Formalism of Quantum Mechanics

Size: px
Start display at page:

Download "Formalism of Quantum Mechanics"

Transcription

1 The theory of quantum mechanics is formulated by defining a set of rules or postulates. These postulates cannot be derived from the laws of classical physics. The rules define the following: 1. How to describe a system (the wave function).. How to describe the time evolution of the wave function (the Schrodinger equation). 3. How to describe observable quantities (operators). 4. How to describe the outcomes of a measurement of observable quantities; how to describe the system after the measurement.

2 The wave function The state of a physical system is represented by a wave function which contains all the information that can be known about the system. The wave function is in general complex (it has real and imaginary parts). In configuration (coordinate) space the wave function of a particle is a function of the position of the particle at a given time:! (x, y,z,t) For N particles, this can be generalized to! (x 1, x,...x N, y 1, y...y N, z 1, z...z N,t)

3 Normalization The wave functions! and c! represent the same state, where c is a complex number. Hence we can always multiply the wave function by an arbitrary complex number without changing it. Consider the normalization integral I =! (x,t) dx =! * (x,t)! (x,t) dx If I is a finite number, then the wave function is square integrable. If we multiply the wave function by a constant c = 1 then the wave function is said to be normalized (to unity): I! (x,t) dx = 1

4 The Born interpretation: Probabilities The absolute square of the normalized wave function! : P(x,t)dx =! (x,t) dx is the probability of the particle being in the region dx around position x at time t. P(x,t) is called the probability density curve Hence the normalization requirement is a statement that the probability of finding the particle somewhere is 1.! (x,t) dx = P(x,t)dx = 1

5 The Born interpretation: Probabilities The probability of finding a particle in a region a < x < b is then b! (x,t) dx a This is the area under the probability density curve between x=a and x=b:

6 Example: Find the value of the constant C of the normalized wave function! (x) = Ce x / L, x # 0! (x) = 0, x < 0 where L = 1nm. Plot the wave function and the probability density curves and find the probability of finding the particle in the region x! 1nm! (x,t) dx = 1 % # c e $x / L dx = $ c L 0 # c = L = e$x / L % 0 = c L = 1 P(x) =! (x) x /1nm = e

7 Example: Find the value of the constant C of the normalized wave function! (x) = Ce x / L, x # 0! (x) = 0, x < 0 where L = 1nm. Plot the wave function and the probability density curves and find the probability of finding the particle in the region x! 1nm P(x) =! (x) x /1nm = e P(x! 1nm) = # # 1nm P(x)dx $ c e % x /L dx = % c L 1nm $ P(x) = = 13.5% e%x / L 1nm = c L e%

8 Superposition principle If the wave functions! 1 and! represent two possible states of the system, then any linear combination! = c c also represents a possible state of the system. This is the superposition principle. This allows for superpositions of a particle wave function in two different locations. (Recall double slit experiment). Note:! = c c = c c = ( c * 1 * 1 + c * * ) ( c c ) + c 1 * c 1 * + c 1 c * 1 *

9 Momentum space wave functions Given a wave function in coordinate space representing the position of a particle, the corresponding momentum wave function is the Fourier integral of the the position wave function:!( p,t) = #i 1! e (! ) % ( xp) $ (x,t) dx 1/ If the position wave function is normalized, the momentum wave function is also normalized to unity:!(p,t) dp = 1

10 Momentum space wave functions We can interpret the square of the quantity P( p,t) =!( p,t) dp of the normalized wave function as the probability at time t of the momentum of a particle being in the volume dp around p Hence the normalization requirement is a statement that the probability of finding the particle with some value of momentum is 1.!(p,t) dx = P( p,t)dp = 1

11 Momentum space wave functions The probability of finding a particle with momentum a < p < b is then b!(p,t) dp a This is the area under the momentum probability density curve between p=a and p=b:!( p,t) p

12 Given a wave function representing the momentum of a particle, the corresponding position space wave function is the inverse Fourier integral of the momentum wave function:! (x,t) = i 1! e (! ) # ( px) $( p,t)dp 1/ If the momentum wave function is normalized, the position wave function is also normalized to unity. Note that the position and momentum wave functions represent the same state of the system. All information about the state can be obtained from either wave function.

