Assume the left square is a pushout. Then the right square is a pushout if and only if the big rectangle is.


 Jade Clarke
 3 years ago
 Views:
Transcription
1 COMMUTATIVE ALGERA LECTURE 2: MORE CATEGORY THEORY VIVEK SHENDE Last time we learned about Yoneda s lemma, and various universal constructions initial and final objects, products and coproducts (which turned out to be the same for Rmodules); pullbacks and pushouts. We connected this back to the usual discussion of exact sequences, by noting that if you turn into 0 A C 0 A 0 C then the sequence is leftexact if this diagram is a pullback; right exact if this diagram is a pushout, and exact if it s both. We left off by noting that the first isomorphism theorem says that whenever A, there s a pushoutpullback diagram A 0 /A The real content is in the assertion that it s a pushout (i.e. right exact); once you know this, the fact that it s a pullback (i.e. left exact) is already contained in the hypothesis that A. Here s a really important fact about pushouts. (There s a similar one about pullbacks.) Lemma 1. Suppose given a diagram like this: Assume the left square is a pushout. Then the right square is a pushout if and only if the big rectangle is. Proof. Exercise. 1
2 2 VIVEK SHENDE The second isomorphism theorem is about when you have submodules A, C. Note in in this case the following diagram is a (pullback and) pushout. A A A + Now apply the above lemma to the following diagram: A A 0 A + It tells you that the same item makes both the right square and the big rectangle pushouts. Thus you learn that /(A ) = (A + )/A. The third isomorphism theorem is about the situation A C. Thus consider the following diagram A C 0 /A C/A 0 Applying the lemma, we learn that the upper right square is a pushout. Applying it again, we learn makes the right rectangle and lower right square pushouts. I.e., C/ = (C/A)/(/A). As you see, the first isomorphism theorem is about one square, the second is about two squares, and the third is about three squares. That s why they re called the first, second, and third isomorphism theorems. 1 Now we return to category theory, to learn about adjoints. This has to do with a situation when you have two categories, C, D, and functors between them, f : C D : g In this situation, we say that an adjunction, with f as the left adjoint and g as the right adjoint, is a natural equivalence 1 Not really. Hom D (f(c), d) = Hom C (c, g(d))
3 COMMUTATIVE ALGERA LECTURE 2: MORE CATEGORY THEORY 3 That is, both sides define functors C op D set, and we demand the data of natural transformations between these functors, which compose both ways to the identity. Exercise: using Yoneda s lemma or otherwise, show that an adjoint, if it exists, is unique up to unique natural transformation. The prototypical example of an adjunction is (free construction, forgetful functor). E.g, we have a functor Rings Sets, which forgets the ring structure and just remembers the elements of the ring. It s a forgetful functor. On the other hand, given a set S, we can form the polynomial ring Z[S], where the variables are elements of S. There s a natural isomorphism Hom Rings (Z[S], R) = Hom Sets (S, F orget(r)) Actually, being the left adjoint of the forgetful functor is what it means to be a free construction. You should regard the above isomorphism as the assertion that there s a such thing as a free ring on a set S, and it s Z[S]. Similarly, you can forget that a module is a module, and remember only that it s a set. Given a set S, you can form the Rmodule with basis S, I ll denote it R S. This is the free Rmodule on S, i.e. there s an adjunction Hom R mod (R S, M) = Hom Sets (S, F orget(m)) The most useful consequence of the existence of an adjunction is: Lemma 2. Left adjoints preserve colimits and right adjoints preserve limits. We ll prove this shortly, but first let s review (or learn) what limits and colimits are. You ve seen many universal constructions, described in the following way. There s a diagram of objects and morphisms, and you ask for an object with morphisms (from) to all objects in the diagram, commuting with all morphisms in the diagram, which is (co) universal in the sense that any such object and collection of maps will factor through the a map (from) to the (co) universal one. E.g. given X W Y, the pullback is some X W Y, such that there s a commutative diagram X W Y Y X such that any other commutative diagram W Z Y X W is obtained from it by factoring through some unique map Z X W Y.
