# Section 1: Electric Charge and Force

Size: px
Start display at page:

Transcription

1 Electricity Section 1 Section 1: Electric Charge and Force Preview Key Ideas Bellringer Electric Charge Transfer of Electric Charge Induced Charges Charging by Contact Electric Force Electric Field Lines

2 Electricity Section 1 Key Ideas What are the different kinds of electric charge? How do materials become charged when rubbed together? What force is responsible for most everyday forces?

3 Electricity Section 1 Bellringer 1. Name at least five examples of static electricity that occur in everyday life. 2. Fabric softeners are commonly used because they eliminate static cling. Explain why clothes in the dryer get static cling. 3. Why can walking across a carpeted room be a shocking experience. 4. Magnets have both north and south poles. While like poles repel each other, opposite poles attract each other. Explain the parallelism between magnetism and electric charge.

4 Electricity Section 1 Electric Charge What are the different kinds of electric charge? An object can have a negative charge, a positive charge, or no charge at all. Electric charge: an electrical property of matter that creates electric and magnetic forces and interactions

5 Electricity Section 1 Electric Charge, continued Like energy, electric charge is never created or destroyed. Like charges repel, and opposite charges attract. Electric charge depends on the imbalance of protons and electrons. Electrons are negatively charged. Protons are positively charged. Neutrons are neutral (no charge). Negatively charged objects have more electrons than protons. Positively charged objects have fewer electrons than protons.

6 Electricity Section 1 Visual Concept: Electric Charge

7 Electricity Section 1 Electric Charge, continued The SI unit of electric charge is the coulomb, C. A proton has a charge of C. An electron has a charge of C. The amount of electric charge on an object depends on the number of protons and electrons. The net electric charge of a charged object is always a multiple of C.

8 Electricity Section 1 Visual Concept: Characteristics of Electric Charge

9 Electricity Section 1 Transfer of Electric Charge How do materials become charged when rubbed together? When different materials are rubbed together, electrons can be transferred from one material to the other. The direction in which the electrons are transferred depends on the materials.

10 Electricity Section 1 Transfer of Electric Charge, continued Conductors allow charges to flow; insulators do not. electrical conductor: a material in which charges can move freely electrical insulator: a material in which charges cannot move freely Charges can move within uncharged objects. The charges in a neutral conductor can be redistributed without changing the overall charge of the object. Although the total charge on the conductor will be zero, the opposite sides can have an induced charge.

11 Electricity Section 1 Visual Concept: Electrical Conductors and Insulators

12 Electricity Section 1 Induced Charges A negatively charged rod brought near a metal doorknob induces a positive charge on the side of the doorknob closest to the rod and a negative charge on the side farthest from the rod.

13 Electricity Section 1 Transfer of Electric Charge, continued Objects can be charged by contact. The transfer of electrons from one object to another can charge objects. Objects charged by touching a charged object to a neutral object are said to be charged by contact. Objects can be charged by friction. Charging by friction occurs when one material gains electrons and becomes negatively charged, and the other loses electrons and becomes positively charged. Your clothes are charged by friction as they rub against each other inside the dryer, and stick together because of static electricity.

14 Electricity Section 1 Charging by Contact When a negative rod touches a neutral doorknob, electrons move from the rod to the doorknob. The transfer of electrons to the metal doorknob gives the doorknob a net negative charge.

15 Electricity Section 1 Visual Concept: Charging by Contact

16 Electricity Section 1 Transfer of Electric Charge, continued A surface charge can be induced on insulators. When a charged object is brought near an insulator, the positions of the electrons within the individual molecules of the insulator change slightly. One side of a molecule will be slightly more positive or negative than the other side. The molecules are polarized.

17 Electricity Section 1 Electric Force What force is responsible for most everyday forces? The electric force at the atomic and molecular levels is responsible for most of the everyday forces that we observe, such as the force of a spring and the force of friction. electric force: the force of attraction or repulsion on a charged particle that is due to an electric field

18 Electricity Section 1 Electric Force, continued The electric force is also responsible for effects that we cannot see. Bonding of atoms to form molecules is also due to the electric force. Electric force depends on charge and distance. The electric force between two objects is proportional to the product of the charges on the objects. The electric force is inversely proportional to the square of the distance between two objects.

19 Electricity Section 1 Electric Force, continued Electric force acts through a field. electric field: the space around a charged object in which another charged object experiences an electric force One way to show an electric field is by drawing electric field lines. Electric field lines point in the direction of the electric force on a positive charge.

