A CENTURY OF TAUBERIAN THEORY. david borwein

Size: px
Start display at page:

Download "A CENTURY OF TAUBERIAN THEORY. david borwein"

Transcription

1 A CENTURY OF TAUBERIAN THEORY david borwein Abstract. A narrow path is cut through the jungle of results which started with Tauber s corrected converse of Abel s theorem that if a n = l, then a n x n l as x 1. 1

2 Just over a century ago, in 1897, Tauber proved the following corrected converse of Abel s theorem: Theorem T. If a n x n l as x 1, and (T ) na n = o(1), then a n = l. Subsequently Hardy and Littlewood proved numerous other such converse theorems, and they coined the term Tauberian to describe them. In summability language Theorem T can be expressed as: If a n = l (A), where A denotes the Abel summability method, and if the Tauberian condition (T ) holds, then a n = l. The simplest example of an Abel summable series that is not convergent is given by a n := ( 1) n, for which a n = 1 2 (A). 2

3 Tauber s innocent looking theorem was the start of a veritable Tauberian jungle of results which Korevaar, in a recent book, made a very worthwhile effort to organize and present in a coherent manner. The book s 483 pages are densely packed and there are around 8 references. Rather than attempting the impossible task of giving such a comprehensive description of the jungle in the course of a short talk, I will cut a reasonably narrow path through part of it, touching on some of the key results. In 1914 Hardy and Littlewood proved the following generalization of Theorem T in which the strong two-sided Tauberian condition (T ) is replaced by the much weaker one-sided condition (T 1 ): Theorem H-L. If a n x n l as x 1, and (T 1 ) na n C, a positive constant, then a n = l. Note that by changing sign throughout, the Tauberian condition (T 1 ) could be expressed as na n C. 3

4 An interesting, and non-trivial, illustration of the potency of Theorem H-L, is a proof that the series n=1 1 n z, which is absolutely convergent and defines the Riemann zeta function ζ(z) when Rz >1, is not Abel summable on the line z =1+it. This amounts to observing that n=1 1 n 1+it cannot be Abel summable, for if it were Theorem H-L (or even a weaker two-sided version of it) would imply that the series is actually convergent, which it cannot be since Hardy has shown that, for fixed t, N n=1 1 n 1+it = i + l + o(1) as N, tn it where l is finite and independent of N. In fact l turns out to be ζ(1+it). 4

5 Karamata simplified Hardy and Littlewood s proof of Theorem H-L in 193, and in 1952 Wielandt elegantly modified Karamata s proof as follows: Suppose, without loss in generality, that a n x n asx 1. Let F be the linear space of real functions f for which a n f(x n ) asx 1. Then every real polynomial p with p() = is in F. Let g := χ [1/2,1], the characteristic function of [1/2, 1]. Given ε >, there are real polynomials p 1, p 2 with p 1 () = p 2 () = and p 1 (1) = p 2 (1) such that p 1 (x) g(x) p 2 (x) for x 1, and 1 p 2 (t) p 1 (t) dt < ε t(1 t) C. Then, by (T 1 ), a n g(x n ) a n p 1 (x n ) C = C n=1 n=1 p 2 (x n ) p 1 (x n ) n x n q(x n ), x n (1 x n ) q(x n ) C (1 x) n where q(x) := p 2(x) p 1 (x) x(1 x) 5 =: m b k x k. k=

6 Further, as x 1, (1 x) x n q(x n )= m k= b k 1 x 1 x m k+1 k= b k k +1 = 1 q(t) dt < ε C. Hence and likewise lim sup x 1 lim inf x 1 a n g(x n ) <ε, a n g(x n ) > ε. It follows that g F, and therefore, for N = log 2/ log x, a n g(x n )= N a n asx 1. 6

7 Another proof of Theorem H-L is by means of Wiener s powerful Tauberian theorem involving Fourier transforms which he published in 1932: Theorem W. If K L(, ), φ L (, ), e itx K(t) dt x (, ), and then, H L(, ), K(x t)φ(t) dt = o(1) as x, (1) H(x t)φ(t) dt = o(1) as x. 7