13 Time-dependent Schrödinger equation The wave function of a particle undergoing a force F(x) is the solution to the Schrödinger equation: i!!! (x,t) = #!t m! (x,t) + U(x) (x,t)!x U(x) is the potential energy associated with the force: F =! U x

14 Time-dependent Schrödinger equation: Separation of variables i!!! (x,t) = #!t m! (x,t) + U(x) (x,t)!x Since U(x) does not depend on time, solutions can be written in separable form as a part that is only position dependent and a part that is only time dependent:! (x,t) = (x)#(t) Inserting this into the above equation, we get i!!(x) t #(t) = $#(t)! m!(x) + U(x)!(x)#(t) x

15 Time-dependent Schrödinger equation: Separation of variables! (x,t) = (x)#(t) i!!(x) t #(t) = $#(t)! m!(x) + U(x)!(x)#(t) x Dividing by!(x,t), i!!(t) t!(t) = # 1 $(x)! m $(x) + U(x) x Left hand side (LHS) is a function of t alone Right hand side (RHS) is a function of x alone LHS=RHS only if LHS = E and RHS = E (E is a constant)

16 Time-dependent Schrödinger equation: Separation of variables! (x,t) = (x)#(t) i!!(t) t!(t) = # 1 $(x)! m $(x) + U(x) x LHS=RHS only if LHS = E and RHS = E (E is a constant) i!!(t) 1 #(x) d dt!(t) = E! m d #(x) + U(x) = E dx

17 Time-dependent Schrödinger equation: Separation of variables! (x,t) = (x)#(t) Solutions for the time-dependent equation: i! d dt!(t) = E!(t)!(t) = e i#t, # = E! Check: d dt!(t) = ie i! e! Et # i! d i dt!(t) = Ee! Et = E!(t)

18 Time-dependent Schrödinger equation: Separation of variables! (x,t) = (x)#(t) Time-independent Schrödinger equation:!! m d (x) + U(x)(x) = E(x) dx This equation is not always easy to solve analytically, but can be solved numerically on a computer. However we can analytically solve some special cases.

Solving the Schrodinger Equation

Solving the Schrodinger Equation Time-dependent Schrödinger Equation: i!!!2 " (x,t) =!t 2m! 2 " (x,t) + U(x)" (x,t) 2!x Stationary Solutions:! (x,t) = "(x)(t)!(t) = e "it, = E! Time-independent Schrödinger equation:!!2 2m d 2 "(x) + U(x)"(x)

More information

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case:

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: The Schrodinger Equation and Postulates Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about

More information

An operator is a transformation that takes a function as an input and produces another function (usually).

An operator is a transformation that takes a function as an input and produces another function (usually). Formalism of Quantum Mechanics Operators Engel 3.2 An operator is a transformation that takes a function as an input and produces another function (usually). Example: In QM, most operators are linear:

More information

Announcement Second HW will be due on Monday Sept 19! The text book is on reserve in SERC reading room

Announcement Second HW will be due on Monday Sept 19! The text book is on reserve in SERC reading room Quantum Mechanics and Atomic Physics Lecture 4: Schodinger s Equation: Part II http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh Announcement Second HW will be due on Monday Sept 19! The text book

More information

The Schrodinger Wave Equation (Engel 2.4) In QM, the behavior of a particle is described by its wave function Ψ(x,t) which we get by solving:

The Schrodinger Wave Equation (Engel 2.4) In QM, the behavior of a particle is described by its wave function Ψ(x,t) which we get by solving: When do we use Quantum Mechanics? (Engel 2.1) Basically, when λ is close in magnitude to the dimensions of the problem, and to the degree that the system has a discrete energy spectrum The Schrodinger

More information

d)p () = A = Z x x p b Particle in a Box 3. electron is in a -dimensional well with innitely high sides and width An Which of following statements mus

d)p () = A = Z x x p b Particle in a Box 3. electron is in a -dimensional well with innitely high sides and width An Which of following statements mus 4 Spring 99 Problem Set Optional Problems Physics April, 999 Handout a) Show that (x; t) =Ae i(kx,!t) satises wave equation for a string: (x; t) @ = v @ (x; t) @t @x Show that same wave function (x; t)