20 Electricity Section 1 Electric Field Lines The electric field lines around a positive charge point outward. The electric field lines around a negative charge point inward.

21 Electricity Section 1 Electric Force, continued Electric field lines never cross one another. The field lines near two like charges point away from each other, and show that the charges repel each other. Field lines show both the direction of an electric field and the relative strength due to a given charge. More lines are drawn for greater charges to indicate greater force.

22 Electricity Section 1 Electric Field Lines Two positive charges repel each other. The positive charge is twice as large as the negative charge.

23 Electricity Section 1 Visual Concept: Electric Fields and Test Charges

24 Electricity Section 2 Section 2: Current Preview Key Ideas Bellringer Voltage and Current Electrical Potential Energy Electrical Potential Energy and Relative Position Battery Electric Cell Electrical Resistance Math Skills

25 Electricity Section 2 Key Ideas How are electrical potential energy and gravitational potential energy similar? What causes electrical resistance?

26 Electricity Section 2 Bellringer 1. Dry cell batteries are a source of mobile electrical power. Name five devices that use dry cell batteries. 2. Give reasons why copper is normally used to wire a home for electricity. 3. Why do you think it is important to unplug a device by pulling the plug instead of by yanking the plug out of the socket by pulling on the electrical cord? 4. Why are electrical appliances, such as razors, hair dryers, and curling irons, not to be used in the bathtub or shower?

27 Electricity Section 2 Voltage and Current How are electrical potential energy and gravitational potential energy similar? Just as a ball will roll downhill, a negative charge will move away from another negative charge. electrical potential energy: the ability to move an electric charge from one point to another

28 Electricity Section 2 Voltage and Current, continued The potential energy of an electric charge depends on its position in an electric field. The electrical potential energy of a moving charge decreases because the electric field does work on the charge.

29 Electricity Section 2 Electrical Potential Energy The electrical potential energy between two negative charges decreases as the distance between them increases.

30 Electricity Section 2 Voltage and Current, continued Potential difference is measured in volts. potential difference: the voltage difference in potential between two points in a circuit For a repulsive force electrical potential energy increases as the charges move closer to each other. The volt, V, is equivalent to one joule per coulomb (1 J/C). Potential difference is often called voltage.

31 Electricity Section 2 Electrical Potential Energy and Relative Position

32 Electricity Section 2 Visual Concept: Electrical Potential Energy

33 Electricity Section 2 Visual Concept: Potential Difference

34 Electricity Section 2 Visual Concept: Voltage

35 Electricity Section 2 Voltage and Current, continued There is a voltage across the terminals of a battery. cell: a device that produces an electric current by converting chemical or radiant energy into electrical energy One terminal, or end, is positive, and the other is negative. Batteries convert chemical energy into electrical energy.

36 Electricity Section 2 Battery

37 Electricity Section 2 Electric Cell

38 Electricity Section 2 Voltage and Current, continued A voltage sets charges in motion. Current is the rate of charge movement. electric current: the rate at which charges pass through a given point The SI unit of current is the ampere, A. 1 amp = 1 C/s

39 Electricity Section 2 Voltage and Current, continued In a direct current source the charges always move from one terminal to the other in the same direction. example: battery Conventional current is the current made of positive charge that would have the same effect as the actual motion of charge in the material. The direction of current is opposite to the direction that electrons move.

40 Electricity Section 2 Visual Concept: Comparing Direct and Alternating Current

41 Electricity Section 2 Visual Concept: Conventional Current

42 Electricity Section 2 Electrical Resistance What causes electrical resistance? Resistance is caused by internal friction, which slows the movement of charges through a conducting material. resistance: the opposition presented to the current by a material or device

43 Electricity Section 2 Electrical Resistance, continued Resistance can be calculated if current and voltage are known. A conductor s resistance indicates how much the motion of charges within it is resisted because of collisions of electrons with atoms. Ohms law: voltage resistance = R = current The SI unit of resistance is the ohm (Ω). 1 Ω = 1 V/A A resistor is a special type of conductor used to control current. V I

44 Electricity Section 2 Math Skills Resistance The headlights of a typical car are powered by a 12 V battery. What is the resistance of the headlights if they draw 3.0 A of current when turned on? 1. List the given and unknown values. Given: current, I = 3.0 A voltage, V = 12 V Unknown: resistance, R =? Ω

45 Electricity Section 2 Math Skills, continued 2. Write the equation for resistance. voltage resistance = R = current V I 3. Insert the known values into the equation, and solve. = V = 12 V R I 3.0 A R = 4.0

46 Electricity Section 2 Electrical Resistance, continued Conductors have low resistances. Insulators have high resistances. Semiconductors conduct under certain conditions. semiconductors: materials that have electrical properties between those of insulators and conductors Some materials can become superconductors. Some metals and compounds have zero resistance when their temperature falls below the critical temperature. Once a current is established in a superconductor, the current continues even if the applied voltage is removed.