4 4 VIVEK SHENDE The categorical term for (co)universal constructions of this form is (co) limit. Here are some you have seen. limit final object product pullback kernel colimit initial object coproduct pushout cokernel Example. The forgetful functor from rings to sets has a left adjoint, so according to Lemma 2, it preserves limits. Here s what you learn from this: whatever the final object is in rings, its underlying set is the final object of sets, i.e. has one element. Whatever the product is in rings, its underlying set has to be the cartesian product of sets. You get a similar description for the underlying set of a pullback. In other words, if you first encountered the category of rings and wanted to know whether it had a final object, products, etc., then it is quite helpful to know that the forgetful functor has a left adjoint (i.e. that there s a free construction), so you know where to start looking for products. Conversely, we know that the initial object in rings in Z. The underlying set not being the empty set, we see that the forgetful functor can t have a right adjoint. Example. The forgetful functor from modules to sets has a left adjoint, so the final module must have one element and the product in modules have the cartesian product as its underlying set. ut the initial module 0 does not have underlying set the empty set, so the forgetful functor can t have a right adjoint. Example. The forgetful functor from topological spaces to sets has both left and right adjoints. These are given by: the discrete and the indiscrete topology. (Convince yourself this is true.) Note the existence of these adjoints means that for any limit or colimit construction you want to perform in topological spaces, you already know what the underlying set must be. 2 Example. Consider a map of rings φ : R S. Then given any Smodule N, we can regard it as an Rmodule by the formula r n := φ(r) n. It s common to write the resulting Rmodule as N R ; this is a forgetful functor from Smodules to Rmodules. For an Rmodule M, we have a natural isomorphism Hom S (M R S, N) = Hom R (M, N R ) Thus R S gives a left adjoint of the forgetful functor. Actually, there s also a right adjoint: Hom R (N R, M) = Hom S (N, Hom R (S, M)) 2 I find it curious that the existence of the discrete and indiscrete topologies tell you anything at all.
5 COMMUTATIVE ALGERA LECTURE 2: MORE CATEGORY THEORY 5 It follows from the existence of these adjoints that taking limits or colimits commutes with forgetting the Smodule structure. Note in particular that, taking R = Z, the underlying abelian group of a limit or colimit is the limit or colimit of underlying abelian groups. Example. Consider an Rmodule, M. Then for any other Rmodules, L, N, we have Hom R (L R M, N) = Hom R (L, Hom R (M, N)) Thus we learn that R M preserves colimits, and in particular right exact sequences, and that Hom R (M, ) preserves limits, and in particular, left exact sequences. Example. Using the above adjunction both ways, we deduce Hom R (M, Hom R (L, N)) = Hom R (L, Hom R (M, N)) This doesn t look like an adjunction. However, let s think more carefully about Hom R (, N). It is contravariant, which means there s two ways of thinking of it: Thus we can rewrite the above equality as Hom R (, N) : R mod op R mod Hom R mod op(n, ) : R mod R mod op Hom R mod op(hom R mod op(n, L), M) = Hom R (L, Hom R (M, N)) Now you see that again Hom R (, N) is a left adjoint. Thus it takes leftexact sequences in R mod op aka right exact sequences in R mod to leftexact sequences in R mod. 3 You might call this an opfuscation of the previous example. Finally, let s prove lemma 2. We ll do the right adjoints. Say we have some diagram of objects d α in D; assume lim d α exists. We compute: Hom C (c, g(lim d α )) = Hom D (f(c), lim d α ) = lim Hom D (f(c), d α ) = lim Hom C (c, g(d α )) The first and third equality use the adjunction; the second holds by definition of limit. Comparing the left and right most terms, we learn (by the definition of limit) g(lim d α ) = lim g(d α ). 3 We haven t really explained why exact sequences in R mod op is a thing that makes sense. Here s why: taking opposite category interchanges limits and colimits, so it s clear that R mod op has a zero (= initial and final) object, and pushouts are interchanged with pullbacks. So we can ask for pushoutpullback squares with a zero in a corner.