More information

Formalism of Quantum Mechanics

Formalism of Quantum Mechanics Dirac Notation Formalism of Quantum Mechanics We can use a shorthand notation for the normalization integral I = "! (r,t) 2 dr = "! * (r,t)! (r,t) dr =!! The state! is called a ket. The complex conjugate

More information

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0

ECONOMICS 207 SPRING 2006 LABORATORY EXERCISE 5 KEY. 8 = 10(5x 2) = 9(3x + 8), x 50x 20 = 27x x = 92 x = 4. 8x 2 22x + 15 = 0 (2x 3)(4x 5) = 0 ECONOMICS 07 SPRING 006 LABORATORY EXERCISE 5 KEY Problem. Solve the following equations for x. a 5x 3x + 8 = 9 0 5x 3x + 8 9 8 = 0(5x ) = 9(3x + 8), x 0 3 50x 0 = 7x + 7 3x = 9 x = 4 b 8x x + 5 = 0 8x

More information

1 The postulates of quantum mechanics

1 The postulates of quantum mechanics 1 The postulates of quantum mechanics The postulates of quantum mechanics were derived after a long process of trial and error. These postulates provide a connection between the physical world and the

More information

Math 5587 Midterm II Solutions

Math 5587 Midterm II Solutions Math 5587 Midterm II Solutions Prof. Jeff Calder November 3, 2016 Name: Instructions: 1. I recommend looking over the problems first and starting with those you feel most comfortable with. 2. Unless otherwise

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Ryan C. Trinity University Partial Differential Equations Lecture 1 Ordinary differential equations (ODEs) These are equations of the form where: F(x,y,y,y,y,...)

More information

Announcements. The Schrodinger Equation for Interacting Particles. Lecture 16 Chapter. 5 Bound States: Simple Case

Announcements. The Schrodinger Equation for Interacting Particles. Lecture 16 Chapter. 5 Bound States: Simple Case Announcements! HW5: 4-36, 41, 48, 53, 63, 66! Mid-term Exam: 10/16 Ch 1,2,3,4,5(part) *** Course Web Page ** http://highenergy.phys.ttu.edu/~slee/2402/ Lecture Notes, HW Assignments, Schedule for thephysics

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I

CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I 5.1 X-Ray Scattering 5. De Broglie Waves 5.3 Electron Scattering 5.4 Wave Motion 5.5 Waves or Particles? 5.6 Uncertainty Principle Many experimental

More information

Method of Separation of Variables

Method of Separation of Variables MODUE 5: HEAT EQUATION 11 ecture 3 Method of Separation of Variables Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

More information

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD ECTURE 19: SEPARATION OF VARIABES, HEAT CONDUCTION IN A ROD The idea of separation of variables is simple: in order to solve a partial differential equation in u(x, t), we ask, is it possible to find a

More information

Sturm-Liouville Theory

Sturm-Liouville Theory More on Ryan C. Trinity University Partial Differential Equations April 19, 2012 Recall: A Sturm-Liouville (S-L) problem consists of A Sturm-Liouville equation on an interval: (p(x)y ) + (q(x) + λr(x))y

More information

0.1 Problems to solve

0.1 Problems to solve 0.1 Problems to solve Homework Set No. NEEP 547 Due September 0, 013 DLH Nonlinear Eqs. reducible to first order: 1. 5pts) Find the general solution to the differential equation: y = [ 1 + y ) ] 3/. 5pts)

More information

Lecture 14: Superposition & Time-Dependent Quantum States

Lecture 14: Superposition & Time-Dependent Quantum States Lecture 14: Superposition & Time-Dependent Quantum States U= y(x,t=0) 2 U= U= y(x,t 0 ) 2 U= x 0 x L 0 x L Lecture 14, p 1 Last Week Time-independent Schrodinger s Equation (SEQ): 2 2m d y ( x) U ( x)

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

The Quantum Theory of Atoms and Molecules

The Quantum Theory of Atoms and Molecules The Quantum Theory of Atoms and Molecules The postulates of quantum mechanics Dr Grant Ritchie The postulates.. 1. Associated with any particle moving in a conservative field of force is a wave function,