47 Electricity Section 3 Section 3: Circuits Preview Key Ideas Bellringer What Are Circuits? Electric Circuit Series and Parallel Circuits Series and Parallel Electric Power and Electrical Energy Equation for Electric Power Math Skills Fuses and Circuit Breakers

48 Electricity Section 3 Key Ideas What is a closed circuit? What are the two ways that devices can be connected in a circuit? What happens to the energy that charges have in a circuit? Why is an overloaded circuit dangerous?

49 Electricity Section 3 Bellringer 1. Inexpensive electrical power is essential. List at least ten electrical devices that you have used today. 2. In some strings of Christmas lights, none of the lights work if one light is burned out. What is a possible explanation for this? 3. A big feast is being prepared in a home. The cooks are using a turkey roaster, the oven, an electric mixer, a blender, and a toaster. Every light is on and so is the refrigerator. All at once the power in the kitchen goes out. What is an explanation for this, and how can it be corrected?

50 Electricity Section 3 What Are Circuits? What is a closed circuit? The conducting path produced when a load, such as a string of light bulbs, is connected across a source of voltage is called a closed circuit. electric circuit: a set of electrical components connected such that they provide one or more complete paths for the movement of charges

51 Electricity Section 3 What Are Circuits?, continued The voltage source, whether a battery or an outlet, is always part of the conducting path of a closed circuit. Without a complete path and a source of voltage, there is no charge flow and therefore no current. This is called an open circuit.

52 Electricity Section 3 Electric Circuit

53 Electricity Section 3 What Are Circuits?, continued Switches interrupt the flow of charges in a circuit. You can use a switch to open and close a circuit. Schematic diagrams are used to represent circuits. schematic diagram: a graphical representation of a circuit that uses lines to represent wires and different symbols to represent components All electrical devices can be described by schematic diagrams. Schematic diagrams use standard symbols.

54 Electricity Section 3 Visual Concept: Schematic Diagram and Common Symbols

55 Electricity Section 3 Series and Parallel Circuits What are the two ways that devices can be connected in a circuit? Electrical devices can be connected as a series circuit so that the voltage is divided among the devices. They can also be connected as a parallel circuit so that the voltage is the same across each device. series circuit: a circuit in which the parts are joined one after another such that the current in each part is the same parallel circuit: a circuit in which the parts are joined in branches such that the potential difference across each part is the same

56 Electricity Section 3 Series and Parallel Circuits, continued Series circuits have a single path for current. When appliances or other devices are connected in a series circuit, they form a single pathway for charges to flow. The current in each device is the same. The resistances may be different. The voltage across each device in a series circuit can be different. If one element along the path in a series circuit is removed, the circuit will not work.

57 Electricity Section 3 Visual Concept: Resistors in Series

58 Electricity Section 3 Series and Parallel Circuits, continued Parallel circuits have multiple paths for current. The voltage across each device is the same. The current in each device does not have to be the same. The sum of the currents in all of the devices equals the total current. A break in any one path in a parallel circuit does not interrupt the flow of electric charge in the other paths.

59 Electricity Section 3 Visual Concept: Resistors in Parallel

60 Electricity Section 3 Series and Parallel When light bulbs are connected in series, charges must pass through both light bulbs to complete the circuit. When light bulbs are connected in parallel, charges have more than one path to follow. The circuit can be complete even if one light bulb burns out.