COMMUTATIVE ALGEBRA LECTURE 1: SOME CATEGORY THEORY
COMMUTATIVE ALGEBRA LECTURE 1: SOME CATEGORY THEORY VIVEK SHENDE A ring is a set R with two binary operations, an addition + and a multiplication. Always there should be an identity 0 for addition, an
More informationLECTURE 1: SOME GENERALITIES; 1 DIMENSIONAL EXAMPLES
LECTURE 1: SOME GENERALITIES; 1 DIMENSIONAL EAMPLES VIVEK SHENDE Historically, sheaves come from topology and analysis; subsequently they have played a fundamental role in algebraic geometry and certain
More informationCategories and functors
Lecture 1 Categories and functors Definition 1.1 A category A consists of a collection ob(a) (whose elements are called the objects of A) for each A, B ob(a), a collection A(A, B) (whose elements are called
More informationAlgebraic Geometry
MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry
More information3. Categories and Functors We recall the definition of a category: Definition 3.1. A category C is the data of two collections. The first collection
3. Categories and Functors We recall the definition of a category: Definition 3.1. A category C is the data of two collections. The first collection is called the objects of C and is denoted Obj(C). Given
More informationFOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2 RAVI VAKIL CONTENTS 1. Where we were 1 2. Yoneda s lemma 2 3. Limits and colimits 6 4. Adjoints 8 First, some bureaucratic details. We will move to 380F for Monday
More informationsset(x, Y ) n = sset(x [n], Y ).
1. Symmetric monoidal categories and enriched categories In practice, categories come in nature with more structure than just sets of morphisms. This extra structure is central to all of category theory,
More informationMATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA
MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA These are notes for our first unit on the algebraic side of homological algebra. While this is the last topic (Chap XX) in the book, it makes sense to
More informationLecture 9: Sheaves. February 11, 2018
Lecture 9: Sheaves February 11, 2018 Recall that a category X is a topos if there exists an equivalence X Shv(C), where C is a small category (which can be assumed to admit finite limits) equipped with
More informationALGEBRAIC KTHEORY HANDOUT 5: K 0 OF SCHEMES, THE LOCALIZATION SEQUENCE FOR G 0.
ALGEBRAIC KTHEORY HANDOUT 5: K 0 OF SCHEMES, THE LOCALIZATION SEQUENCE FOR G 0. ANDREW SALCH During the last lecture, we found that it is natural (even just for doing undergraduatelevel complex analysis!)
More informationAlgebraic Geometry Spring 2009
MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry
More informationReview of category theory
Review of category theory Proseminar on stable homotopy theory, University of Pittsburgh Friday 17 th January 2014 Friday 24 th January 2014 Clive Newstead Abstract This talk will be a review of the fundamentals
More informationFOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2 RAVI VAKIL CONTENTS 1. Some constructions using universal properties, old and new 1 2. Adjoint functors 3 3. Sheaves 6 Last day: What is algebraic geometry? Crash
More informationElementary (haha) Aspects of Topos Theory
Elementary (haha) Aspects of Topos Theory Matt Booth June 3, 2016 Contents 1 Sheaves on topological spaces 1 1.1 Presheaves on spaces......................... 1 1.2 Digression on pointless topology..................
More informationAdjoints, naturality, exactness, small Yoneda lemma. 1. Hom(X, ) is left exact
(April 8, 2010) Adjoints, naturality, exactness, small Yoneda lemma Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ The best way to understand or remember leftexactness or rightexactness
More informationALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES.
ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES. ANDREW SALCH 1. Affine schemes. About notation: I am in the habit of writing f (U) instead of f 1 (U) for the preimage of a subset
More informationUniversal Properties
A categorical look at undergraduate algebra and topology Julia Goedecke Newnham College 24 February 2017, Archimedeans Julia Goedecke (Newnham) 24/02/2017 1 / 30 1 Maths is Abstraction : more abstraction
More informationAlgebraic Geometry Spring 2009
MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry
More informationDual Adjunctions Between Algebras and Coalgebras
Dual Adjunctions Between Algebras and Coalgebras Hans E. Porst Department of Mathematics University of Bremen, 28359 Bremen, Germany porst@math.unibremen.de Abstract It is shown that the dual algebra
More informationFORMAL GLUEING OF MODULE CATEGORIES
FORMAL GLUEING OF MODULE CATEGORIES BHARGAV BHATT Fix a noetherian scheme X, and a closed subscheme Z with complement U. Our goal is to explain a result of Artin that describes how coherent sheaves on
More informationDEFINITIONS: OPERADS, ALGEBRAS AND MODULES. Let S be a symmetric monoidal category with product and unit object κ.
