has n linearly independent eigenvectors. Rekha Santhanam (Johns Hopkins Univ.) Linear Algebra April 3, / 7

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

More information

ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors

ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors ICS 6N Computational Linear Algebra Eigenvalues and Eigenvectors Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 34 The powers of matrix Consider the following dynamic

More information

Definition (T -invariant subspace) Example. Example

Definition (T -invariant subspace) Example. Example Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

Diagonalization of Matrix

Diagonalization of Matrix of Matrix King Saud University August 29, 2018 of Matrix Table of contents 1 2 of Matrix Definition If A M n (R) and λ R. We say that λ is an eigenvalue of the matrix A if there is X R n \ {0} such that

More information

Jordan Canonical Form Homework Solutions

Jordan Canonical Form Homework Solutions Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have

More information

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

More information

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues.

Therefore, A and B have the same characteristic polynomial and hence, the same eigenvalues. Similar Matrices and Diagonalization Page 1 Theorem If A and B are n n matrices, which are similar, then they have the same characteristic equation and hence the same eigenvalues. Proof Let A and B be

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors Definition 0 Let A R n n be an n n real matrix A number λ R is a real eigenvalue of A if there exists a nonzero vector v R n such that A v = λ v The vector v is called an eigenvector

More information

MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization.

MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization. MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization. Eigenvalues and eigenvectors of an operator Definition. Let V be a vector space and L : V V be a linear operator. A number λ

More information

TMA Calculus 3. Lecture 21, April 3. Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013

TMA Calculus 3. Lecture 21, April 3. Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013 TMA4115 - Calculus 3 Lecture 21, April 3 Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013 www.ntnu.no TMA4115 - Calculus 3, Lecture 21 Review of last week s lecture Last week

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9 Bachelor in Statistics and Business Universidad Carlos III de Madrid Mathematical Methods II María Barbero Liñán Homework sheet 4: EIGENVALUES AND EIGENVECTORS DIAGONALIZATION (with solutions) Year - Is

More information

1. In this problem, if the statement is always true, circle T; otherwise, circle F.

1. In this problem, if the statement is always true, circle T; otherwise, circle F. Math 1553, Extra Practice for Midterm 3 (sections 45-65) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information

City Suburbs. : population distribution after m years

City Suburbs. : population distribution after m years Section 5.3 Diagonalization of Matrices Definition Example: stochastic matrix To City Suburbs From City Suburbs.85.03 = A.15.97 City.15.85 Suburbs.97.03 probability matrix of a sample person s residence

More information

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

More information

Math Final December 2006 C. Robinson

Math Final December 2006 C. Robinson Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

More information

Math 205, Summer I, Week 4b:

Math 205, Summer I, Week 4b: Math 205, Summer I, 2016 Week 4b: Chapter 5, Sections 6, 7 and 8 (5.5 is NOT on the syllabus) 5.6 Eigenvalues and Eigenvectors 5.7 Eigenspaces, nondefective matrices 5.8 Diagonalization [*** See next slide

More information

Diagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Diagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Diagonalization MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Motivation Today we consider two fundamental questions: Given an n n matrix A, does there exist a basis

More information

Dimension. Eigenvalue and eigenvector

Dimension. Eigenvalue and eigenvector Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, rank-nullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,

More information

A = 3 1. We conclude that the algebraic multiplicity of the eigenvalues are both one, that is,

A = 3 1. We conclude that the algebraic multiplicity of the eigenvalues are both one, that is, 65 Diagonalizable Matrices It is useful to introduce few more concepts, that are common in the literature Definition 65 The characteristic polynomial of an n n matrix A is the function p(λ) det(a λi) Example

More information

MAT 1302B Mathematical Methods II

MAT 1302B Mathematical Methods II MAT 1302B Mathematical Methods II Alistair Savage Mathematics and Statistics University of Ottawa Winter 2015 Lecture 19 Alistair Savage (uottawa) MAT 1302B Mathematical Methods II Winter 2015 Lecture

More information

Eigenvalues, Eigenvectors, and Diagonalization

Eigenvalues, Eigenvectors, and Diagonalization Math 240 TA: Shuyi Weng Winter 207 February 23, 207 Eigenvalues, Eigenvectors, and Diagonalization The concepts of eigenvalues, eigenvectors, and diagonalization are best studied with examples. We will