61 Electricity Section 3 Electric Power and Electrical Energy What happens to the energy that charges have in a circuit? Some of this energy is transformed into useful work, such as the turning of a motor, and some is lost as heat. electrical power: the rate at which electrical energy is converted into other forms of energy

62 Electricity Section 3 Electric Power and Electrical Energy, continued Electric power is calculated by multiplying the total current, I, by the voltage, V, in a circuit. power current voltage P = IV The SI unit for power is the watt (W). 1 W = 1 A 1 V

63 Electricity Section 3 Electric Power and Electrical Energy, continued If you combine the electric power equation with the resistance equation, V = IR, you can calculate the power lost, or dissipated, by a resistor. P = I R = R 2 V Electric companies measure energy in kilowatt-hours. One kilowatt-hour is the energy delivered in 1 h at the rate of 1 kw. 1 kw h = J 2

64 Electricity Section 3 Equation for Electric Power

65 Electricity Section 3 Math Skills Electric Power When a hair dryer is plugged into a 120 V outlet, the hair dryer has a 9.1 A current in it. What is the hair dryer s power rating? 1.List the given and unknown values. Given: voltage, V = 120 V current, I = 9.1 A Unknown: electric power, P =? W

66 Electricity Section 3 Math Skills, continued 2. Write the equation for electric power. power = current voltage P = IV 3. Insert the known values into the equation, and solve. P = (9.1 A)(120 V) P = W

67 Electricity Section 3 Fuses and Circuit Breakers Why is an overloaded circuit dangerous? The high currents in overloaded circuits can cause fires. When electrical wires carry more than a safe level of current, the circuit is said to be overloaded.

68 Electricity Section 3 Fuses and Circuit Breakers If a wire s insulation wears down, two wires may touch and create an alternative pathway for current, or a short circuit. Fuses melt to prevent circuit overloads. fuse: an electrical device that contains a metal strip that melts when current in the circuit becomes too great

69 Electricity Section 3 Fuses and Circuit Breakers Circuit breakers open circuits with high current. circuit breaker: a switch that opens a circuit automatically when the current exceeds a certain value The circuit breaker acts as a switch. Unlike fuses, circuit breakers can be reset by turning the switch back on.

70 Electricity Section 3 Visual Concept: Fuse

### Section 1 Electric Charge and Force

CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible

### Section 1: Electric Charge and Force

Section 1: Electric Charge and Force Preview Key Ideas Bellringer Electric Charge Transfer of Electric Charge Induced Charges Charging by Contact Electric Force Electric Field Lines Key Ideas What are

Forces Read Chapter 7; pages: 191-221 Objectives: - Describe how electrical charges exert forces on each other; Compare the strengths of electric and gravitational forces; Distinguish between conductors

### ELECTRICITY. Chapter ELECTRIC CHARGE & FORCE

ELECTRICITY Chapter 17 17.1 ELECTRIC CHARGE & FORCE Essential Questions: What are the different kinds of electric charge? How do materials become charged when rubbed together? What force is responsible

### Electroscope Used to are transferred to the and Foil becomes and

Electricity Notes Chapter 17 Section 1: Electric Charge and Forces Electric charge is a variety of independent all with one single name. Electricity is related to, and both (-) and (+) carry a charge.

### Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.

Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity

### Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.

Class: Date: Physics Test Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. Friction can result in

### Electric Charge. Conductors A material that transfers charge easily Metals

Electric Charge An electrical property of matter that creates a force between objects. Like charges repel Opposite charges attract Equal amount of positive and negative = no net charge Electrons: Negative

### 9. Which of the following is the correct relationship among power, current, and voltage?. a. P = I/V c. P = I x V b. V = P x I d.

Name: Electricity and Magnetism Test Multiple Choice Identify the choice that best completes the statement. 1. Resistance is measured in a unit called the. a. ohm c. ampere b. coulomb d. volt 2. The statement

### Electricity and Electromagnetism SOL review Scan for a brief video. A. Law of electric charges.

A. Law of electric charges. Electricity and Electromagnetism SOL review Scan for a brief video The law of electric charges states that like charges repel and opposite charges attract. Because protons and

### Part 4: Electricity & Magnetism

Part 4: Electricity & Magnetism Notes: Magnetism Magnetism Magnets: 1.Have a north and south pole 2.Like poles repel; opposite poles attract - The larger the distance between the magnets, the weaker the

### Electric Charge and Force

CHAPTER 17 21 SECTION Electricity Electric Charge and Force KEY IDEAS As you read this section, keep these questions in mind: What are the different kinds of electric charge? How do materials become electrically

### What is electricity? Charges that could be either positive or negative and that they could be transferred from one object to another.