DEFINITIONS: OPERADS, ALGEBRAS AND MODULES J. P. MAY Let S be a symmetric monoidal category with product and unit object κ. Definition 1. An operad C in S consists of objects C (j), j 0, a unit map η :
More informationFOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 3
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 3 RAVI VAKIL CONTENTS 1. Kernels, cokernels, and exact sequences: A brief introduction to abelian categories 1 2. Sheaves 7 3. Motivating example: The sheaf of differentiable
More informationLectures on Homological Algebra. Weizhe Zheng
Lectures on Homological Algebra Weizhe Zheng Morningside Center of Mathematics Academy of Mathematics and Systems Science, Chinese Academy of Sciences Beijing 100190, China University of the Chinese Academy
More informationAn introduction to locally finitely presentable categories
An introduction to locally finitely presentable categories MARU SARAZOLA A document born out of my attempt to understand the notion of locally finitely presentable category, and my annoyance at constantly
More informationRepresentable presheaves
Representable presheaves March 15, 2017 A presheaf on a category C is a contravariant functor F on C. In particular, for any object X Ob(C) we have the presheaf (of sets) represented by X, that is Hom
More informationCategory Theory. Travis Dirle. December 12, 2017
Category Theory 2 Category Theory Travis Dirle December 12, 2017 2 Contents 1 Categories 1 2 Construction on Categories 7 3 Universals and Limits 11 4 Adjoints 23 5 Limits 31 6 Generators and Projectives
More informationAdjunctions! Everywhere!
Adjunctions! Everywhere! Carnegie Mellon University Thursday 19 th September 2013 Clive Newstead Abstract What do free groups, existential quantifiers and StoneČech compactifications all have in common?
More informationMath 762 Spring h Y (Z 1 ) (1) h X (Z 2 ) h X (Z 1 ) Φ Z 1. h Y (Z 2 )
Math 762 Spring 2016 Homework 3 Drew Armstrong Problem 1. Yoneda s Lemma. We have seen that the bifunctor Hom C (, ) : C C Set is analogous to a bilinear form on a Kvector space, : V V K. Recall that
More informationMorita Equivalence. Eamon Quinlan
Morita Equivalence Eamon Quinlan Given a (not necessarily commutative) ring, you can form its category of right modules. Take this category and replace the names of all the modules with dots. The resulting
More informationCONTINUITY. 1. Continuity 1.1. Preserving limits and colimits. Suppose that F : J C and R: C D are functors. Consider the limit diagrams.
CONTINUITY Abstract. Continuity, tensor products, complete lattices, the Tarski Fixed Point Theorem, existence of adjoints, Freyd s Adjoint Functor Theorem 1. Continuity 1.1. Preserving limits and colimits.
More information1 Categories, Functors, and Natural Transformations. Discrete categories. A category is discrete when every arrow is an identity.
MacLane: Categories or Working Mathematician 1 Categories, Functors, and Natural Transormations 1.1 Axioms or Categories 1.2 Categories Discrete categories. A category is discrete when every arrow is an
More informationDirect Limits. Mathematics 683, Fall 2013
Direct Limits Mathematics 683, Fall 2013 In this note we define direct limits and prove their basic properties. This notion is important in various places in algebra. In particular, in algebraic geometry
More informationThe Adjoint Functor Theorem.