8 To prove Theorem H-L with l = by means of Theorem W, let s(x) := a n, and F (x) := a n x n. n x Then, by hypothesis, F (x) =o(1) as x 1, and it follows (fairly easily) from this and (T 1 ) that s(x) =O(1), and hence that, for t>, F (e t )= a n e nt = e tx ds(x) =t e tx s(x) dx. Now take φ(x) :=s(e x ) and K(x) := exp( x e x ). Then K(x t)φ(t) dt = F ( exp( e x ) ) = o(1) as x, and, x (, ), e itx K(t) dt = u ix e u du = Γ(1 + ix). Further, φ(x) = O(1), and it follows from (T 1 ) that, given δ>, x such that φ(y) φ(x) 2δ for x x y x + δ. Taking H := δ 1 χ [,δ] and then H := δ 1 χ [ δ,] in (1), we obtain respectively lim sup x φ(x) 2δ and lim inf x 8 φ(x) 2δ,

9 from which it follows that φ(x) and hence that s(x) as x. Wiener s theorem yields Tauberian theorems for many standard summability methods. Karamata proved various Tauberian theorems, the most famous being the following one about Laplace transforms which he proved in 1931: 9

10 Theorem K. Let A be a non-decreasing, unbounded function on [, ) with A(), and let L be a slowly varying function (i.e., t >, L(xt)/L(x) 1 as x ). Then, for σ, B(x) := e t/x da(t) x σ L(x) as x (i.e., B is regularly varying with index σ) if and only if A(x) xσ L(x) as x. Γ(1 + σ) From this theorem Karamata derived: Theorem K 1. Let A be a non-decreasing, unbounded and regularly varying function on [, ) with A(), and let the function s be continuous and bounded below on [, ). If (2) then (3) e yt s(t) da(t) l 1 A(x) x e yt da(t) as y +, s(t) da(t) l as x. This is also a Tauberian theorem since (3) (2) without the one-sided boundedness condition on s. It follows from a theorem established by Korenblum in 1955 that the condition in Theorem K 1 that A be regularly varying can be replaced by the weaker condition A(y) (4) A(x) 1 when y 1, y>x, x (i.e., log A(x) is slowly oscillating). From this extension of Theorem K 1, I was able to prove: 1

11 Theorem DB. Let A be a non-decreasing, unbounded and function on [, ) with A(), and let the function s be continuous [, ). If (2) and (4) are satisfied, and in addition (5) lim inf{s(y) s(x)} when y x 1, y>x, then s(x) l as x. The proof uses a variant of a method developed by Vijayaraghavan in 1926 to first deduce that s(x) is bounded. 11

12 Theorem DB can be specialized by taking A(x) :=n for n x<n+1,, 1,..., and s(n) :=s n := n a k, k= to obtain as a corollary the following result which Schmidt established in 1925: Corollary. If (6) and s n e ny l e ny = l as y + 1 e y (7) lim inf(s m s n ) when m n 1, m>n (i.e., s n is slowly decreasing), then s n l. Note that (6) is equivalent to (1 x) s n x n = a n x n l as x 1, and that na n > C (7), so that the Corollary generalizes Theorem H-L. 12

13 Another classical Tauberian result concerns the Cesàro method C α,α> 1, and the Borel method B defined by: if 1 ( n+α n ) k= a n = l (C α ), n ( ) k + α a n k l as n ; k a n = l (B), or s n l (B), if e x s n x n n! l as x, where s n := n a k. k= 13

14 Theorem B. If a n = l (B), and (T 2 ) then nan n r C, r, a n = l(c 2r ). In 196 Rajagopal proved a version of this result with a weaker Tauberian condition than (T 2 ). The case r = of the result with (T 2 ) replaced by the stronger two-sided condition na n = O(1) was proved by Hardy and Littlewood in In 1925 Schmidt showed in the case r = that (T 2 ) can be relaxed to lim inf(s m s n ) when < m n, n. Recently Kratz and I established a quantatitive version of Vijayaraghavan s classical 1926 result and used it to give a short proof of the case r = of Theorem B. It is worth noting that though summability C (i.e., convergence) implies summability B, summability C α with α> does not in general imply summability B. Various Tauberian theorems have been used in assorted proofs of the prime number theorem. A particularly interesting one is the following one proved in 1931 by Ikehara, a student and colleague of Wiener s: 14