More information

Physics-I. Dr. Anurag Srivastava. Web address: Visit me: Room-110, Block-E, IIITM Campus

Physics-I. Dr. Anurag Srivastava. Web address:    Visit me: Room-110, Block-E, IIITM Campus Physics-I Dr. Anurag Srivastava Web address: http://tiiciiitm.com/profanurag Email: profanurag@gmail.com Visit me: Room-110, Block-E, IIITM Campus Syllabus Electrodynamics: Maxwell s equations: differential

More information

The Schrödinger Wave Equation Formulation of Quantum Mechanics

The Schrödinger Wave Equation Formulation of Quantum Mechanics Chapter 5. The Schrödinger Wave Equation Formulation of Quantum Mechanics Notes: Most of the material in this chapter is taken from Thornton and Rex, Chapter 6. 5.1 The Schrödinger Wave Equation There

More information

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case The Postulates of Quantum Mechanics Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about the

More information

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values Lecture 6 Four postulates of quantum mechanics The eigenvalue equation Momentum and energy operators Dirac delta function Expectation values Objectives Learn about eigenvalue equations and operators. Learn

More information

Properties of Commutators and Schroedinger Operators and Applications to Quantum Computing

Properties of Commutators and Schroedinger Operators and Applications to Quantum Computing International Journal of Engineering and Advanced Research Technology (IJEART) Properties of Commutators and Schroedinger Operators and Applications to Quantum Computing N. B. Okelo Abstract In this paper

More information

CHEM-UA 127: Advanced General Chemistry I

CHEM-UA 127: Advanced General Chemistry I 1 CHEM-UA 127: Advanced General Chemistry I I. RATIONALIZATION OF THE ELECTRON DIFFRACTION EXPERIMENT We will consider two different rationalizations of the electron double-slit experiment. A. Particle-wave

More information

Partial Differential Equations Separation of Variables. 1 Partial Differential Equations and Operators

Partial Differential Equations Separation of Variables. 1 Partial Differential Equations and Operators PDE-SEP-HEAT-1 Partial Differential Equations Separation of Variables 1 Partial Differential Equations and Operators et C = C(R 2 ) be the collection of infinitely differentiable functions from the plane

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

to the potential V to get V + V 0 0Ψ. Let Ψ ( x,t ) =ψ x dx 2

to the potential V to get V + V 0 0Ψ. Let Ψ ( x,t ) =ψ x dx 2 Physics 0 Homework # Spring 017 Due Wednesday, 4/1/17 1. Griffith s 1.8 We start with by adding V 0 to the potential V to get V + V 0. The Schrödinger equation reads: i! dψ dt =! d Ψ m dx + VΨ + V 0Ψ.

More information

Separation of Variables. A. Three Famous PDE s

Separation of Variables. A. Three Famous PDE s Separation of Variables c 14, Philip D. Loewen A. Three Famous PDE s 1. Wave Equation. Displacement u depends on position and time: u = u(x, t. Concavity drives acceleration: u tt = c u xx.. Heat Equation.

More information

04. Five Principles of Quantum Mechanics

04. Five Principles of Quantum Mechanics 04. Five Principles of Quantum Mechanics () States are represented by vectors of length. A physical system is represented by a linear vector space (the space of all its possible states). () Properties

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2015 Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility),

More information

Deriving quantum mechanics from statistical assumptions

Deriving quantum mechanics from statistical assumptions from statistical assumptions U. Klein University of Linz, Institute for Theoretical Physics, A-4040 Linz, Austria Joint Annual Meeting of ÖPG/SPS/ÖGAA - Innsbruck 2009 The interpretation of quantum mechanics

More information

DISCRETE RANDOM VARIABLES: PMF s & CDF s [DEVORE 3.2]

DISCRETE RANDOM VARIABLES: PMF s & CDF s [DEVORE 3.2] DISCRETE RANDOM VARIABLES: PMF s & CDF s [DEVORE 3.2] PROBABILITY MASS FUNCTION (PMF) DEFINITION): Let X be a discrete random variable. Then, its pmf, denoted as p X(k), is defined as follows: p X(k) :=