The Adjoint Functor Theorem. Kevin Buzzard February 7, 2012 Last modified 17/06/2002. 1 Introduction. The existence of free groups is immediate from the Adjoint Functor Theorem. Whilst I ve long believed
More informationSECTION 2: THE COMPACTOPEN TOPOLOGY AND LOOP SPACES
SECTION 2: THE COMPACTOPEN TOPOLOGY AND LOOP SPACES In this section we will give the important constructions of loop spaces and reduced suspensions associated to pointed spaces. For this purpose there
More informationPushouts, Pullbacks and Their Properties
Pushouts, Pullbacks and Their Properties Joonwon Choi Abstract Graph rewriting has numerous applications, such as software engineering and biology techniques. This technique is theoretically based on pushouts
More informationCategory Theory 1 Categories and functors
Category Theory 1 Categories and functors This is to accompany the reading of 1 7 October and the lecture of 8 October. mistakes and obscurities to T.Leinster@maths.gla.ac.uk. Please report Some questions
More information1 Introduction. 2 Categories. Mitchell Faulk June 22, 2014 Equivalence of Categories for Affine Varieties
Mitchell Faulk June 22, 2014 Equivalence of Categories for Affine Varieties 1 Introduction Recall from last time that every affine algebraic variety V A n determines a unique finitely generated, reduced
More information58 CHAPTER 2. COMPUTATIONAL METHODS
58 CHAPTER 2. COMPUTATIONAL METHODS 23 Hom and Lim We will now develop more properties of the tensor product: its relationship to homomorphisms and to direct limits. The tensor product arose in our study
More informationSome remarks on Frobenius and Lefschetz in étale cohomology
Some remarks on obenius and Lefschetz in étale cohomology Gabriel Chênevert January 5, 2004 In this lecture I will discuss some more or less related issues revolving around the main idea relating (étale)
More informationCategory Theory (UMV/TK/07)
P. J. Šafárik University, Faculty of Science, Košice Project 2005/NP1051 11230100466 Basic information Extent: 2 hrs lecture/1 hrs seminar per week. Assessment: Written tests during the semester, written
More informationA TALE OF TWO FUNCTORS. Marc Culler. 1. Hom and Tensor
A TALE OF TWO FUNCTORS Marc Culler 1. Hom and Tensor It was the best of times, it was the worst of times, it was the age of covariance, it was the age of contravariance, it was the epoch of homology, it
More informationExercises on chapter 0
Exercises on chapter 0 1. A partially ordered set (poset) is a set X together with a relation such that (a) x x for all x X; (b) x y and y x implies that x = y for all x, y X; (c) x y and y z implies that
More informationThe Universal Coefficient Theorem
The Universal Coefficient Theorem Renzo s math 571 The Universal Coefficient Theorem relates homology and cohomology. It describes the kth cohomology group with coefficients in a(n abelian) group G in
More informationOVERVIEW OF SPECTRA. Contents
OVERVIEW OF SPECTRA Contents 1. Motivation 1 2. Some recollections about Top 3 3. Spanier Whitehead category 4 4. Properties of the Stable Homotopy Category HoSpectra 5 5. Topics 7 1. Motivation There
More informationCohomology and Base Change
Cohomology and Base Change Let A and B be abelian categories and T : A B and additive functor. We say T is halfexact if whenever 0 M M M 0 is an exact sequence of Amodules, the sequence T (M ) T (M)
More informationElements of Category Theory
Elements of Category Theory Robin Cockett Department of Computer Science University of Calgary Alberta, Canada robin@cpsc.ucalgary.ca Estonia, Feb. 2010 Functors and natural transformations Adjoints and
More informationCOURSE NOTES: HOMOLOGICAL ALGEBRA
COURSE NOTES: HOMOLOGICAL ALGEBRA AMNON YEKUTIELI Contents 1. Introduction 1 2. Categories 2 3. Free Modules 13 4. Functors 18 5. Natural Transformations 23 6. Equivalence of Categories 29 7. Opposite
More informationIndCoh Seminar: Indcoherent sheaves I
IndCoh Seminar: Indcoherent sheaves I Justin Campbell March 11, 2016 1 Finiteness conditions 1.1 Fix a cocomplete category C (as usual category means category ). This section contains a discussion of
More informationGALOIS CATEGORIES MELISSA LYNN
GALOIS CATEGORIES MELISSA LYNN Abstract. In abstract algebra, we considered finite Galois extensions of fields with their Galois groups. Here, we noticed a correspondence between the intermediate fields
More informationINTRO TO TENSOR PRODUCTS MATH 250B
INTRO TO TENSOR PRODUCTS MATH 250B ADAM TOPAZ 1. Definition of the Tensor Product Throughout this note, A will denote a commutative ring. Let M, N be two Amodules. For a third Amodule Z, consider the
More informationC2.7: CATEGORY THEORY
C2.7: CATEGORY THEORY PAVEL SAFRONOV WITH MINOR UPDATES 2019 BY FRANCES KIRWAN Contents Introduction 2 Literature 3 1. Basic definitions 3 1.1. Categories 3 1.2. Settheoretic issues 4 1.3. Functors 5
More informationA 2CATEGORIES COMPANION
A 2CATEGORIES COMPANION STEPHEN LACK Abstract. This paper is a rather informal guide to some of the basic theory of 2categories and bicategories, including notions of limit and colimit, 2dimensional
More informationDerived Algebraic Geometry IX: Closed Immersions
Derived Algebraic Geometry I: Closed Immersions November 5, 2011 Contents 1 Unramified Pregeometries and Closed Immersions 4 2 Resolutions of TStructures 7 3 The Proof of Proposition 1.0.10 14 4 Closed
More informationMath 535a Homework 5
Math 535a Homework 5 Due Monday, March 20, 2017 by 5 pm Please remember to write down your name on your assignment. 1. Let (E, π E ) and (F, π F ) be (smooth) vector bundles over a common base M. A vector
More informationPART I. Abstract algebraic categories
PART I Abstract algebraic categories It should be observed first that the whole concept of category is essentially an auxiliary one; our basic concepts are those of a functor and a natural transformation.
More informationCategory Theory. Categories. Definition.
Category Theory Category theory is a general mathematical theory of structures, systems of structures and relationships between systems of structures. It provides a unifying and economic mathematical modeling
More informationSOME EXERCISES. This is not an assignment, though some exercises on this list might become part of an assignment. Class 2
SOME EXERCISES This is not an assignment, though some exercises on this list might become part of an assignment. Class 2 (1) Let C be a category and let X C. Prove that the assignment Y C(Y, X) is a functor
More informationOperads. Spencer Liang. March 10, 2015
Operads Spencer Liang March 10, 2015 1 Introduction The notion of an operad was created in order to have a welldefined mathematical object which encodes the idea of an abstract family of composable nary
More informationAlgebraic Geometry Spring 2009
MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry
More informationGrothendieck duality for affine M 0 schemes.
Grothendieck duality for affine M 0 schemes. A. Salch March 2011 Outline Classical Grothendieck duality. M 0 schemes. Derived categories without an abelian category of modules. Computing Lf and Rf and
More informationMATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA 23
MATH 101B: ALGEBRA II PART A: HOMOLOGICAL ALGEBRA 23 6.4. Homotopy uniqueness of projective resolutions. Here I proved that the projective resolution of any Rmodule (or any object of an abelian category
More informationEtale cohomology of fields by Johan M. Commelin, December 5, 2013
Etale cohomology of fields by Johan M. Commelin, December 5, 2013 Etale cohomology The canonical topology on a Grothendieck topos Let E be a Grothendieck topos. The canonical topology T on E is given in
More informationLECTURE 3 MATH 261A. Office hours are now settled to be after class on Thursdays from 12 : 30 2 in Evans 815, or still by appointment.
LECTURE 3 MATH 261A LECTURES BY: PROFESSOR DAVID NADLER PROFESSOR NOTES BY: JACKSON VAN DYKE Office hours are now settled to be after class on Thursdays from 12 : 30 2 in Evans 815, or still by appointment.
More informationThe Steenrod algebra
The Steenrod algebra Paul VanKoughnett January 25, 2016 References are the first few chapters of Mosher and Tangora, and if you can read French, Serre s Cohomologie modulo 2 des complexes d EilenbergMacLane
More informationand this makes M into an Rmodule by (1.2). 2
1. Modules Definition 1.1. Let R be a commutative ring. A module over R is set M together with a binary operation, denoted +, which makes M into an abelian group, with 0 as the identity element, together
More information48 CHAPTER 2. COMPUTATIONAL METHODS
48 CHAPTER 2. COMPUTATIONAL METHODS You get a much simpler result: Away from 2, even projective spaces look like points, and odd projective spaces look like spheres! I d like to generalize this process
More informationHomology and Cohomology of Stacks (Lecture 7)
Homology and Cohomology of Stacks (Lecture 7) February 19, 2014 In this course, we will need to discuss the ladic homology and cohomology of algebrogeometric objects of a more general nature than algebraic
More informationLIMITS OF CATEGORIES, AND SHEAVES ON INDSCHEMES
LIMITS OF CATEGORIES, AND SHEAVES ON INDSCHEMES JONATHAN BARLEV 1. Inverse limits of categories This notes aim to describe the categorical framework for discussing quasi coherent sheaves and Dmodules
More informationSOME OPERATIONS ON SHEAVES
SOME OPERATIONS ON SHEAVES R. VIRK Contents 1. Pushforward 1 2. Pullback 3 3. The adjunction (f 1, f ) 4 4. Support of a sheaf 5 5. Extension by zero 5 6. The adjunction (j!, j ) 6 7. Sections with support
More information1. Introduction. Let C be a Waldhausen category (the precise definition
KTHEORY OF WLDHUSEN CTEGORY S SYMMETRIC SPECTRUM MITY BOYRCHENKO bstract. If C is a Waldhausen category (i.e., a category with cofibrations and weak equivalences ), it is known that one can define its
More informationINTRODUCTION TO PART V: CATEGORIES OF CORRESPONDENCES
INTRODUCTION TO PART V: CATEGORIES OF CORRESPONDENCES 1. Why correspondences? This part introduces one of the two main innovations in this book the (, 2)category of correspondences as a way to encode