More information

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization Eigenvalues for Triangular Matrices ENGI 78: Linear Algebra Review Finding Eigenvalues and Diagonalization Adapted from Notes Developed by Martin Scharlemann The eigenvalues for a triangular matrix are

More information

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST

ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST me me ft-uiowa-math2550 Assignment NOTRequiredJustHWformatOfQuizReviewForExam3part2 due 12/31/2014 at 07:10pm CST 1. (1 pt) local/library/ui/eigentf.pg A is n n an matrices.. There are an infinite number

More information

Lecture 12: Diagonalization

Lecture 12: Diagonalization Lecture : Diagonalization A square matrix D is called diagonal if all but diagonal entries are zero: a a D a n 5 n n. () Diagonal matrices are the simplest matrices that are basically equivalent to vectors

More information

Definition: An n x n matrix, "A", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X 1 A X

Definition: An n x n matrix, A, is said to be diagonalizable if there exists a nonsingular matrix X and a diagonal matrix D such that X 1 A X DIGONLIZTION Definition: n n x n matrix, "", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X X D. Theorem: n n x n matrix, "", is diagonalizable

More information

Chapter 5. Eigenvalues and Eigenvectors

Chapter 5. Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Section 5. Eigenvectors and Eigenvalues Motivation: Difference equations A Biology Question How to predict a population of rabbits with given dynamics:. half of the

More information

4. Linear transformations as a vector space 17

4. Linear transformations as a vector space 17 4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

Linear Algebra Final Exam Solutions, December 13, 2008

Linear Algebra Final Exam Solutions, December 13, 2008 Linear Algebra Final Exam Solutions, December 13, 2008 Write clearly, with complete sentences, explaining your work. You will be graded on clarity, style, and brevity. If you add false statements to a

More information

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued)

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations (continued) 1 A linear system of equations of the form Sections 75, 78 & 81 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written in matrix

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

Warm-up. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions

Warm-up. True or false? Baby proof. 2. The system of normal equations for A x = y has solutions iff A x = y has solutions Warm-up True or false? 1. proj u proj v u = u 2. The system of normal equations for A x = y has solutions iff A x = y has solutions 3. The normal equations are always consistent Baby proof 1. Let A be

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW SPENCER BECKER-KAHN Basic Definitions Domain and Codomain. Let f : X Y be any function. This notation means that X is the domain of f and Y is the codomain of f. This means that for

More information

Math 205, Summer I, Week 4b: Continued. Chapter 5, Section 8

Math 205, Summer I, Week 4b: Continued. Chapter 5, Section 8 Math 205, Summer I, 2016 Week 4b: Continued Chapter 5, Section 8 2 5.8 Diagonalization [reprint, week04: Eigenvalues and Eigenvectors] + diagonaliization 1. 5.8 Eigenspaces, Diagonalization A vector v

More information

Eigenspaces. (c) Find the algebraic multiplicity and the geometric multiplicity for the eigenvaules of A.

Eigenspaces. (c) Find the algebraic multiplicity and the geometric multiplicity for the eigenvaules of A. Eigenspaces 1. (a) Find all eigenvalues and eigenvectors of A = (b) Find the corresponding eigenspaces. [ ] 1 1 1 Definition. If A is an n n matrix and λ is a scalar, the λ-eigenspace of A (usually denoted

More information

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Glossary of Linear Algebra Terms. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Glossary of Linear Algebra Terms Basis (for a subspace) A linearly independent set of vectors that spans the space Basic Variable A variable in a linear system that corresponds to a pivot column in the

More information

PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them.

PRACTICE FINAL EXAM. why. If they are dependent, exhibit a linear dependence relation among them. Prof A Suciu MTH U37 LINEAR ALGEBRA Spring 2005 PRACTICE FINAL EXAM Are the following vectors independent or dependent? If they are independent, say why If they are dependent, exhibit a linear dependence

More information

Calculating determinants for larger matrices

Calculating determinants for larger matrices Day 26 Calculating determinants for larger matrices We now proceed to define det A for n n matrices A As before, we are looking for a function of A that satisfies the product formula det(ab) = det A det

More information

Eigenvalue and Eigenvector Homework

Eigenvalue and Eigenvector Homework Eigenvalue and Eigenvector Homework Olena Bormashenko November 4, 2 For each of the matrices A below, do the following:. Find the characteristic polynomial of A, and use it to find all the eigenvalues

More information

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2.

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. Diagonalization Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

More information

MATH 1553 PRACTICE MIDTERM 3 (VERSION B)

MATH 1553 PRACTICE MIDTERM 3 (VERSION B) MATH 1553 PRACTICE MIDTERM 3 (VERSION B) Name Section 1 2 3 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 10 points. The maximum score on this exam is 50 points.

More information

Linear Algebra Practice Final

Linear Algebra Practice Final . Let (a) First, Linear Algebra Practice Final Summer 3 3 A = 5 3 3 rref([a ) = 5 so if we let x 5 = t, then x 4 = t, x 3 =, x = t, and x = t, so that t t x = t = t t whence ker A = span(,,,, ) and a basis

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

Jordan Normal Form and Singular Decomposition

Jordan Normal Form and Singular Decomposition University of Debrecen Diagonalization and eigenvalues Diagonalization We have seen that if A is an n n square matrix, then A is diagonalizable if and only if for all λ eigenvalues of A we have dim(u λ

More information

Math 21b Final Exam Thursday, May 15, 2003 Solutions

Math 21b Final Exam Thursday, May 15, 2003 Solutions Math 2b Final Exam Thursday, May 5, 2003 Solutions. (20 points) True or False. No justification is necessary, simply circle T or F for each statement. T F (a) If W is a subspace of R n and x is not in

More information

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU

LU Factorization. A m x n matrix A admits an LU factorization if it can be written in the form of A = LU LU Factorization A m n matri A admits an LU factorization if it can be written in the form of Where, A = LU L : is a m m lower triangular matri with s on the diagonal. The matri L is invertible and is

More information

Review Notes for Linear Algebra True or False Last Updated: January 25, 2010

Review Notes for Linear Algebra True or False Last Updated: January 25, 2010 Review Notes for Linear Algebra True or False Last Updated: January 25, 2010 Chapter 3 [ Eigenvalues and Eigenvectors ] 31 If A is an n n matrix, then A can have at most n eigenvalues The characteristic

More information

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization Eigenvalues for Triangular Matrices ENGI 78: Linear Algebra Review Finding Eigenvalues and Diagonalization Adapted from Notes Developed by Martin Scharlemann June 7, 04 The eigenvalues for a triangular

More information

Diagonalization. Hung-yi Lee

Diagonalization. Hung-yi Lee Diagonalization Hung-yi Lee Review If Av = λv (v is a vector, λ is a scalar) v is an eigenvector of A excluding zero vector λ is an eigenvalue of A that corresponds to v Eigenvectors corresponding to λ

More information

MATH 221, Spring Homework 10 Solutions

MATH 221, Spring Homework 10 Solutions MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

More information

EIGENVALUES AND EIGENVECTORS

EIGENVALUES AND EIGENVECTORS EIGENVALUES AND EIGENVECTORS Diagonalizable linear transformations and matrices Recall, a matrix, D, is diagonal if it is square and the only non-zero entries are on the diagonal This is equivalent to

More information

Lecture 3 Eigenvalues and Eigenvectors

Lecture 3 Eigenvalues and Eigenvectors Lecture 3 Eigenvalues and Eigenvectors Eivind Eriksen BI Norwegian School of Management Department of Economics September 10, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 3 Eigenvalues and Eigenvectors

More information

MAC Module 12 Eigenvalues and Eigenvectors. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 12 Eigenvalues and Eigenvectors. Learning Objectives. Upon completing this module, you should be able to: MAC Module Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to: Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors

More information

MAC Module 12 Eigenvalues and Eigenvectors

MAC Module 12 Eigenvalues and Eigenvectors MAC 23 Module 2 Eigenvalues and Eigenvectors Learning Objectives Upon completing this module, you should be able to:. Solve the eigenvalue problem by finding the eigenvalues and the corresponding eigenvectors

More information

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a). .(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

More information

Exercise Set 7.2. Skills

Exercise Set 7.2. Skills Orthogonally diagonalizable matrix Spectral decomposition (or eigenvalue decomposition) Schur decomposition Subdiagonal Upper Hessenburg form Upper Hessenburg decomposition Skills Be able to recognize

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

Final Exam. Linear Algebra Summer 2011 Math S2010X (3) Corrin Clarkson. August 10th, Solutions

Final Exam. Linear Algebra Summer 2011 Math S2010X (3) Corrin Clarkson. August 10th, Solutions Final Exam Linear Algebra Summer Math SX (3) Corrin Clarkson August th, Name: Solutions Instructions: This is a closed book exam. You may not use the textbook, notes or a calculator. You will have 9 minutes

More information

Spring 2019 Exam 2 3/27/19 Time Limit: / Problem Points Score. Total: 280

Spring 2019 Exam 2 3/27/19 Time Limit: / Problem Points Score. Total: 280 Math 307 Spring 2019 Exam 2 3/27/19 Time Limit: / Name (Print): Problem Points Score 1 15 2 20 3 35 4 30 5 10 6 20 7 20 8 20 9 20 10 20 11 10 12 10 13 10 14 10 15 10 16 10 17 10 Total: 280 Math 307 Exam

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Announcements Monday, November 06

Announcements Monday, November 06 Announcements Monday, November 06 This week s quiz: covers Sections 5 and 52 Midterm 3, on November 7th (next Friday) Exam covers: Sections 3,32,5,52,53 and 55 Section 53 Diagonalization Motivation: Difference

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors week -2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n

More information

Eigenvalues and Eigenvectors 7.2 Diagonalization

Eigenvalues and Eigenvectors 7.2 Diagonalization Eigenvalues and Eigenvectors 7.2 Diagonalization November 8 Goals Suppose A is square matrix of order n. Provide necessary and sufficient condition when there is an invertible matrix P such that P 1 AP

More information

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015 Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal

More information

Math 315: Linear Algebra Solutions to Assignment 7

Math 315: Linear Algebra Solutions to Assignment 7 Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

More information

Lecture 15, 16: Diagonalization

Lecture 15, 16: Diagonalization Lecture 15, 16: Diagonalization Motivation: Eigenvalues and Eigenvectors are easy to compute for diagonal matrices. Hence, we would like (if possible) to convert matrix A into a diagonal matrix. Suppose

More information

Generalized Eigenvectors and Jordan Form

Generalized Eigenvectors and Jordan Form Generalized Eigenvectors and Jordan Form We have seen that an n n matrix A is diagonalizable precisely when the dimensions of its eigenspaces sum to n. So if A is not diagonalizable, there is at least

More information

The Jordan Normal Form and its Applications

The Jordan Normal Form and its Applications The and its Applications Jeremy IMPACT Brigham Young University A square matrix A is a linear operator on {R, C} n. A is diagonalizable if and only if it has n linearly independent eigenvectors. What happens

More information

Final Exam Practice Problems Answers Math 24 Winter 2012

Final Exam Practice Problems Answers Math 24 Winter 2012 Final Exam Practice Problems Answers Math 4 Winter 0 () The Jordan product of two n n matrices is defined as A B = (AB + BA), where the products inside the parentheses are standard matrix product. Is the

More information

PROBLEM SET. Problems on Eigenvalues and Diagonalization. Math 3351, Fall Oct. 20, 2010 ANSWERS

PROBLEM SET. Problems on Eigenvalues and Diagonalization. Math 3351, Fall Oct. 20, 2010 ANSWERS PROBLEM SET Problems on Eigenvalues and Diagonalization Math 335, Fall 2 Oct. 2, 2 ANSWERS i Problem. In each part, find the characteristic polynomial of the matrix and the eigenvalues of the matrix by

More information

Eigenvalues and Eigenvectors A =

Eigenvalues and Eigenvectors A = Eigenvalues and Eigenvectors Definition 0 Let A R n n be an n n real matrix A number λ R is a real eigenvalue of A if there exists a nonzero vector v R n such that A v = λ v The vector v is called an eigenvector

More information

Linear Algebra II Lecture 13

Linear Algebra II Lecture 13 Linear Algebra II Lecture 13 Xi Chen 1 1 University of Alberta November 14, 2014 Outline 1 2 If v is an eigenvector of T : V V corresponding to λ, then v is an eigenvector of T m corresponding to λ m since

More information

(the matrix with b 1 and b 2 as columns). If x is a vector in R 2, then its coordinate vector [x] B relative to B satisfies the formula.

(the matrix with b 1 and b 2 as columns). If x is a vector in R 2, then its coordinate vector [x] B relative to B satisfies the formula. 4 Diagonalization 4 Change of basis Let B (b,b ) be an ordered basis for R and let B b b (the matrix with b and b as columns) If x is a vector in R, then its coordinate vector x B relative to B satisfies

More information

Solutions to Final Exam

Solutions to Final Exam Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5-vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Computationally, diagonal matrices are the easiest to work with. With this idea in mind, we introduce similarity:

Computationally, diagonal matrices are the easiest to work with. With this idea in mind, we introduce similarity: Diagonalization We have seen that diagonal and triangular matrices are much easier to work with than are most matrices For example, determinants and eigenvalues are easy to compute, and multiplication

More information

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Property The eigenvalues

More information

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by

c c c c c c c c c c a 3x3 matrix C= has a determinant determined by Linear Algebra Determinants and Eigenvalues Introduction: Many important geometric and algebraic properties of square matrices are associated with a single real number revealed by what s known as the determinant.

More information

The eigenvalues are the roots of the characteristic polynomial, det(a λi). We can compute

The eigenvalues are the roots of the characteristic polynomial, det(a λi). We can compute A. [ 3. Let A = 5 5 ]. Find all (complex) eigenvalues and eigenvectors of The eigenvalues are the roots of the characteristic polynomial, det(a λi). We can compute 3 λ A λi =, 5 5 λ from which det(a λi)

More information

3 Matrix Algebra. 3.1 Operations on matrices

3 Matrix Algebra. 3.1 Operations on matrices 3 Matrix Algebra A matrix is a rectangular array of numbers; it is of size m n if it has m rows and n columns. A 1 n matrix is a row vector; an m 1 matrix is a column vector. For example: 1 5 3 5 3 5 8

More information

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues Lecture Notes: Eigenvalues and Eigenvectors Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Definitions Let A be an n n matrix. If there

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

Unit 5. Matrix diagonaliza1on

Unit 5. Matrix diagonaliza1on Unit 5. Matrix diagonaliza1on Linear Algebra and Op1miza1on Msc Bioinforma1cs for Health Sciences Eduardo Eyras Pompeu Fabra University 218-219 hlp://comprna.upf.edu/courses/master_mat/ We have seen before

More information

Mathematical Methods for Engineers 1 (AMS10/10A)

Mathematical Methods for Engineers 1 (AMS10/10A) Mathematical Methods for Engineers 1 (AMS10/10A) Quiz 5 - Friday May 27th (2016) 2:00-3:10 PM AMS 10 AMS 10A Name: Student ID: Multiple Choice Questions (3 points each; only one correct answer per question)

More information

Math 1553 Worksheet 5.3, 5.5

Math 1553 Worksheet 5.3, 5.5 Math Worksheet, Answer yes / no / maybe In each case, A is a matrix whose entries are real a) If A is a matrix with characteristic polynomial λ(λ ), then the - eigenspace is -dimensional b) If A is an

More information

Linear Algebra II Lecture 22

Linear Algebra II Lecture 22 Linear Algebra II Lecture 22 Xi Chen University of Alberta March 4, 24 Outline Characteristic Polynomial, Eigenvalue, Eigenvector and Eigenvalue, Eigenvector and Let T : V V be a linear endomorphism. We

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

MATH 1553-C MIDTERM EXAMINATION 3

MATH 1553-C MIDTERM EXAMINATION 3 MATH 553-C MIDTERM EXAMINATION 3 Name GT Email @gatech.edu Please read all instructions carefully before beginning. Please leave your GT ID card on your desk until your TA scans your exam. Each problem

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall 2015 1 / 14 Introduction We define eigenvalues and eigenvectors. We discuss how to

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

Definitions for Quizzes

Definitions for Quizzes Definitions for Quizzes Italicized text (or something close to it) will be given to you. Plain text is (an example of) what you should write as a definition. [Bracketed text will not be given, nor does

More information