More information

probability density (1/nm) x (nm)

probability density (1/nm) x (nm) 14 Spring 99 Problem Set 1 Solutions Physics pril 9 1999 Handout Beginning pril 6: Serway 41.9 41.1 4.1 4. 4.3 4.4 Wee 4.5 particle of mass m is conned to a region of x-axis extending x to x. potential

More information

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017)

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017) UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, 208 Practice Final Examination (Winter 207) There are 6 problems, each problem with multiple parts. Your answer should be as clear and readable

More information

CHAPTER 3. Analytic Functions. Dr. Pulak Sahoo

CHAPTER 3. Analytic Functions. Dr. Pulak Sahoo CHAPTER 3 Analytic Functions BY Dr. Pulak Sahoo Assistant Professor Department of Mathematics University Of Kalyani West Bengal, India E-mail : sahoopulak1@gmail.com 1 Module-4: Harmonic Functions 1 Introduction

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

1 h 9 e $ s i n t h e o r y, a p p l i c a t i a n

1 h 9 e $ s i n t h e o r y, a p p l i c a t i a n T : 99 9 \ E \ : \ 4 7 8 \ \ \ \ - \ \ T \ \ \ : \ 99 9 T : 99-9 9 E : 4 7 8 / T V 9 \ E \ \ : 4 \ 7 8 / T \ V \ 9 T - w - - V w w - T w w \ T \ \ \ w \ w \ - \ w \ \ w \ \ \ T \ w \ w \ w \ w \ \ w \

More information

Continuous quantum states, Particle on a line and Uncertainty relations

Continuous quantum states, Particle on a line and Uncertainty relations Continuous quantum states, Particle on a line and Uncertainty relations So far we have considered k-level (discrete) quantum systems. Now we turn our attention to continuous quantum systems, such as a

More information

Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation:

Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation: Chapter 7 Heat Equation Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation: u t = ku x x, x, t > (7.1) Here k is a constant

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

(308 ) EXAMPLES. 1. FIND the quotient and remainder when. II. 1. Find a root of the equation x* = +J Find a root of the equation x 6 = ^ - 1.

(308 ) EXAMPLES. 1. FIND the quotient and remainder when. II. 1. Find a root of the equation x* = +J Find a root of the equation x 6 = ^ - 1. (308 ) EXAMPLES. N 1. FIND the quotient and remainder when is divided by x 4. I. x 5 + 7x* + 3a; 3 + 17a 2 + 10* - 14 2. Expand (a + bx) n in powers of x, and then obtain the first derived function of

More information

Linear Hyperbolic Systems

Linear Hyperbolic Systems Linear Hyperbolic Systems Professor Dr E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro October 8, 2014 1 / 56 We study some basic

More information

Quantum Theory. Thornton and Rex, Ch. 6

Quantum Theory. Thornton and Rex, Ch. 6 Quantum Theory Thornton and Rex, Ch. 6 Matter can behave like waves. 1) What is the wave equation? 2) How do we interpret the wave function y(x,t)? Light Waves Plane wave: y(x,t) = A cos(kx-wt) wave (w,k)

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 25 First order ODE s We will now discuss

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Separation of variables

Separation of variables Separation of variables Idea: Transform a PDE of 2 variables into a pair of ODEs Example : Find the general solution of u x u y = 0 Step. Assume that u(x,y) = G(x)H(y), i.e., u can be written as the product

More information

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <.

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <. First order wave equations Transport equation is conservation law with J = cu, u t + cu x = 0, < x

More information

First-Order Ordinary Differntial Equations: Classification and Linear Equations. David Levermore Department of Mathematics University of Maryland

First-Order Ordinary Differntial Equations: Classification and Linear Equations. David Levermore Department of Mathematics University of Maryland First-Order Ordinary Differntial Equations: Classification and Linear Equations David Levermore Department of Mathematics University of Maryland 1 February 2009 These notes cover some of the material that

More information

12.7 Heat Equation: Modeling Very Long Bars.

12.7 Heat Equation: Modeling Very Long Bars. 568 CHAP. Partial Differential Equations (PDEs).7 Heat Equation: Modeling Very Long Bars. Solution by Fourier Integrals and Transforms Our discussion of the heat equation () u t c u x in the last section

More information

Time dependent Schrodinger equation

Time dependent Schrodinger equation Lesson: Time dependent Schrodinger equation Lesson Developer: Dr. Monika Goyal, College/Department: Shyam Lal College (Day), University of Delhi Table of contents 1.1 Introduction 1. Dynamical evolution

More information

1 Solution to Homework 4

1 Solution to Homework 4 Solution to Homework Section. 5. The characteristic equation is r r + = (r )(r ) = 0 r = or r =. y(t) = c e t + c e t y = c e t + c e t. y(0) =, y (0) = c + c =, c + c = c =, c =. To find the maximum value

More information

CHAPTER 4. Introduction to the. Heat Conduction Model

CHAPTER 4. Introduction to the. Heat Conduction Model A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

Quantum Mechanics: Postulates

Quantum Mechanics: Postulates Quantum Mechanics: Postulates 25th March 2008 I. Physical meaning of the Wavefunction Postulate 1: The wavefunction attempts to describe a quantum mechanical entity (photon, electron, x-ray, etc.) through

More information

1 Complex numbers and the complex plane

1 Complex numbers and the complex plane L1: Complex numbers and complex-valued functions. Contents: The field of complex numbers. Real and imaginary part. Conjugation and modulus or absolute valued. Inequalities: The triangular and the Cauchy.

More information

Permutations and Polynomials Sarah Kitchen February 7, 2006

Permutations and Polynomials Sarah Kitchen February 7, 2006 Permutations and Polynomials Sarah Kitchen February 7, 2006 Suppose you are given the equations x + y + z = a and 1 x + 1 y + 1 z = 1 a, and are asked to prove that one of x,y, and z is equal to a. We

More information

Boundary value problems for partial differential equations

Boundary value problems for partial differential equations Boundary value problems for partial differential equations Henrik Schlichtkrull March 11, 213 1 Boundary value problem 2 1 Introduction This note contains a brief introduction to linear partial differential

More information

Pre (QC & QE) Pace University START THE. pace.edu. Fly By (C) RIF /9/2003 Pre (QC & QE) Fly By V.6.

Pre (QC & QE) Pace University START THE. pace.edu. Fly By (C) RIF /9/2003 Pre (QC & QE) Fly By V.6. THE START Pre (QC & QE) Fly By Pace University rfrank @ pace.edu 1 Fly By Meta Intro* 1. A fly by is a quick look at a large number of topics. 2. No intention to teach, only to pass on a vague idea of

More information

Quantum Mechanics: Particles in Potentials

Quantum Mechanics: Particles in Potentials Quantum Mechanics: Particles in Potentials 3 april 2010 I. Applications of the Postulates of Quantum Mechanics Now that some of the machinery of quantum mechanics has been assembled, one can begin to apply

More information

df(x) = h(x) dx Chemistry 4531 Mathematical Preliminaries Spring 2009 I. A Primer on Differential Equations Order of differential equation

df(x) = h(x) dx Chemistry 4531 Mathematical Preliminaries Spring 2009 I. A Primer on Differential Equations Order of differential equation Chemistry 4531 Mathematical Preliminaries Spring 009 I. A Primer on Differential Equations Order of differential equation Linearity of differential equation Partial vs. Ordinary Differential Equations

More information

Schrödinger s cat paradox resolution using GRW collapse model.

Schrödinger s cat paradox resolution using GRW collapse model. Schrödinger s cat paradox resolution using GRW collapse model. J.Foukzon 1, A.A.Potapov, S.A. Podosenov 3 1. Israel Institute of Technology.. IRE RAS, 3. All-Russian Scientific-Research Institute Abstract:

More information

Physics 351 Wednesday, April 22, 2015

Physics 351 Wednesday, April 22, 2015 Physics 351 Wednesday, April 22, 2015 HW13 due Friday. The last one! You read Taylor s Chapter 16 this week (waves, stress, strain, fluids), most of which is Phys 230 review. Next weekend, you ll read

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

1.1 A Scattering Experiment

1.1 A Scattering Experiment 1 Transfer Matrix In this chapter we introduce and discuss a mathematical method for the analysis of the wave propagation in one-dimensional systems. The method uses the transfer matrix and is commonly

More information

There are two basic kinds of random variables continuous and discrete.