Electricity What is electricity? Charges that could be either positive or negative and that they could be transferred from one object to another. What is electrical charge Protons carry positive charges

### Conceptual Physical Science 6 th Edition

Conceptual Physical Science 6 th Edition Chapter 8: STATIC AND CURRENT ELECTRICITY 1 Chapter 8: STATIC AND CURRENT ELECTRICITY Chapter 8: Read: All Homework: Four problems from the following set: 4, 6,

### Electricity

Electricity Electric Charge There are two fundamental charges in the universe. Positive (proton) has a charge of +1.60 x 10-19 C Negative (electron) has a charge of 1.60 x 10-19 C There is one general

### Chapter 7. Electricity. Teacher Answer Key. Broughton High School of Wake County

Teacher Answer Key Broughton High School of Wake County 1 Chapter 7 Electricity Physical Science Vocabulary 2 Vocabulary for Chapter 7 Electricity Vocabulary Word Definition 1. Charging by Contact 2. Charging

### Properties of Electric Charge

1 Goals 2 Properties of Electric Charge 2 Atomic Structure: Composed of three main particles: 1. Proton 2. Neutron 3. Electron Things to Remember: 3 Everything is made of atoms. Electrons can move from

### Electricity. Chapter 21

Electricity Chapter 21 Electricity Charge of proton Positive Charge of electron Negative Charge of neutron NONE Atoms have no charge because the charges of the protons and electrons cancel each other out.

https://www.youtube.com/watch?v=yc2-363miqs SCIENCE 9 UNIT 3 ELECTRICITY Remember: In the last unit we learned that all matter is made up of atoms atoms have subatomic particles called, protons, neutrons

### ELECTRICITY UNIT REVIEW

ELECTRICITY UNIT REVIEW S1-3-04: How does the Atomic Model help to explain static electricity? 1. Which best describes static electricity? a) charges that can be collected and held in one place b) charges

### ELECTRICITY Electric Fence Experiment.

ELECTRICITY Electric Fence Experiment. Can you guess what will happen? What would life be like without electricity? List 4 things that you would miss the most: 1) 2) 3) 4) Positive and Negative Charge

### Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena.

Unit 11 Electricity 1. Electric charge Electric charge is a property of all objects. It is responsible for electrical phenomena. Electrical phenomena are caused by the forces of attraction and repulsion.

### Electricity. Part 1: Static Electricity

Electricity Part 1: Static Electricity Introduction: Atoms Atoms are made up of charged particles. Atoms are made of 3 subatomic particles: Electrons protons, electrons and neutrons. Protons () Charge

### Electricity Test Review

Electricity Test Review Definitions; Series Circuit, Parallel Circuit, Equivalent Resistance, Fuse, Circuit Breaker, kilowatt hour, load, short circuit, dry cell, wet cell, fuel cells, solar cells, fossil

### Static Electricity. Electric Field. the net accumulation of electric charges on an object

Static Electricity the net accumulation of electric charges on an object Electric Field force exerted by an e - on anything that has an electric charge opposite charges attract like charges repel Static

### Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge. Electric Force and Charge

Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 7 ELECTRICITY AND MAGNETISM Electric forces can attract some objects and repel others Electric charge: the fundamental quantity that underlies

### Electricity MR. BANKS 8 TH GRADE SCIENCE

Electricity MR. BANKS 8 TH GRADE SCIENCE Electric charges Atoms and molecules can have electrical charges. These are caused by electrons and protons. Electrons are negatively charged. Protons are positively

### Chapter 3 Static and Current Electricity

Chapter 3 Static and Current Electricity 3.1 Static Electricity - the build up of an electronic charge on a body (object) Electroscope - a device for detecting (not measuring) static charge attraction/repulsion

### Electricity Review completed.notebook. June 13, 2013

Which particle in an atom has no electric charge associated with it? a. proton c. neutron b. electron d. nucleus Jun 12 9:28 PM The electrons in a metal sphere can be made to move by touching it with a

### Greek Letter Omega Ω = Ohm (Volts per Ampere)

) What is electric current? Flow of Electric Charge 2) What is the unit we use for electric current? Amperes (Coulombs per Second) 3) What is electrical resistance? Resistance to Electric Current 4) What

### 5. Positive charges one another.

1. Electric field lines indicate A. Both direction and relative strength B. Neither direction nor strength 5. Positive charges one another. A. Repel B. Attract 2. Whether or not charges will move in a

### Chapter19-Magnetism and Electricity

Chapter19-Magnetism and Electricity Magnetism: attraction of a magnet for another object. Magnetic poles: north & south ends of a magnet, they exert the strongest forces Like poles repel each other, unlike

### STUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE

Name Date STUDY GUIDE CHAPTER 5 ELECTRICITY AND MAGNETISM 1) ASSOCIATE ELEMENTARY PARTICLES WITH THEIR ELECTRICAL CHARGE Scientists now know that an atom is composed of even smaller particles of matter:

### ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,

### Lecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

Lecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee ١ The glow of the thin wire filament of a light bulb is caused by the electric current passing through it. Electric energy is transformed

### Electricity. Year 10 Science

Electricity Year 10 Science What is electricity? The collection or flow of electrons in the form of an electric charge What is static electricity? A stationary electrical charge that is built up on the

### Lesson Plan: Electric Circuits (~130 minutes) Concepts

Lesson Plan: Electric Circuits (~130 minutes) Concepts 1. Electricity is the flow of electric charge (electrons). 2. Electric Charge is a property of subatomic particles. 3. Current is the movement of

### PSC1341 Chapter 5 Electricity and Magnetism

PSC1341 Chapter 5 Electricity and Magnetism Chapter 5: Electricity and Magnetism A. The Atom B. Electricity C. Static Electricity D. A circuit E. Current and Voltage F. Resistance G. Ohm s Law H. Power

### Electric charges. Basics of Electricity

Electric charges Basics of Electricity Electron has a negative charge Neutron has a no charge Proton has a positive charge But what is a charge? Electric charge, like mass, is a fundamental property of

### Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction.

Electrostatics Electric charge is conserved the arithmetic sum of the total charge cannot change in any interaction. Electric Charge in the Atom Atom: Nucleus (small, massive, positive charge) Electron

### Notes on Electricity (Circuits)

A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

### Electricity CHARGE. q = 1.6 x10-19 C

Electricity CHARGE q = 1.6 x10-19 C How many protons in a Coulomb? -19 1.00 C x (1 proton) / (1.60 x 10 C) = 18 6.25x10 protons! Opposites Attract Most materials are Electrically NEUTRAL (lowest potential

### Electricity and Magnetism

Electricity and Magnetism S8P5. Students will recognize the characteristics of gravity, electricity, and magnetism as major kinds of forces acting in nature. b. Demonstrate the advantages and disadvantages

### Electric Currents and Circuits

Electric Currents and Circuits Producing Electric Current Electric Current flow of charged particles Need a potential difference to occur Conventional Current- flow of positive charges flowing from positive

### Electric Force and Charges. Conceptual Physics 11 th Edition. Electric Force and Charges

Conceptual Physics 11 th Edition Central rule of electricity Opposite charges attract one another; like charges repel. Chapter 22: ELECTROSTATICS This lecture will help you understand: Electrical Forces

### Electric Charges & Current. Chapter 12. Types of electric charge

Electric Charges & Current Chapter 12 Types of electric charge Protons w/ + charge stuck in the nucleus Electrons w/ - charge freely moving around the nucleus in orbits 1 Conductors Allow the easy flow

### Test Review Electricity

Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120-volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show

### Material World Electricity and Magnetism

Material World Electricity and Magnetism Electrical Charge An atom is composed of small particles of matter: protons, neutrons and electrons. The table below describes the charge and distribution of these

### Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving)

Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit

### Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance Units of Chapter 25 The Electric Battery Electric Current Ohm s Law: Resistance and Resistors Resistivity Electric Power Units of Chapter 25 Power in Household

### Name: Block: Date: NNHS Introductory Physics: MCAS Review Packet #4 Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS electricity and magnetism. 5.1 Recognize that an electric charge tends to be static on insulators

### V R I = UNIT V: Electricity and Magnetism Chapters Chapter 34: Electric Current. volt ohm. voltage. current = I. The Flow of Charge (34.

IMPORTANT TERMS: Alternating current (AC) Ampere Diode Direct current (DC) Electric current Electric power Electric resistance Ohm Ohm s Law Potential difference Voltage source EQUATIONS: UNIT V: Electricity

### Electrical Forces arise from particles in atoms.

Electrostatics Electrical Forces arise from particles in atoms. The protons(+) in the nucleus attract the electrons and hold them in orbit Electrons(-)repel other electrons and protons repel other protons

### CLASS X- ELECTRICITY

Conductor- Insulator: Materia Materials through which electric current cannot pass are called insulators. Electric Circuit: A continuous a CLASS X- ELECTRICITY als through which electric current can pass

### melectron= 9.1x10-31 kg e = 1.6x10-19 C MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #1, PHYS 102 Name Chapters 16, 17, & 18 8 February 2006 Constants k=9x109 Nm2/C2 e o =8.85x10-12 F/m mproton=1.673x10-27 kg melectron= 9.1x10-31 kg e = 1.6x10-19 C MULTIPLE CHOICE. Choose the one

### Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference

Electricity and Circuits a Electric circuits Describe the basic structure of an atom (positions, relative masses and relative charges of protons, neutrons and electrons). Recognise the circuit symbols

### 670 Intro Physics Notes: Electric Current and Circuits

Name: Electric Current Date: / / 670 Intro Physics Notes: Electric Current and Circuits 1. Previously, we learned about static electricity. Static electricity deals with charges that are at rest. 2. Now

### Note on Posted Slides

Note on Posted Slides These are the slides that I intended to show in class on Wed. Mar. 13, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably

### Theme 5: Electricity in the Home

Theme 5: Electricity in the Home Static Electricity WHAT IS STATIC ELECTRICITY? Everything we see is made up of tiny little parts called atoms. So what are atoms made of? In the middle of each atom is

7th Grade Task for today: Complete the Magnetism and Electricity task sheet. Be sure to complete both sides Use pages 654-677 for Magnetism Use pages 682-717 for Electricity 1. How do magnec poles interact?

### Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)

Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which

### CHARGE AND ELECTRIC CURRENT:

ELECTRICITY: CHARGE AND ELECTRIC CURRENT ELECTRIC CHARGE ELECTRIC CURRENT ELECTRIC CIRCUIT DEFINITION AND COMPONENTS EFFECTS OF ELECTRIC CURRENT TYPES OF CIRCUITS ELECTRIC QUANTITIES VOLTAGE CURRENT RESISTANCE

### 7.1 ANALYSING ELECTRIC FIELDS AND CHARGE FLOW

7.1 ANALYSING ELECTRIC FIELDS AND CHARGE FLOW State the relationship between electron and electric current Where does charge come from? Matter is made up of tiny particles called atoms. At the center of

### Electricity. dronstudy.com

Electricity Electricity is a basic part of our nature and it is one of our most widely used forms of energy. We use electricity virtually every minute of every day for example in lighting, heating, refrigeration,

### HIGH SCHOOL SCIENCE. Physical Science 7: Electricity & Magnetism

HIGH SCHOOL SCIENCE Physical Science 7: Electricity & Magnetism WILLMAR PUBLIC SCHOOL 2013-2014 EDITION CHAPTER 7 Electricity & Magnatism In this chapter you will: 1. Analyze factors that affect the strength

### Electromagnetism Review Sheet

Electromagnetism Review Sheet Electricity Atomic basics: Particle name Charge location protons electrons neutrons + in the nucleus - outside of the nucleus neutral in the nucleus What would happen if two

### Dynamic Electricity. All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison

Dynamic Electricity All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison Review Everything is made of atoms which contain POSITIVE particles called PROTONS and NEGATIVE

### 12/2/2018. Monday 12/17. Electric Charge and Electric Field

Electricity Test Monday 1/17 Electric Charge and Electric Field 1 In nature, atoms are normally found with equal numbers of protons and electrons, so they are electrically neutral. By adding or removing

### Which of these particles has an electrical charge?

Which of these particles has an electrical charge? A. Proton. B. Electron. C. Ion. D. All of the above. Which is the predominant carrier of charge in copper wire? A. Proton. B. Electron. C. Ion. D. All

### ELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page

ELECTRICITY 1. Name a device that helps to maintain a potential difference across a conductor. Cell or battery 2. Define 1 volt. Express it in terms of SI unit of work and charge calculate the amount of

### Current and Resistance

Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 2-1 Electric current 2-2

CHAPTER 12 ELECTRICITY Electricity is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena such

### Electric Charge and Static Electricity

Name Date Class Electricity Section Summary Electric Charge and Static Electricity Guide for Reading How do electric charges interact? What is an electric field? How does static electricity build up and

### 20.1 Electric Charge and Static Electricity. Electric charge is responsible for clothes that stick together when they are removed from a dryer.