More informationPART II.1. INDCOHERENT SHEAVES ON SCHEMES
PART II.1. INDCOHERENT SHEAVES ON SCHEMES Contents Introduction 1 1. Indcoherent sheaves on a scheme 2 1.1. Definition of the category 2 1.2. tstructure 3 2. The direct image functor 4 2.1. Direct image
More information9 Direct products, direct sums, and free abelian groups
9 Direct products, direct sums, and free abelian groups 9.1 Definition. A direct product of a family of groups {G i } i I is a group i I G i defined as follows. As a set i I G i is the cartesian product
More informationBASIC MODULI THEORY YURI J. F. SULYMA
BASIC MODULI THEORY YURI J. F. SULYMA Slogan 0.1. Groupoids + Sites = Stacks 1. Groupoids Definition 1.1. Let G be a discrete group acting on a set. Let /G be the category with objects the elements of
More informationHOMOTOPY THEORY OF MODULES OVER OPERADS AND NONΣ OPERADS IN MONOIDAL MODEL CATEGORIES
HOMOTOPY THEORY OF MODULES OVER OPERADS AND NONΣ OPERADS IN MONOIDAL MODEL CATEGORIES JOHN E. HARPER Abstract. We establish model category structures on algebras and modules over operads and nonσ operads
More informationFOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25
FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25 RAVI VAKIL CONTENTS 1. Quasicoherent sheaves 1 2. Quasicoherent sheaves form an abelian category 5 We began by recalling the distinguished affine base. Definition.
More informationSolutions to some of the exercises from Tennison s Sheaf Theory
Solutions to some of the exercises from Tennison s Sheaf Theory Pieter Belmans June 19, 2011 Contents 1 Exercises at the end of Chapter 1 1 2 Exercises in Chapter 2 6 3 Exercises at the end of Chapter
More informationNotes on the definitions of group cohomology and homology.
Notes on the definitions of group cohomology and homology. Kevin Buzzard February 9, 2012 VERY sloppy notes on homology and cohomology. Needs work in several places. Last updated 3/12/07. 1 Derived functors.
More informationSECTION 5: EILENBERG ZILBER EQUIVALENCES AND THE KÜNNETH THEOREMS
SECTION 5: EILENBERG ZILBER EQUIVALENCES AND THE KÜNNETH THEOREMS In this section we will prove the Künneth theorem which in principle allows us to calculate the (co)homology of product spaces as soon
More informationRecall: a mapping f : A B C (where A, B, C are Rmodules) is called Rbilinear if f is Rlinear in each coordinate, i.e.,
23 Hom and We will do homological algebra over a fixed commutative ring R. There are several good reasons to take a commutative ring: Left Rmodules are the same as right Rmodules. [In general a right
More informationFormal power series rings, inverse limits, and Iadic completions of rings
Formal power series rings, inverse limits, and Iadic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely
More informationWhat is an indcoherent sheaf?
What is an indcoherent sheaf? Harrison Chen March 8, 2018 0.1 Introduction All algebras in this note will be considered over a field k of characteristic zero (an assumption made in [Ga:IC]), so that we
More informationModules over a Ringed Space
Modules over a Ringed Space Daniel Murfet October 5, 2006 In these notes we collect some useful facts about sheaves of modules on a ringed space that are either left as exercises in [Har77] or omitted
More informationMath 210B. Profinite group cohomology
Math 210B. Profinite group cohomology 1. Motivation Let {Γ i } be an inverse system of finite groups with surjective transition maps, and define Γ = Γ i equipped with its inverse it topology (i.e., the
More informationDERIVED CATEGORIES OF STACKS. Contents 1. Introduction 1 2. Conventions, notation, and abuse of language The lisseétale and the flatfppf sites
DERIVED CATEGORIES OF STACKS Contents 1. Introduction 1 2. Conventions, notation, and abuse of language 1 3. The lisseétale and the flatfppf sites 1 4. Derived categories of quasicoherent modules 5
More informationThe Van Kampen theorem
The Van Kampen theorem Omar Antolín Camarena Contents 1 The van Kampen theorem 1 1.1 Version for the full fundamental groupoid.................... 2 1.2 Version for a subset of the base points.....................
More informationALGEBRA HW 3 CLAY SHONKWILER
ALGEBRA HW 3 CLAY SHONKWILER (a): Show that R[x] is a flat Rmodule. 1 Proof. Consider the set A = {1, x, x 2,...}. Then certainly A generates R[x] as an Rmodule. Suppose there is some finite linear combination
More informationSheaves. S. Encinas. January 22, 2005 U V. F(U) F(V ) s s V. = s j Ui Uj there exists a unique section s F(U) such that s Ui = s i.
Sheaves. S. Encinas January 22, 2005 Definition 1. Let X be a topological space. A presheaf over X is a functor F : Op(X) op Sets, such that F( ) = { }. Where Sets is the category of sets, { } denotes
More informationThe positive complete model structure and why we need it
The positive complete model structure and why we need it Hood Chatham Alan told us in his talk about what information we can get about the homotopical structure of S G directly. In particular, he built
More informationLOCALIZATIONS, COLOCALIZATIONS AND NON ADDITIVE OBJECTS
LOCALIZATIONS, COLOCALIZATIONS AND NON ADDITIVE OBJECTS GEORGE CIPRIAN MODOI Abstract. Given two arbitrary categories, a pair of adjoint functors between them induces three pairs of full subcategories,
More informationCHAPTER I.2. BASICS OF DERIVED ALGEBRAIC GEOMETRY
CHAPTER I.2. BASICS OF DERIVED ALGEBRAIC GEOMETRY Contents Introduction 2 0.1. Why prestacks? 2 0.2. What do we say about prestacks? 3 0.3. What else is done in this Chapter? 5 1. Prestacks 6 1.1. The
More information1 Replete topoi. X = Shv proét (X) X is locally weakly contractible (next lecture) X is replete. D(X ) is left complete. K D(X ) we have R lim
Reference: [BS] Bhatt, Scholze, The proétale topology for schemes In this lecture we consider replete topoi This is a nice class of topoi that include the proétale topos, and whose derived categories
More informationAlgebraic Geometry Spring 2009
MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry
More informationMATH 101A: ALGEBRA I PART A: GROUP THEORY 39
MAT 101A: ALEBRA I PART A: ROUP TEORY 39 11. Categorical limits (Two lectures by Ivan orozov. Notes by Andrew ainer and Roger Lipsett. [Comments by Kiyoshi].) We first note that what topologists call the
More informationare additive in each variable. Explicitly, the condition on composition means that given a diagram
1. Abelian categories Most of homological algebra can be carried out in the setting of abelian categories, a class of categories which includes on the one hand all categories of modules and on the other
More informationSupplementary Notes October 13, On the definition of induced representations
On the definition of induced representations 18.758 Supplementary Notes October 13, 2011 1. Introduction. Darij Grinberg asked in class Wednesday about why the definition of induced representation took
More informationa (b + c) = a b + a c
Chapter 1 Vector spaces In the Linear Algebra I module, we encountered two kinds of vector space, namely real and complex. The real numbers and the complex numbers are both examples of an algebraic structure
More informationGENERALIZED ABSTRACT NONSENSE: CATEGORY THEORY AND ADJUNCTIONS
GENERALIZED ABSTRACT NONSENSE: CATEGORY THEORY AND ADJUNCTIONS CHRIS HENDERSON Abstract. This paper will move through the basics o category theory, eventually deining natural transormations and adjunctions
More informationPOSTNIKOV EXTENSIONS OF RING SPECTRA
POSTNIKOV EXTENSIONS OF RING SPECTRA DANIEL DUGGER AND BROOKE SHIPLEY Abstract. We give a functorial construction of kinvariants for ring spectra, and use these to classify extensions in the Postnikov
More information