There are two basic kinds of random variables continuous and discrete. Summary of Lectures 5 and 6 Random Variables The random variable is usually represented by an upper case letter, say X. A measured value of the random variable is denoted by the corresponding lower case

More information

2.3 Linear Equations 69

2.3 Linear Equations 69 2.3 Linear Equations 69 2.3 Linear Equations An equation y = fx,y) is called first-order linear or a linear equation provided it can be rewritten in the special form 1) y + px)y = rx) for some functions

More information

Q U A N T U M M E C H A N I C S : L E C T U R E 5

Q U A N T U M M E C H A N I C S : L E C T U R E 5 Q U A N T U M M E C H A N I C S : L E C T U R E 5 salwa al saleh Abstract This lecture discusses the formal solution of Schrödinger s equation for a free particle. Including the separation of variables

More information

FINITE DIFFERENCES. Lecture 1: (a) Operators (b) Forward Differences and their calculations. (c) Backward Differences and their calculations.

FINITE DIFFERENCES. Lecture 1: (a) Operators (b) Forward Differences and their calculations. (c) Backward Differences and their calculations. FINITE DIFFERENCES Lecture 1: (a) Operators (b) Forward Differences and their calculations. (c) Backward Differences and their calculations. 1. Introduction When a function is known explicitly, it is easy

More information

B. Physical Observables Physical observables are represented by linear, hermitian operators that act on the vectors of the Hilbert space. If A is such

B. Physical Observables Physical observables are represented by linear, hermitian operators that act on the vectors of the Hilbert space. If A is such G25.2651: Statistical Mechanics Notes for Lecture 12 I. THE FUNDAMENTAL POSTULATES OF QUANTUM MECHANICS The fundamental postulates of quantum mechanics concern the following questions: 1. How is the physical

More information

Wave Mechanics Relevant sections in text: , 2.1

Wave Mechanics Relevant sections in text: , 2.1 Wave Mechanics Relevant sections in text: 1.1 1.6, 2.1 The wave function We will now create a model for the system that we call a particle in one dimension. To do this we should define states and observables.

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

March Algebra 2 Question 1. March Algebra 2 Question 1

March Algebra 2 Question 1. March Algebra 2 Question 1 March Algebra 2 Question 1 If the statement is always true for the domain, assign that part a 3. If it is sometimes true, assign it a 2. If it is never true, assign it a 1. Your answer for this question

More information

Obtaining the Probability Vector Current Density in Canonical Quantum Mechanics by Linear Superposition

Obtaining the Probability Vector Current Density in Canonical Quantum Mechanics by Linear Superposition Obtaining the Probability Vector Current Density in Canonical Quantum Mechanics by Linear Superposition Steven Kenneth Kauffmann Abstract The quantum mechanics status of the probability vector current

More information

and verify that it satisfies the differential equation:

and verify that it satisfies the differential equation: MOTIVATION: Chapter One: Basic and Review Why study differential equations? Suppose we know how a certain quantity changes with time (for example, the temperature of coffee in a cup, the number of people

More information

EE512: Error Control Coding

EE512: Error Control Coding EE51: Error Control Coding Solution for Assignment on BCH and RS Codes March, 007 1. To determine the dimension and generator polynomial of all narrow sense binary BCH codes of length n = 31, we have to

More information

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES

LOWELL WEEKLY JOURNAL. ^Jberxy and (Jmott Oao M d Ccmsparftble. %m >ai ruv GEEAT INDUSTRIES ? (») /»» 9 F ( ) / ) /»F»»»»»# F??»»» Q ( ( »»» < 3»» /» > > } > Q ( Q > Z F 5

More information

The Schroedinger equation

The Schroedinger equation The Schroedinger equation After Planck, Einstein, Bohr, de Broglie, and many others (but before Born), the time was ripe for a complete theory that could be applied to any problem involving nano-scale

More information

The Particle in a Box

The Particle in a Box Page 324 Lecture 17: Relation of Particle in a Box Eigenstates to Position and Momentum Eigenstates General Considerations on Bound States and Quantization Continuity Equation for Probability Date Given:

More information

2 Quick Review of Continuous Random Variables

2 Quick Review of Continuous Random Variables CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS b R. M. Murray Stochastic Systems 8 January 27 Reading: This set of lectures provides a brief introduction to stochastic systems. Friedland,

More information

CH 61 USING THE GCF IN EQUATIONS AND FORMULAS

CH 61 USING THE GCF IN EQUATIONS AND FORMULAS CH 61 USING THE GCF IN EQUATIONS AND FORMULAS Introduction A while back we studied the Quadratic Formula and used it to solve quadratic equations such as x 5x + 6 = 0; we were also able to solve rectangle

More information

U(x) Finite Well. E Re ψ(x) Classically forbidden

U(x) Finite Well. E Re ψ(x) Classically forbidden Final Exam Physics 2130 Modern Physics Tuesday December 18, 2001 Point distribution: All questions are worth points 8 points. Answers should be bubbled onto the answer sheet. 1. At what common energy E

More information

16.584: Random (Stochastic) Processes

16.584: Random (Stochastic) Processes 1 16.584: Random (Stochastic) Processes X(t): X : RV : Continuous function of the independent variable t (time, space etc.) Random process : Collection of X(t, ζ) : Indexed on another independent variable

More information

QUALIFYING EXAMINATION, Part 1. Solutions. Problem 1: Mathematical Methods. x 2. 1 (1 + 2x 2 /3!) ] x 2 1 2x 2 /3

QUALIFYING EXAMINATION, Part 1. Solutions. Problem 1: Mathematical Methods. x 2. 1 (1 + 2x 2 /3!) ] x 2 1 2x 2 /3 QUALIFYING EXAMINATION, Part 1 Solutions Problem 1: Mathematical Methods (a) Keeping only the lowest power of x needed, we find 1 x 1 sin x = 1 x 1 (x x 3 /6...) = 1 ) 1 (1 x 1 x /3 = 1 [ 1 (1 + x /3!)

More information

Lecture 6 Quantum Mechanical Systems and Measurements

Lecture 6 Quantum Mechanical Systems and Measurements Lecture 6 Quantum Mechanical Systems and Measurements Today s Program: 1. Simple Harmonic Oscillator (SHO). Principle of spectral decomposition. 3. Predicting the results of measurements, fourth postulate

More information

Introduction to Information Entropy Adapted from Papoulis (1991)

Introduction to Information Entropy Adapted from Papoulis (1991) Introduction to Information Entropy Adapted from Papoulis (1991) Federico Lombardo Papoulis, A., Probability, Random Variables and Stochastic Processes, 3rd edition, McGraw ill, 1991. 1 1. INTRODUCTION

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

Fundamentals and formalism of quantum mechanics

Fundamentals and formalism of quantum mechanics Fundamentals and formalism of quantum mechanics Asaf Pe er 1 October 15, 2015 This part of the course is based on Refs. [1] [4]. We saw how quantum mechanics deals with some simple problems. This is very

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

Gaussian Random Variables Why we Care

Gaussian Random Variables Why we Care Gaussian Random Variables Why we Care I Gaussian random variables play a critical role in modeling many random phenomena. I By central limit theorem, Gaussian random variables arise from the superposition

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

Review of Quantum Mechanics, cont.

Review of Quantum Mechanics, cont. Review of Quantum Mechanics, cont. 1 Probabilities In analogy to the development of a wave intensity from a wave amplitude, the probability of a particle with a wave packet amplitude, ψ, between x and

More information

Chapter 2: First Order DE 2.6 Exact DE and Integrating Fa

Chapter 2: First Order DE 2.6 Exact DE and Integrating Fa Chapter 2: First Order DE 2.6 Exact DE and Integrating Factor First Order DE Recall the general form of the First Order DEs (FODE): dy dx = f(x, y) (1) (In this section x is the independent variable; not

More information

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes Applications of Eigenvalues and Eigenvectors 22.2 Introduction Many applications of matrices in both engineering and science utilize eigenvalues and, sometimes, eigenvectors. Control theory, vibration

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS Mr. Isaac Akpor Adjei (MSc. Mathematics, MSc. Biostats) isaac.adjei@gmail.com April 7, 2017 ORDINARY In many physical situation, equation arise which involve differential coefficients. For example: 1 The

More information