Electric charge is responsible for clothes that stick together when they are removed from a dryer. Electric Charge What produces a net electric charge? An excess or shortage of electrons produces a net

### Notes on Electricity (Circuits)

A circuit is defined to be a collection of energy-givers (active elements) and energy-takers (passive elements) that form a closed path (or complete path) through which electrical current can flow. The

### Basic Electricity Video Exam

Name: Class: Date: Basic Electricity Video Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Matter is made of. a. plasma, gas, and solid b. solid,

### 1) The charge of an electron is. A) negative. B) positive. C) Electrons have no charge.

1) The charge of an electron is A) negative. B) positive. C) Electrons have no charge. 2) Two like charges A) have no effect on each other. B) repel each other. C) must be neutrons. D) neutralize each

### Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that produces and store electric charges at high voltage

### Ohms Law. V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω)

Ohms Law V = IR V = voltage in volts (aka potential difference) I = Current in amps R = resistance in ohms (Ω) Current How would you define it? Current the movement of electric charge through a medium

### Chapter 33 - Electric Fields and Potential. Chapter 34 - Electric Current

Chapter 33 - Electric Fields and Potential Chapter 34 - Electric Current Electric Force acts through a field An electric field surrounds every electric charge. It exerts a force that causes electric charges

### LESSON 5: ELECTRICITY II

LESSON 5: ELECTRICITY II The first two points are a review of the previous lesson 1.1.ELECTRIC CHARGE - Electric charge is a property of all objects and is responsible for electrical phenomena. -All matter

### Electricity Courseware Instructions

Physics Electricity Courseware Instructions This courseware acts as a supplement to the classroom instruction. The five sections on the following slide link to the topic areas. Following the topic area

### Unit 3 BLM Answers UNIT 3 BLM 3-46

UNIT 3 BLM 3-46 Unit 3 BLM Answers BLM 3-3, Charge Transfer Diagrams 1. Positively charged objects should have more (+) than ( ). Negatively charged objects should have more ( ) than (+). 2. They must

### earth live neutral (ii) What is the colour of the insulation around the wire labelled T? blue brown green and yellow

Q. (a) The diagram shows the inside of a three-pin plug. What name is given to the wire labelled S? Draw a ring around the correct answer. earth live neutral () What is the colour of the insulation around

### SNC1DI Unit Review: Static & Current Electricity

SNC1DI Unit Review: Static & Current Electricity 1. Be able to recognize the definitions for the following terms: Friction Contact Induction Lightning Electrostatic Series Pithball electroscope Insulators

### Learning Module 2: Fundamentals of Electricity. 101 Basic Series

Learning Module 2: Fundamentals of Electricity 101 Basic Series What You Will Learn We will start with an overview to introduce you to the main points about electricity, then we will step through each

### Magnets attract some metals but not others

Electricity and Magnetism Junior Science Magnets attract some metals but not others Some objects attract iron and steel. They are called magnets. Magnetic materials have the ability to attract some materials

### WHAT ARE THE EFFECTS OF MOVING CHARGES?

ELECTRICITY WHAT ARE THE EFFECTS OF MOVING CHARGES? ELECTRICAL CHARGES Most atoms have the same number of protons and electrons. They often lose and gain electrons. When this happens, the atom s charge

### Electric Force and Charges. Conceptual Physics 11 th Edition. What are Atoms Made of?

Conceptual Physics 11 th Edition Electrical Forces and Charges Conservation of Charge Coulomb s Law Conductors and Insulators Chapter 22: ELECTROSTATICS Charging Charge Polarization Electric Field Electric

### Note on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current

Note on Posted Slides These are the slides that I intended to show in class on Tue. Mar. 18, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably

### Yr. 9 Electricity WorkBook

Yr. 9 Electricity WorkBook On completion of this booklet students should be able to: Recall the structure of a neutral atom: three particles, their charges, their location; Nucleus (Proton positive, Neutron-

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Exam 4 Sci1600 S18 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two particles with the electric charges Q1 and Q2 repel each other.

### NATIONAL 5 PHYSICS ELECTRICITY

NATIONAL 5 PHYSICS ELECTRICITY ELECTRICAL CHARGE CARRIERS AND CURRENT Electrical Charge Electrical charge exists in two distinct types positive charge and negative charge. It is also possible for an object

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Exam 4 Sci1600 S18 KEY Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two particles with the electric charges Q1 and Q2 repel each

### Electricity Electrostatics Types of materials Charging an Object Van de Graaff Generator

Electricity Electricity is the physical phenomena associated with the position or movement of electric charge. The study of electricity is generally divided into two areas electrostatics and current electricity.

### CIRCUITS: Series & Parallel

CIRCUITS: Series & Parallel Last Week s BIG IDEAS: Opposite charged objects attract Like charged objects repel Last Week s BIG IDEAS: The electrons are the loose particles that move to make things charged

### Question Bank. Electric Energy, Power and Household Circuits

Electric Energy, Power and Household Circuits 1. (a) What do you understand by the term electric work? (b) State the SI unit of electric work and define it. (c) Name two bigger units of electric work.

### SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain