Yimin Wei a,b,,1, Xiezhang Li c,2, Fanbin Bu d, Fuzhen Zhang e. Abstract

Size: px
Start display at page:

Download "Yimin Wei a,b,,1, Xiezhang Li c,2, Fanbin Bu d, Fuzhen Zhang e. Abstract"

Transcription

1 Linear Algebra and its Applications 49 (006) wwwelseviercom/locate/laa Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices Application of perturbation theory for simple invariant subspaces Yimin Wei ab Xiezhang Li c Fanbin Bu d Fuzhen Zhang e a School of Mathematical Sciences Fudan University Shanghai PR China b Key Laboratory of Mathematics for Nonlinear Sciences (Fudan University) Ministry of Education Shanghai PR China c Department of Mathematical Sciences Georgia Southern University Statesboro GA USA d Institute of Mathematics Fudan University Shanghai PR China e Division of Math Science and Technology Nova Southeastern University 330 College Avenue Fort Lauderdale FL 3334 USA Received 7 July 005; accepted 6 June 006 Available online 4 August 006 Submitted by S Kirkland Abstract Perturbation bounds for the relative error in the eigenvalues of diagonalizable and singular matrices are derived by using perturbation theory for simple invariant subspaces of a matrix and the group inverse of a matrix These upper bounds are supplements to the related perturbation bounds for the eigenvalues of diagonalizable and nonsingular matrices 006 Elsevier Inc All rights reserved AMS classification: 5A60; 65F35 Keywords: Diagonalizable and singular matrix; Simple invariant subspaces; Separation function; Relative perturbation bound Corresponding author Address: School of Mathematical Sciences Fudan University Shanghai PR China addresses: ymwei@fudaneducn (Y Wei) xli@georgiasouthernedu (X Li) fanbinbu@yahoocomcn (F Bu) zhang@novaedu (F Zhang) The work of this author was supported by the National Natural Science Foundation of China under grant and Shanghai Education Committee Partial work of this author was finished when the author visited the Key Laboratory of Mathematics for Nonlinear Sciences of Fudan University /$ - see front matter ( 006 Elsevier Inc All rights reserved doi:006/jlaa

2 766 Y Wei et al / Linear Algebra and its Applications 49 (006) Introduction Let A be an n n diagonalizable complex matrix with an eigendecomposition A = X A ΛXA where Λ = diag{λ λ λ n } and X A is an eigenmatrix of A Assume that E is a perturbation matrix of A and that µ is an eigenvalue of A + E The well-known Bauer Fike theorem [] reveals a bound for the absolute error between µ and the closest eigenvalue of A by min λ i µ κ(x A ) E i where κ(x A ) = X A XA is the condition number of X and is the matrix -norm Under an additional assumption that A is nonsingular Eisenstat and Ipsen [4] showed the following relative perturbation bound λ i µ min κ(x A ) A E () i λ i They concluded that relative perturbation bounds are not necessarily stronger than absolute bounds and the conditioning of an eigenvalue in the relative sense is the same as in the absolute sense Recently the conclusion has been extended to the case of singular and diagonalizable matrices by Eisenstat [3] In that paper the author developed an upper bound for µ>κ(x A ) E (ie µ is too large in magnitude for the zero eigenvalue of A to satisfy the Bauer Fike bound) λ i µ min + α λ i /=0 λ i κ(x A ) A # E () / where α = κ(x A ) E µ (κ(x A ) E ) and A # denotes the group inverse of A From () the author also derived a uniform upper bound min λ i /=0 λ i µ λ i κ(x A ) A # E (3) for µ κ(x A ) E In this paper a completely new approach through perturbation theory of simple invariant subspaces is developed to derive a relative perturbation bound which is an improvement on our earlier results [50] Some preliminary results about the perturbation theory of simple invariant spaces of a matrix and the separation function of two square matrices are introduced in Section A relative perturbation bound with respect to norms for nonzero eigenvalues of diagonalizable and singular matrices is derived with an application of perturbation theory of simple invariant spaces in Section 3 Preliminaries Let A C n n be a diagonalizable and singular matrix with rank(a) = r<n There are from [6 Theorem 55] is a unitary matrix [X Y ] with [X X ] =[Y Y ] such that the spectral resolution of A is given by Y C O A[X X ]= () O O n r Y where C C r r is nonsingular and O n r is the zero matrix of order n r The group inverse A # (see [8]) is given by [ A # C O Y ] =[X X ] () O O n r Y

3 Y Wei et al / Linear Algebra and its Applications 49 (006) Let E be a perturbation matrix of A AsE approaches zero each eigenvalue of A + E approaches the corresponding eigenvalue of A Then a relative perturbation bound is meaningful only for those nonzero eigenvalues of A On the other hand we would estimate an upper bound of those eigenvalues of A + E which approach zero For this purpose we will apply perturbation theory of simple invariant subspaces of a square matrix due to Stewart and Sun [6 Chapter V] Writing [ Y Y we have [Y Y ] E[X X ]= ] (A + E)[X X ]= F F (3) F F C + F F F F It follows that X Y = AA # X Y = I AA # C = Y A# X F ij = Yi EX j ij = Recall [X Y ] is a unitary matrix With the notations above the following relations are easily derived from () to(4): AA # = I AA # if A is a nonzero singular matrix (see [9]) C = Y A # X = X Y A# X = A # X A # F AA # E F = AA # E(I AA # ) (5) F E F E(I AA # ) We next introduce simple invariant subspaces of A and the separation function (see [6 Chapter V] and [7]) It follows from () that AX = X C and AX = X O n r Let σ(m) denote the spectrum of a square matrix M Since σ(c) and σ(o n r ) are disjoint the ranges of X and X are called simple invariant subspaces of A The separation function of two arbitrary square matrices S and is defined as { min W = WS W sep (S ) := if σ(s) σ() = 0 otherwise With notations in () and (3) it follows from [6 Theorem 58] that if sep (C O n r ) F F > F F there is a unique matrix P satisfying P < such that [ Y Y PY F sep (C O n r ) F F (4) (6) ] C + F + F (A + E)[X + X P X ]= P F (7) O F PF

4 768 Y Wei et al / Linear Algebra and its Applications 49 (006) Relative bounds with respect to norms In this section we derive relative perturbation bounds for the eigenvalues of diagonalizable and singular matrix with an application of perturbation theory of simple invariant subspaces Lemma 3 Let C be nonsingular and let O be a square null matrix Then sep (C O) = C (3) Proof The result follows directly from the definition of sep (C O) and the fact that WC C W with equality for a W whose rows are multiples of left singular vectors corresponding to the smallest singular value of C Eq (3) will be used in the proof of the following main result of this paper Theorem 3 Let A be a diagonalizable and singular matrix and let E be a perturbation matrix If E < 4 A # (3) AA # then for µ σ(a+ E) either µ E(I AA # ) + p A # E(I AA # ) (33) or λ µ min κ (X A ) { A # E 0 /=λ σ (A) λ + p A # E(I AA # ) } (34) where X A is an eigenmatrix of A and E p = A # AA # E E(I AA # ) Proof Suppose that A C n n has a eigendecomposition XA D O AX A = O O n r where D is nonsingular diagonal matrix of order r r n and X A is an eigenmatrix of A Let X A =[S S ] and XA =[T T ] where S T C n r Suppose that S = X R and T = Y R are QR decompositions of S and T respectively We denote X := S R and Y := T R It follows that [X X ] =[Y Y ] [X Y ] =[X Y ] and the spectral resolution of A is given by Y A[X X ]= Y C O (35) O O where C = R DR is nonsingular So X C :=R is an eigenmatrix of C Moreover we have κ(x C ) κ(x A ) (36)

5 Y Wei et al / Linear Algebra and its Applications 49 (006) In fact X A =[X X C X R ] and XA =[Y XC Y R ] which implies that X C = X X C X A XC = XC Y X XC Y X = Y XC XA With the assumption (3) and relations in (5) it is obvious that E < 4 A # AA # 4 C AA # It follows from relations in (5) and (3) that F + F + F F 4 E AA # < C = sep (C O) Then according to (7) there exists a unique matrix P satisfying F P < C F F E A # AA # E E(I AA # ) = p (37) such that C + F + F (A + E) similar to P F O F PF So σ(a+ E) = σ(f PF ) σ(c + F + F P) We first consider the case when µ σ(f PF ) It follows from (5) and (37) that µ F PF F + P F E(I AA # ) + p AA # E(I AA # ) (38) which completes the proof of (33) For the second case when µ σ(c + F + F P) According to (35) the set of all nonzero eigenvalues of A and the spectrum of C are identical With Eisenstat and Ipsen s result in () and (36) abovewehave λ µ λ µ min = min κ(x C ) C (F + F P) 0 /=λ σ (A) λ λ σ(c) λ κ(x A ) C (F + F P) (39) Furthermore it follows from (4) and (5) that ) C (F + F P) = Y A# X (Y EX + Y EX P A # E + P A # E(I AA # ) Thus (34) follows by replacing P with its upper bound in (37) We complete the proof of the theorem

6 770 Y Wei et al / Linear Algebra and its Applications 49 (006) Remark There is a tighter bound than (34) for small P Writing C = CX C XC C C and using [4 Theorem 3] and the fact that C C = XC CX C = D is diagonal we have λ µ min C λ σ(c) λ (F + F P)C = XC C (F + F P)X C But with the notation above X C C (F + F P)X C = R ) Y A# X (Y EX + Y EX P R ( ) = R Y A# AA # E X R I + X R R PR = T A # E [S S ] I R PR Thus λ µ λ µ min = min X A 0 /=λ σ (A) λ λ σ(c) A # λ E X A + R PR κ(x A ) A # E ( + ) κ(x A) P (30) since R PR T P S κ(x A ) P We remark that for a sufficiently small E the upper bounds in (34) and (30) are dominated by κ(x A ) A # E The term κ(x A ) could be interpreted as an approximate condition number of the relative perturbation error for eigenvalues of A up to the first order of E Inequality () gives an upper bound for a specific µ which is known (3) gives a simple uniform upper bound owever it follows from (37) that if A # AA # E < 4 then p AA # < which implies that A # E + p A # E(I AA # ) < A # E Thus in this case (34) gives a better bound than (3) In an analogous way if P is small ( ) κ(x such that κ(x A ) P < then + A ) P < Thus in this case (30) gives a better bound than (3) Acknowledgements The authors thank Professor S Kirkland and referees for their valuable suggestions and very detailed comments on earlier drafts of the manuscript The first author would like to thank Professors Ren-cang Li and Qiang Ye for their useful discussions and hospitality during his visit at University of Kentucky in 000 References [] F Bauer C Fike Norms and exclusion theorems Numer Math (960) 37 4 [] A Ben-Israel TNE Greville Generalized Inverses: Theory and Applications second ed Springer-Verlag New York 003

7 Y Wei et al / Linear Algebra and its Applications 49 (006) [3] SC Eisenstat A perturbation bound for the eigenvalues of a singular diagonalizable matrix Linear Algebra Appl 46 (006) [4] SC Eisenstat ICF Ipsen Three absolute perturbation bounds for matrix eigenvalues imply relative bounds SIAM J Matrix Anal Appl 0 (998) [5] X Li Y Wei A note on the relative perturbation bounds of the eigenvalues of a diagonalizable matrix a talk presented at the Tenth International Linear Algebra Society (ILAS) Conference Auburn University Alabama USA June [6] GW Stewart JG Sun Matrix Perturbation Theory Academic Press Boston 990 [7] GW Stewart Error bounds for approximate invariant subspaces of closed linear operators SIAM J Numer Anal 8 (97) [8] G Wang Y Wei S Qiao Generalized Inverses: Theory and Computations Science Press Beijing 004 [9] Y Wei On the perturbation of the group inverse and oblique projection Appl Math Comput 98 (999) 9 4 [0] Y Wei F Zhang Problem 8-9: A relative perturbation bound IMAGE The Bull Int Linear Algebra Soc (ILAS) 8 (April) (00) 35; Solution to Problem 8-9 IMAGE The Bull Int Linear Algebra Soc (ILAS) 9 (October) (00) 33 [] Y Wei X Li F Bu F Zhang Relative perturbation bounds for the eigenvalues of singular matrices August 005 Preprint Available from: < buxxx00/publications/r_perturbationpdf>

Multiplicative Perturbation Bounds of the Group Inverse and Oblique Projection

Multiplicative Perturbation Bounds of the Group Inverse and Oblique Projection Filomat 30: 06, 37 375 DOI 0.98/FIL67M Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Multiplicative Perturbation Bounds of the Group

More information

Some inequalities for sum and product of positive semide nite matrices

Some inequalities for sum and product of positive semide nite matrices Linear Algebra and its Applications 293 (1999) 39±49 www.elsevier.com/locate/laa Some inequalities for sum and product of positive semide nite matrices Bo-Ying Wang a,1,2, Bo-Yan Xi a, Fuzhen Zhang b,

More information

ELA THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE. 1. Introduction. Let C m n be the set of complex m n matrices and C m n

ELA THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE. 1. Introduction. Let C m n be the set of complex m n matrices and C m n Electronic Journal of Linear Algebra ISSN 08-380 Volume 22, pp. 52-538, May 20 THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE WEI-WEI XU, LI-XIA CAI, AND WEN LI Abstract. In this

More information

Fuzhen Zhang s Publication and Presentation List (updated Dec. 2007)

Fuzhen Zhang s Publication and Presentation List (updated Dec. 2007) Fuzhen Zhang s Publication and Presentation List (updated Dec. 2007) Papers in peer-reviewed journals 1. Revisiting Hua-Marcus-Bellman-Ando inequalities on contractive matrices, with C. Xu and Z. Xu, Lin.

More information

The DMP Inverse for Rectangular Matrices

The DMP Inverse for Rectangular Matrices Filomat 31:19 (2017, 6015 6019 https://doi.org/10.2298/fil1719015m Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://.pmf.ni.ac.rs/filomat The DMP Inverse for

More information

The Drazin inverses of products and differences of orthogonal projections

The Drazin inverses of products and differences of orthogonal projections J Math Anal Appl 335 7 64 71 wwwelseviercom/locate/jmaa The Drazin inverses of products and differences of orthogonal projections Chun Yuan Deng School of Mathematics Science, South China Normal University,

More information

On group inverse of singular Toeplitz matrices

On group inverse of singular Toeplitz matrices Linear Algebra and its Applications 399 (2005) 109 123 wwwelseviercom/locate/laa On group inverse of singular Toeplitz matrices Yimin Wei a,, Huaian Diao b,1 a Department of Mathematics, Fudan Universit,

More information

ADDITIVE RESULTS FOR THE GENERALIZED DRAZIN INVERSE

ADDITIVE RESULTS FOR THE GENERALIZED DRAZIN INVERSE ADDITIVE RESULTS FOR THE GENERALIZED DRAZIN INVERSE Dragan S Djordjević and Yimin Wei Abstract Additive perturbation results for the generalized Drazin inverse of Banach space operators are presented Precisely

More information

Group inverse for the block matrix with two identical subblocks over skew fields

Group inverse for the block matrix with two identical subblocks over skew fields Electronic Journal of Linear Algebra Volume 21 Volume 21 2010 Article 7 2010 Group inverse for the block matrix with two identical subblocks over skew fields Jiemei Zhao Changjiang Bu Follow this and additional

More information

Tensor Complementarity Problem and Semi-positive Tensors

Tensor Complementarity Problem and Semi-positive Tensors DOI 10.1007/s10957-015-0800-2 Tensor Complementarity Problem and Semi-positive Tensors Yisheng Song 1 Liqun Qi 2 Received: 14 February 2015 / Accepted: 17 August 2015 Springer Science+Business Media New

More information

Interpolating the arithmetic geometric mean inequality and its operator version

Interpolating the arithmetic geometric mean inequality and its operator version Linear Algebra and its Applications 413 (006) 355 363 www.elsevier.com/locate/laa Interpolating the arithmetic geometric mean inequality and its operator version Rajendra Bhatia Indian Statistical Institute,

More information

Jordan Canonical Form of A Partitioned Complex Matrix and Its Application to Real Quaternion Matrices

Jordan Canonical Form of A Partitioned Complex Matrix and Its Application to Real Quaternion Matrices COMMUNICATIONS IN ALGEBRA, 29(6, 2363-2375(200 Jordan Canonical Form of A Partitioned Complex Matrix and Its Application to Real Quaternion Matrices Fuzhen Zhang Department of Math Science and Technology

More information

Subset selection for matrices

Subset selection for matrices Linear Algebra its Applications 422 (2007) 349 359 www.elsevier.com/locate/laa Subset selection for matrices F.R. de Hoog a, R.M.M. Mattheij b, a CSIRO Mathematical Information Sciences, P.O. ox 664, Canberra,

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 432 2010 661 669 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: wwwelseviercom/locate/laa On the characteristic and

More information

Diagonal and Monomial Solutions of the Matrix Equation AXB = C

Diagonal and Monomial Solutions of the Matrix Equation AXB = C Iranian Journal of Mathematical Sciences and Informatics Vol. 9, No. 1 (2014), pp 31-42 Diagonal and Monomial Solutions of the Matrix Equation AXB = C Massoud Aman Department of Mathematics, Faculty of

More information

Some additive results on Drazin inverse

Some additive results on Drazin inverse Linear Algebra and its Applications 322 (2001) 207 217 www.elsevier.com/locate/laa Some additive results on Drazin inverse Robert E. Hartwig a, Guorong Wang a,b,1, Yimin Wei c,,2 a Mathematics Department,

More information

arxiv: v3 [math.ra] 22 Aug 2014

arxiv: v3 [math.ra] 22 Aug 2014 arxiv:1407.0331v3 [math.ra] 22 Aug 2014 Positivity of Partitioned Hermitian Matrices with Unitarily Invariant Norms Abstract Chi-Kwong Li a, Fuzhen Zhang b a Department of Mathematics, College of William

More information

Journal of Computational and Applied Mathematics

Journal of Computational and Applied Mathematics Journal of Computational and Applied Mathematics 236 (212) 3218 3227 Contents lists available at SciVerse ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

arxiv: v1 [math.co] 10 Aug 2016

arxiv: v1 [math.co] 10 Aug 2016 POLYTOPES OF STOCHASTIC TENSORS HAIXIA CHANG 1, VEHBI E. PAKSOY 2 AND FUZHEN ZHANG 2 arxiv:1608.03203v1 [math.co] 10 Aug 2016 Abstract. Considering n n n stochastic tensors (a ijk ) (i.e., nonnegative

More information

Displacement rank of the Drazin inverse

Displacement rank of the Drazin inverse Available online at www.sciencedirect.com Journal of Computational and Applied Mathematics 167 (2004) 147 161 www.elsevier.com/locate/cam Displacement rank of the Drazin inverse Huaian Diao a, Yimin Wei

More information

Characterization of half-radial matrices

Characterization of half-radial matrices Characterization of half-radial matrices Iveta Hnětynková, Petr Tichý Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague 8, Czech Republic Abstract Numerical radius r(a) is the

More information

We first repeat some well known facts about condition numbers for normwise and componentwise perturbations. Consider the matrix

We first repeat some well known facts about condition numbers for normwise and componentwise perturbations. Consider the matrix BIT 39(1), pp. 143 151, 1999 ILL-CONDITIONEDNESS NEEDS NOT BE COMPONENTWISE NEAR TO ILL-POSEDNESS FOR LEAST SQUARES PROBLEMS SIEGFRIED M. RUMP Abstract. The condition number of a problem measures the sensitivity

More information

Perturbation of the generalized Drazin inverse

Perturbation of the generalized Drazin inverse Electronic Journal of Linear Algebra Volume 21 Volume 21 (2010) Article 9 2010 Perturbation of the generalized Drazin inverse Chunyuan Deng Yimin Wei Follow this and additional works at: http://repository.uwyo.edu/ela

More information

ELA ON THE GROUP INVERSE OF LINEAR COMBINATIONS OF TWO GROUP INVERTIBLE MATRICES

ELA ON THE GROUP INVERSE OF LINEAR COMBINATIONS OF TWO GROUP INVERTIBLE MATRICES ON THE GROUP INVERSE OF LINEAR COMBINATIONS OF TWO GROUP INVERTIBLE MATRICES XIAOJI LIU, LINGLING WU, AND JULIO BENíTEZ Abstract. In this paper, some formulas are found for the group inverse of ap +bq,

More information

On the simplest expression of the perturbed Moore Penrose metric generalized inverse

On the simplest expression of the perturbed Moore Penrose metric generalized inverse Annals of the University of Bucharest (mathematical series) 4 (LXII) (2013), 433 446 On the simplest expression of the perturbed Moore Penrose metric generalized inverse Jianbing Cao and Yifeng Xue Communicated

More information

Singular Value Inequalities for Real and Imaginary Parts of Matrices

Singular Value Inequalities for Real and Imaginary Parts of Matrices Filomat 3:1 16, 63 69 DOI 1.98/FIL16163C Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Singular Value Inequalities for Real Imaginary

More information

A revisit to a reverse-order law for generalized inverses of a matrix product and its variations

A revisit to a reverse-order law for generalized inverses of a matrix product and its variations A revisit to a reverse-order law for generalized inverses of a matrix product and its variations Yongge Tian CEMA, Central University of Finance and Economics, Beijing 100081, China Abstract. For a pair

More information

Two Results About The Matrix Exponential

Two Results About The Matrix Exponential Two Results About The Matrix Exponential Hongguo Xu Abstract Two results about the matrix exponential are given. One is to characterize the matrices A which satisfy e A e AH = e AH e A, another is about

More information

MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE

MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE J. Appl. Math. & Computing Vol. 19(2005), No. 1-2, pp. 297-310 MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE K. KAMARAJ AND K. C. SIVAKUMAR Abstract. The concept of the Moore-Penrose inverse

More information

The estimation of eigenvalues of sum, difference, and tensor product of matrices over quaternion division algebra

The estimation of eigenvalues of sum, difference, and tensor product of matrices over quaternion division algebra Available online at www.sciencedirect.com Linear Algebra and its Applications 428 (2008) 3023 3033 www.elsevier.com/locate/laa The estimation of eigenvalues of sum, difference, and tensor product of matrices

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 1017-060X (Print) ISSN: 1735-8515 (Online) Bulletin of the Iranian Mathematical Society Vol. 41 (2015), No. 5, pp. 1259 1269. Title: A uniform approximation method to solve absolute value equation

More information

Matrix Inequalities by Means of Block Matrices 1

Matrix Inequalities by Means of Block Matrices 1 Mathematical Inequalities & Applications, Vol. 4, No. 4, 200, pp. 48-490. Matrix Inequalities by Means of Block Matrices Fuzhen Zhang 2 Department of Math, Science and Technology Nova Southeastern University,

More information

The skew-symmetric orthogonal solutions of the matrix equation AX = B

The skew-symmetric orthogonal solutions of the matrix equation AX = B Linear Algebra and its Applications 402 (2005) 303 318 www.elsevier.com/locate/laa The skew-symmetric orthogonal solutions of the matrix equation AX = B Chunjun Meng, Xiyan Hu, Lei Zhang College of Mathematics

More information

An estimation of the spectral radius of a product of block matrices

An estimation of the spectral radius of a product of block matrices Linear Algebra and its Applications 379 (2004) 267 275 wwwelseviercom/locate/laa An estimation of the spectral radius of a product of block matrices Mei-Qin Chen a Xiezhang Li b a Department of Mathematics

More information

An Even Order Symmetric B Tensor is Positive Definite

An Even Order Symmetric B Tensor is Positive Definite An Even Order Symmetric B Tensor is Positive Definite Liqun Qi, Yisheng Song arxiv:1404.0452v4 [math.sp] 14 May 2014 October 17, 2018 Abstract It is easily checkable if a given tensor is a B tensor, or

More information

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation Zheng-jian Bai Abstract In this paper, we first consider the inverse

More information

Some inequalities for unitarily invariant norms of matrices

Some inequalities for unitarily invariant norms of matrices Wang et al Journal of Inequalities and Applications 011, 011:10 http://wwwjournalofinequalitiesandapplicationscom/content/011/1/10 RESEARCH Open Access Some inequalities for unitarily invariant norms of

More information

A property concerning the Hadamard powers of inverse M-matrices

A property concerning the Hadamard powers of inverse M-matrices Linear Algebra and its Applications 381 (2004 53 60 www.elsevier.com/locate/laa A property concerning the Hadamard powers of inverse M-matrices Shencan Chen Department of Mathematics, Fuzhou University,

More information

Comparison of perturbation bounds for the stationary distribution of a Markov chain

Comparison of perturbation bounds for the stationary distribution of a Markov chain Linear Algebra and its Applications 335 (00) 37 50 www.elsevier.com/locate/laa Comparison of perturbation bounds for the stationary distribution of a Markov chain Grace E. Cho a, Carl D. Meyer b,, a Mathematics

More information

Fuzhen Zhang s Publication and Presentation List

Fuzhen Zhang s Publication and Presentation List Fuzhen Zhang s Publication and Presentation List Papers in peer-reviewed journals 1. Takagi factorization for quaternion matrices, with R. Horn, submitted to LAMA. 2. Book Review for Inequalities: Theory

More information

Workshop on Generalized Inverse and its Applications. Invited Speakers Program Abstract

Workshop on Generalized Inverse and its Applications. Invited Speakers Program Abstract Workshop on Generalized Inverse and its Applications Invited Speakers Program Abstract Southeast University, Nanjing November 2-4, 2012 Invited Speakers: Changjiang Bu, College of Science, Harbin Engineering

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 433 (2010) 476 482 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Nonsingularity of the

More information

Applied Mathematics Letters. Comparison theorems for a subclass of proper splittings of matrices

Applied Mathematics Letters. Comparison theorems for a subclass of proper splittings of matrices Applied Mathematics Letters 25 (202) 2339 2343 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Comparison theorems for a subclass

More information

The minimum rank of matrices and the equivalence class graph

The minimum rank of matrices and the equivalence class graph Linear Algebra and its Applications 427 (2007) 161 170 wwwelseviercom/locate/laa The minimum rank of matrices and the equivalence class graph Rosário Fernandes, Cecília Perdigão Departamento de Matemática,

More information

arxiv: v1 [math.na] 1 Sep 2018

arxiv: v1 [math.na] 1 Sep 2018 On the perturbation of an L -orthogonal projection Xuefeng Xu arxiv:18090000v1 [mathna] 1 Sep 018 September 5 018 Abstract The L -orthogonal projection is an important mathematical tool in scientific computing

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.2: Fundamentals 2 / 31 Eigenvalues and Eigenvectors Eigenvalues and eigenvectors of

More information

The reflexive and anti-reflexive solutions of the matrix equation A H XB =C

The reflexive and anti-reflexive solutions of the matrix equation A H XB =C Journal of Computational and Applied Mathematics 200 (2007) 749 760 www.elsevier.com/locate/cam The reflexive and anti-reflexive solutions of the matrix equation A H XB =C Xiang-yang Peng a,b,, Xi-yan

More information

RITZ VALUE BOUNDS THAT EXPLOIT QUASI-SPARSITY

RITZ VALUE BOUNDS THAT EXPLOIT QUASI-SPARSITY RITZ VALUE BOUNDS THAT EXPLOIT QUASI-SPARSITY ILSE C.F. IPSEN Abstract. Absolute and relative perturbation bounds for Ritz values of complex square matrices are presented. The bounds exploit quasi-sparsity

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 432 21 1691 172 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Drazin inverse of partitioned

More information

The Laplacian spectrum of a mixed graph

The Laplacian spectrum of a mixed graph Linear Algebra and its Applications 353 (2002) 11 20 www.elsevier.com/locate/laa The Laplacian spectrum of a mixed graph Xiao-Dong Zhang a,, Jiong-Sheng Li b a Department of Mathematics, Shanghai Jiao

More information

Spectrally arbitrary star sign patterns

Spectrally arbitrary star sign patterns Linear Algebra and its Applications 400 (2005) 99 119 wwwelseviercom/locate/laa Spectrally arbitrary star sign patterns G MacGillivray, RM Tifenbach, P van den Driessche Department of Mathematics and Statistics,

More information

The Eigenvalue Problem: Perturbation Theory

The Eigenvalue Problem: Perturbation Theory Jim Lambers MAT 610 Summer Session 2009-10 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just

More information

Nonsingularity and group invertibility of linear combinations of two k-potent matrices

Nonsingularity and group invertibility of linear combinations of two k-potent matrices Nonsingularity and group invertibility of linear combinations of two k-potent matrices Julio Benítez a Xiaoji Liu b Tongping Zhu c a Departamento de Matemática Aplicada, Instituto de Matemática Multidisciplinar,

More information

Generalized Principal Pivot Transform

Generalized Principal Pivot Transform Generalized Principal Pivot Transform M. Rajesh Kannan and R. B. Bapat Indian Statistical Institute New Delhi, 110016, India Abstract The generalized principal pivot transform is a generalization of the

More information

Moore Penrose inverses and commuting elements of C -algebras

Moore Penrose inverses and commuting elements of C -algebras Moore Penrose inverses and commuting elements of C -algebras Julio Benítez Abstract Let a be an element of a C -algebra A satisfying aa = a a, where a is the Moore Penrose inverse of a and let b A. We

More information

Minimizing the Laplacian eigenvalues for trees with given domination number

Minimizing the Laplacian eigenvalues for trees with given domination number Linear Algebra and its Applications 419 2006) 648 655 www.elsevier.com/locate/laa Minimizing the Laplacian eigenvalues for trees with given domination number Lihua Feng a,b,, Guihai Yu a, Qiao Li b a School

More information

Improved Newton s method with exact line searches to solve quadratic matrix equation

Improved Newton s method with exact line searches to solve quadratic matrix equation Journal of Computational and Applied Mathematics 222 (2008) 645 654 wwwelseviercom/locate/cam Improved Newton s method with exact line searches to solve quadratic matrix equation Jian-hui Long, Xi-yan

More information

Linear estimation in models based on a graph

Linear estimation in models based on a graph Linear Algebra and its Applications 302±303 (1999) 223±230 www.elsevier.com/locate/laa Linear estimation in models based on a graph R.B. Bapat * Indian Statistical Institute, New Delhi 110 016, India Received

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 430 (2009) 532 543 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: wwwelseviercom/locate/laa Computing tight upper bounds

More information

BOUNDS OF MODULUS OF EIGENVALUES BASED ON STEIN EQUATION

BOUNDS OF MODULUS OF EIGENVALUES BASED ON STEIN EQUATION K Y BERNETIKA VOLUM E 46 ( 2010), NUMBER 4, P AGES 655 664 BOUNDS OF MODULUS OF EIGENVALUES BASED ON STEIN EQUATION Guang-Da Hu and Qiao Zhu This paper is concerned with bounds of eigenvalues of a complex

More information

Wavelets and Linear Algebra

Wavelets and Linear Algebra Wavelets and Linear Algebra 4(1) (2017) 43-51 Wavelets and Linear Algebra Vali-e-Asr University of Rafsanan http://walavruacir Some results on the block numerical range Mostafa Zangiabadi a,, Hamid Reza

More information

Absolute value equations

Absolute value equations Linear Algebra and its Applications 419 (2006) 359 367 www.elsevier.com/locate/laa Absolute value equations O.L. Mangasarian, R.R. Meyer Computer Sciences Department, University of Wisconsin, 1210 West

More information

σ 11 σ 22 σ pp 0 with p = min(n, m) The σ ii s are the singular values. Notation change σ ii A 1 σ 2

σ 11 σ 22 σ pp 0 with p = min(n, m) The σ ii s are the singular values. Notation change σ ii A 1 σ 2 HE SINGULAR VALUE DECOMPOSIION he SVD existence - properties. Pseudo-inverses and the SVD Use of SVD for least-squares problems Applications of the SVD he Singular Value Decomposition (SVD) heorem For

More information

Block companion matrices, discrete-time block diagonal stability and polynomial matrices

Block companion matrices, discrete-time block diagonal stability and polynomial matrices Block companion matrices, discrete-time block diagonal stability and polynomial matrices Harald K. Wimmer Mathematisches Institut Universität Würzburg D-97074 Würzburg Germany October 25, 2008 Abstract

More information

Bounds for Levinger s function of nonnegative almost skew-symmetric matrices

Bounds for Levinger s function of nonnegative almost skew-symmetric matrices Linear Algebra and its Applications 416 006 759 77 www.elsevier.com/locate/laa Bounds for Levinger s function of nonnegative almost skew-symmetric matrices Panayiotis J. Psarrakos a, Michael J. Tsatsomeros

More information

ELA THE MINIMUM-NORM LEAST-SQUARES SOLUTION OF A LINEAR SYSTEM AND SYMMETRIC RANK-ONE UPDATES

ELA THE MINIMUM-NORM LEAST-SQUARES SOLUTION OF A LINEAR SYSTEM AND SYMMETRIC RANK-ONE UPDATES Volume 22, pp. 480-489, May 20 THE MINIMUM-NORM LEAST-SQUARES SOLUTION OF A LINEAR SYSTEM AND SYMMETRIC RANK-ONE UPDATES XUZHOU CHEN AND JUN JI Abstract. In this paper, we study the Moore-Penrose inverse

More information

a Λ q 1. Introduction

a Λ q 1. Introduction International Journal of Pure and Applied Mathematics Volume 9 No 26, 959-97 ISSN: -88 (printed version); ISSN: -95 (on-line version) url: http://wwwijpameu doi: 272/ijpamv9i7 PAijpameu EXPLICI MOORE-PENROSE

More information

Properties of Solution Set of Tensor Complementarity Problem

Properties of Solution Set of Tensor Complementarity Problem Properties of Solution Set of Tensor Complementarity Problem arxiv:1508.00069v3 [math.oc] 14 Jan 2017 Yisheng Song Gaohang Yu Abstract The tensor complementarity problem is a specially structured nonlinear

More information

arxiv: v1 [math.ra] 11 Aug 2014

arxiv: v1 [math.ra] 11 Aug 2014 Double B-tensors and quasi-double B-tensors Chaoqian Li, Yaotang Li arxiv:1408.2299v1 [math.ra] 11 Aug 2014 a School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, P. R. China 650091

More information

ON THE SINGULAR DECOMPOSITION OF MATRICES

ON THE SINGULAR DECOMPOSITION OF MATRICES An. Şt. Univ. Ovidius Constanţa Vol. 8, 00, 55 6 ON THE SINGULAR DECOMPOSITION OF MATRICES Alina PETRESCU-NIŢǍ Abstract This paper is an original presentation of the algorithm of the singular decomposition

More information

THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR

THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR WEN LI AND MICHAEL K. NG Abstract. In this paper, we study the perturbation bound for the spectral radius of an m th - order n-dimensional

More information

Moore-Penrose s inverse and solutions of linear systems

Moore-Penrose s inverse and solutions of linear systems Available online at www.worldscientificnews.com WSN 101 (2018) 246-252 EISSN 2392-2192 SHORT COMMUNICATION Moore-Penrose s inverse and solutions of linear systems J. López-Bonilla*, R. López-Vázquez, S.

More information

On the Stability of P -Matrices

On the Stability of P -Matrices 1 On the Stability of P -Matrices A. Kevin Tang California Institute of Technology Alp Simsek Asuman Ozdaglar Daron Acemoglu Massachusetts Institute of Technology Abstract We establish two sufficient conditions

More information

the Unitary Polar Factor æ Ren-Cang Li Department of Mathematics University of California at Berkeley Berkeley, California 94720

the Unitary Polar Factor æ Ren-Cang Li Department of Mathematics University of California at Berkeley Berkeley, California 94720 Relative Perturbation Bounds for the Unitary Polar Factor Ren-Cang Li Department of Mathematics University of California at Berkeley Berkeley, California 9470 èli@math.berkeley.eduè July 5, 994 Computer

More information

Some results on the reverse order law in rings with involution

Some results on the reverse order law in rings with involution Some results on the reverse order law in rings with involution Dijana Mosić and Dragan S. Djordjević Abstract We investigate some necessary and sufficient conditions for the hybrid reverse order law (ab)

More information

ELA

ELA POSITIVE DEFINITE SOLUTION OF THE MATRIX EQUATION X = Q+A H (I X C) δ A GUOZHU YAO, ANPING LIAO, AND XUEFENG DUAN Abstract. We consider the nonlinear matrix equation X = Q+A H (I X C) δ A (0 < δ 1), where

More information

Perturbation results for nearly uncoupled Markov. chains with applications to iterative methods. Jesse L. Barlow. December 9, 1992.

Perturbation results for nearly uncoupled Markov. chains with applications to iterative methods. Jesse L. Barlow. December 9, 1992. Perturbation results for nearly uncoupled Markov chains with applications to iterative methods Jesse L. Barlow December 9, 992 Abstract The standard perturbation theory for linear equations states that

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

An Iterative Procedure for Solving the Riccati Equation A 2 R RA 1 = A 3 + RA 4 R. M.THAMBAN NAIR (I.I.T. Madras)

An Iterative Procedure for Solving the Riccati Equation A 2 R RA 1 = A 3 + RA 4 R. M.THAMBAN NAIR (I.I.T. Madras) An Iterative Procedure for Solving the Riccati Equation A 2 R RA 1 = A 3 + RA 4 R M.THAMBAN NAIR (I.I.T. Madras) Abstract Let X 1 and X 2 be complex Banach spaces, and let A 1 BL(X 1 ), A 2 BL(X 2 ), A

More information

1 Quasi-definite matrix

1 Quasi-definite matrix 1 Quasi-definite matrix The matrix H is a quasi-definite matrix, if there exists a permutation matrix P such that H qd P T H11 H HP = 1 H1, 1) H where H 11 and H + H1H 11 H 1 are positive definite. This

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 431 (29) 188 195 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Lattices associated with

More information

Permutation transformations of tensors with an application

Permutation transformations of tensors with an application DOI 10.1186/s40064-016-3720-1 RESEARCH Open Access Permutation transformations of tensors with an application Yao Tang Li *, Zheng Bo Li, Qi Long Liu and Qiong Liu *Correspondence: liyaotang@ynu.edu.cn

More information

A Note on Simple Nonzero Finite Generalized Singular Values

A Note on Simple Nonzero Finite Generalized Singular Values A Note on Simple Nonzero Finite Generalized Singular Values Wei Ma Zheng-Jian Bai December 21 212 Abstract In this paper we study the sensitivity and second order perturbation expansions of simple nonzero

More information

SINGULAR VALUE INEQUALITIES FOR COMPACT OPERATORS

SINGULAR VALUE INEQUALITIES FOR COMPACT OPERATORS SINGULAR VALUE INEQUALITIES FOR OMPAT OPERATORS WASIM AUDEH AND FUAD KITTANEH Abstract. A singular value inequality due to hatia and Kittaneh says that if A and are compact operators on a complex separable

More information

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam June 13, 2014

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam June 13, 2014 University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra PhD Preliminary Exam June 3, 24 Name: Exam Rules: This is a closed book exam Once the exam begins,

More information

Inverse Perron values and connectivity of a uniform hypergraph

Inverse Perron values and connectivity of a uniform hypergraph Inverse Perron values and connectivity of a uniform hypergraph Changjiang Bu College of Automation College of Science Harbin Engineering University Harbin, PR China buchangjiang@hrbeu.edu.cn Jiang Zhou

More information

Introduction to Numerical Linear Algebra II

Introduction to Numerical Linear Algebra II Introduction to Numerical Linear Algebra II Petros Drineas These slides were prepared by Ilse Ipsen for the 2015 Gene Golub SIAM Summer School on RandNLA 1 / 49 Overview We will cover this material in

More information

SOME INEQUALITIES FOR THE EUCLIDEAN OPERATOR RADIUS OF TWO OPERATORS IN HILBERT SPACES

SOME INEQUALITIES FOR THE EUCLIDEAN OPERATOR RADIUS OF TWO OPERATORS IN HILBERT SPACES SOME INEQUALITIES FOR THE EUCLIDEAN OPERATOR RADIUS OF TWO OPERATORS IN HILBERT SPACES SEVER S DRAGOMIR Abstract Some sharp bounds for the Euclidean operator radius of two bounded linear operators in Hilbert

More information

On matrix equations X ± A X 2 A = I

On matrix equations X ± A X 2 A = I Linear Algebra and its Applications 326 21 27 44 www.elsevier.com/locate/laa On matrix equations X ± A X 2 A = I I.G. Ivanov,V.I.Hasanov,B.V.Minchev Faculty of Mathematics and Informatics, Shoumen University,

More information

On the second Laplacian eigenvalues of trees of odd order

On the second Laplacian eigenvalues of trees of odd order Linear Algebra and its Applications 419 2006) 475 485 www.elsevier.com/locate/laa On the second Laplacian eigenvalues of trees of odd order Jia-yu Shao, Li Zhang, Xi-ying Yuan Department of Applied Mathematics,

More information

Computers and Mathematics with Applications. Convergence analysis of the preconditioned Gauss Seidel method for H-matrices

Computers and Mathematics with Applications. Convergence analysis of the preconditioned Gauss Seidel method for H-matrices Computers Mathematics with Applications 56 (2008) 2048 2053 Contents lists available at ScienceDirect Computers Mathematics with Applications journal homepage: wwwelseviercom/locate/camwa Convergence analysis

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN 1017-060X (Print ISSN 1735-8515 (Online Bulletin of the Iranian Mathematical Society Vol 42 (2016, No 1, pp 53 60 Title The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules

More information

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES olume 10 2009, Issue 2, Article 41, 10 pp. ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES HANYU LI, HU YANG, AND HUA SHAO COLLEGE OF MATHEMATICS AND PHYSICS CHONGQING UNIERSITY

More information

EXPLICIT SOLUTION OF THE OPERATOR EQUATION A X + X A = B

EXPLICIT SOLUTION OF THE OPERATOR EQUATION A X + X A = B EXPLICIT SOLUTION OF THE OPERATOR EQUATION A X + X A = B Dragan S. Djordjević November 15, 2005 Abstract In this paper we find the explicit solution of the equation A X + X A = B for linear bounded operators

More information

Multiplicative Perturbation Analysis for QR Factorizations

Multiplicative Perturbation Analysis for QR Factorizations Multiplicative Perturbation Analysis for QR Factorizations Xiao-Wen Chang Ren-Cang Li Technical Report 011-01 http://www.uta.edu/math/preprint/ Multiplicative Perturbation Analysis for QR Factorizations

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

For δa E, this motivates the definition of the Bauer-Skeel condition number ([2], [3], [14], [15])

For δa E, this motivates the definition of the Bauer-Skeel condition number ([2], [3], [14], [15]) LAA 278, pp.2-32, 998 STRUCTURED PERTURBATIONS AND SYMMETRIC MATRICES SIEGFRIED M. RUMP Abstract. For a given n by n matrix the ratio between the componentwise distance to the nearest singular matrix and

More information

IN1993, Klein and Randić [1] introduced a distance function

IN1993, Klein and Randić [1] introduced a distance function IAENG International Journal of Applied Mathematics 4:3 IJAM_4_3_0 Some esults of esistance Distance irchhoff Index Based on -Graph Qun Liu Abstract he resistance distance between any two vertices of a

More information

A First Course in Linear Algebra

A First Course in Linear Algebra A First Course in Linear Algebra About the Author Mohammed Kaabar is a math tutor at the Math Learning Center (MLC) at Washington State University, Pullman, and he is interested in linear algebra, scientific

More information

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why?

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why? KTH ROYAL INSTITUTE OF TECHNOLOGY Norms for vectors and matrices Why? Lecture 5 Ch. 5, Norms for vectors and matrices Emil Björnson/Magnus Jansson/Mats Bengtsson April 27, 2016 Problem: Measure size of

More information