15 Theorem I-W. Suppose that the function F has the following properties: (i) For Rz >1, F(z) = e zt A(t) dt, where A is a nondecreasing function with A(). (ii) For Rz >1, z 1,F(z) =G(z) + 1, where G(z) z 1 is continuous on the half-plane Rz 1. Then e t A(t) 1 as t. The prime number theorem can be proved with the aid of Theorem I-W as follows: Let A(t) :=ψ(e t ), where ψ(x) := log p. p n x The p s in the sum defining the Chebyshev function ψ are the odd primes, and it is known that the prime number theorem, viz., π(x) := x as x, log x p x is equivalent to ψ(x) x as x. For Rz >1, we have that F (z) = e zt A(t) dt = 1 u z 1 ψ(u) du = ζ (z) zζ(z) = G(z)+ 1 z 1, the function G satisfying the requirements of Theorem I-W since the Riemann zeta function ζ(z) has no zeros in the half plane Rz 1 and is holomorphic in the whole plane, except for a simple pole at z = 1 with residue 1. Hence, by Theorem I-W, e t ψ(e t ) 1ast and so ψ(x) x as x. 15

16 References 1. D. Borwein, Tauberian theorems concerning Laplace transforms and Dirichlet series, Arch. Math. (Basel) 53 (1989), D. Borwein and W. Kratz, A one-sided Tauberian theorem for the Borel Summability method, J.Math. Analysis and Applications 293 (24), G.H. Hardy, Divergent Series, Oxford, G.H. Hardy and J.E. Littlewood, Tauberian theorems concerning power series and Dirichlet s series whose coefficients are positive, Proc. London Math. Soc. (2) 13 (1914), G.H. Hardy and J.E. Littlewood, Theorems concerning the summability of series by Borel s exponential method, Rend. Palermo 41 (1916), S. Ikehara, An extension of Landau s theorem in the analytic theory of numbers, J. Math. and Phys. M.I.T. (2) 1 (1931), J. Karamata, Über die Hardy-Littlewoodschen Umkehrungen des Abelschen Stetigkeitssatzes, Math. Z. 32 (193), J. Karamata, Neuer Beweis und Verallgemeinerung der Tauberschen Sätze, welche die Laplacesche Transformation betreffen, Math. Z. 164 (1931), B. Korenblum, On the asymptotic behaviour of Laplace integrals near the boundary of a region of convergence (Russian), Dokl. Akad. SSSR (NS) 14 (1955), J. Korevaar, Tauberian Theory, a century of developments, Springer,

17 11. R. Schmidt, Über divergente Folgen und lineare Mittelbildungen, Math. Z. 22 (1925), R. Schmidt, Umkersätze des Borelschen Summierungsverfahren, Schriften Köningsberg 1 (1925), A. Tauber, Ein Satz aus der Theorie der uneindliche Reihen, Monatsh. Math. u. Phys. 8 (1897), T. Vijayaraghavan, A Tauberian theorem, J. London Math. Soc. (1) 1 (1926), T. Vijayaraghavan, A theorem concerning the summability of series by Borel s method, Proc. London Math. Soc. (2) 27 (1928), D.V. Widder, The Laplace Transform, Princeton, H. Wielandt, Zur Umkehrung des Abelschen Stetigkeitssatzes, J. Reine Angew Math. 56 (1952), N. Wiener, Tauberian theorems, Annuls of Math. 33 (1932),

JASSON VINDAS AND RICARDO ESTRADA

JASSON VINDAS AND RICARDO ESTRADA A QUICK DISTRIBUTIONAL WAY TO THE PRIME NUMBER THEOREM JASSON VINDAS AND RICARDO ESTRADA Abstract. We use distribution theory (generalized functions) to show the prime number theorem. No tauberian results

More information

Abelian and Tauberian Theorems: Philosophy

Abelian and Tauberian Theorems: Philosophy : Philosophy Bent E. Petersen Math 515 Fall 1998 Next quarter, in Mth 516, we will discuss the Tauberian theorem of Ikehara and Landau and its connection with the prime number theorem (among other things).

More information

In 1826, Abel proved the following result for real power series. Let f(x) =

In 1826, Abel proved the following result for real power series. Let f(x) = Chapter 6 Tauberian theorems 6. Introduction In 826, Abel proved the following result for real power series. Let f(x) = n=0 a nx n be a power series with coefficients a n R that converges on the real interval

More information

(Almost) Real Proof of the Prime Number Theorem

(Almost) Real Proof of the Prime Number Theorem (Almost Real Proof of the Prime Number Theorem Michael Müger Institute for Mathematics, Astrophysics and Particle Physics Radboud University Nijmegen, The Netherlands April 2, 27 Abstract We explain a

More information

APPLICATIONS OF A THEOREM OF O. SZASZ FOR THE PRODUCT OF CESARO AND LAPLACE TRANSFORMS

APPLICATIONS OF A THEOREM OF O. SZASZ FOR THE PRODUCT OF CESARO AND LAPLACE TRANSFORMS APPLICATIONS OF A THEOREM OF O. SZASZ FOR THE PRODUCT OF CESARO AND LAPLACE TRANSFORMS C. T. RAJAGOPAL AND AMNON JAKIMOVSKI (AMIR) TO THE LATE PROFESSOR OTTO SZASZ 1. Introduction and notation. Let s(u)

More information

Some Fun with Divergent Series

Some Fun with Divergent Series Some Fun with Divergent Series 1. Preliminary Results We begin by examining the (divergent) infinite series S 1 = 1 + 2 + 3 + 4 + 5 + 6 + = k=1 k S 2 = 1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + = k=1 k 2 (i)

More information

ECONOMETRIC INSTITUTE ON FUNCTIONS WITH SMALL DIFFERENCES. J.L. GELUK and L. de H ;Di:710N OF REPORT 8006/E

ECONOMETRIC INSTITUTE ON FUNCTIONS WITH SMALL DIFFERENCES. J.L. GELUK and L. de H ;Di:710N OF REPORT 8006/E ECONOMETRIC INSTITUTE ON FUNCTIONS WITH SMALL DIFFERENCES J.L. GELUK and L. de H ;Di:710N OF i.gt:icultupu/0 E1C771'40MiCO Lf9..-Vet;r1 ) I. REPORT 8006/E ERASMUS UNIVERSITY ROTTERDAM P.O. BOX 1738. 3000

More information

Theorem 1.1 (Prime Number Theorem, Hadamard, de la Vallée Poussin, 1896). let π(x) denote the number of primes x. Then x as x. log x.

Theorem 1.1 (Prime Number Theorem, Hadamard, de la Vallée Poussin, 1896). let π(x) denote the number of primes x. Then x as x. log x. Chapter 1 Introduction 1.1 The Prime Number Theorem In this course, we focus on the theory of prime numbers. We use the following notation: we write f( g( as if lim f(/g( = 1, and denote by log the natural

More information

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem Chapter 1 Introduction to prime number theory 1.1 The Prime Number Theorem In the first part of this course, we focus on the theory of prime numbers. We use the following notation: we write f g as if lim

More information

NOTES Edited by William Adkins. On Goldbach s Conjecture for Integer Polynomials

NOTES Edited by William Adkins. On Goldbach s Conjecture for Integer Polynomials NOTES Edited by William Adkins On Goldbach s Conjecture for Integer Polynomials Filip Saidak 1. INTRODUCTION. We give a short proof of the fact that every monic polynomial f (x) in Z[x] can be written

More information

SOME INEQUALITIES RELATED TO ABEL'S METHOD OF SUMMATION

SOME INEQUALITIES RELATED TO ABEL'S METHOD OF SUMMATION SOME INEQUALITIES RELATED TO ABEL'S METHOD OF SUMMATION 1. It is well known that if W. B. PENNINGTON (1) x = e-llu, then there exists a constant p such that (2) lim sup 22 a"xn 22 a" ^ p lim sup nan for

More information

11.8 Power Series. Recall the geometric series. (1) x n = 1+x+x 2 + +x n +

11.8 Power Series. Recall the geometric series. (1) x n = 1+x+x 2 + +x n + 11.8 1 11.8 Power Series Recall the geometric series (1) x n 1+x+x 2 + +x n + n As we saw in section 11.2, the series (1) diverges if the common ratio x > 1 and converges if x < 1. In fact, for all x (

More information

Continuous functions that are nowhere differentiable

Continuous functions that are nowhere differentiable Continuous functions that are nowhere differentiable S. Kesavan The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai - 600113. e-mail: kesh @imsc.res.in Abstract It is shown that the existence

More information

Riemann s Zeta Function and the Prime Number Theorem

Riemann s Zeta Function and the Prime Number Theorem Riemann s Zeta Function and the Prime Number Theorem Dan Nichols nichols@math.umass.edu University of Massachusetts Dec. 7, 2016 Let s begin with the Basel problem, first posed in 1644 by Mengoli. Find

More information

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem Chapter 1 Introduction to prime number theory 1.1 The Prime Number Theorem In the first part of this course, we focus on the theory of prime numbers. We use the following notation: we write f( g( as if

More information

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1.

ζ (s) = s 1 s {u} [u] ζ (s) = s 0 u 1+sdu, {u} Note how the integral runs from 0 and not 1. Problem Sheet 3. From Theorem 3. we have ζ (s) = + s s {u} u+sdu, (45) valid for Res > 0. i) Deduce that for Res >. [u] ζ (s) = s u +sdu ote the integral contains [u] in place of {u}. ii) Deduce that for

More information

On distribution functions of ξ(3/2) n mod 1

On distribution functions of ξ(3/2) n mod 1 ACTA ARITHMETICA LXXXI. (997) On distribution functions of ξ(3/2) n mod by Oto Strauch (Bratislava). Preliminary remarks. The question about distribution of (3/2) n mod is most difficult. We present a

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

On a diophantine inequality involving prime numbers

On a diophantine inequality involving prime numbers ACTA ARITHMETICA LXI.3 (992 On a diophantine inequality involving prime numbers by D. I. Tolev (Plovdiv In 952 Piatetski-Shapiro [4] considered the following analogue of the Goldbach Waring problem. Assume

More information

Functions preserving slowly oscillating double sequences

Functions preserving slowly oscillating double sequences An Ştiinţ Univ Al I Cuza Iaşi Mat (NS) Tomul LXII, 2016, f 2, vol 2 Functions preserving slowly oscillating double sequences Huseyin Cakalli Richard F Patterson Received: 25IX2013 / Revised: 15IV2014 /

More information

Math 212a (Fall 2013) Yum-Tong Siu 1. Tauberian Theorems

Math 212a (Fall 2013) Yum-Tong Siu 1. Tauberian Theorems Math 22a (Fall 203) Yum-Tong Siu Tauberian Theorems For a series a n of comple numbers, the convergence statement a n = A means that the n-th partial sum s n = n k=0 a k as a sequence of comple numbers

More information

THE ABEL-TYPE TRANSFORMATIONS INTO l

THE ABEL-TYPE TRANSFORMATIONS INTO l Internat. J. Math. & Math. Sci. Vol. 22, No. 4 1999) 775 784 S 161-1712 99 22775-5 Electronic Publishing House THE ABEL-TYPE TRANSFORMATIONS INTO l MULATU LEMMA Received 24 November 1997 and in revised

More information

Dedicated to Professor Milosav Marjanović on the occasion of his 80th birthday

Dedicated to Professor Milosav Marjanović on the occasion of his 80th birthday THE TEACHING OF MATHEMATICS 2, Vol. XIV, 2, pp. 97 6 SOME CLASSICAL INEQUALITIES AND THEIR APPLICATION TO OLYMPIAD PROBLEMS Zoran Kadelburg Dedicated to Professor Milosav Marjanović on the occasion of

More information

1 Euler s idea: revisiting the infinitude of primes

1 Euler s idea: revisiting the infinitude of primes 8.785: Analytic Number Theory, MIT, spring 27 (K.S. Kedlaya) The prime number theorem Most of my handouts will come with exercises attached; see the web site for the due dates. (For example, these are

More information

ON THE DIVISOR FUNCTION IN SHORT INTERVALS

ON THE DIVISOR FUNCTION IN SHORT INTERVALS ON THE DIVISOR FUNCTION IN SHORT INTERVALS Danilo Bazzanella Dipartimento di Matematica, Politecnico di Torino, Italy danilo.bazzanella@polito.it Autor s version Published in Arch. Math. (Basel) 97 (2011),

More information

SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS

SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS STEVEN H. WEINTRAUB ABSTRACT. We present a number of classical proofs of the irreducibility of the n-th cyclotomic polynomial Φ n (x).

More information

EXTENDED RECIPROCAL ZETA FUNCTION AND AN ALTERNATE FORMULATION OF THE RIEMANN HYPOTHESIS. M. Aslam Chaudhry. Received May 18, 2007

EXTENDED RECIPROCAL ZETA FUNCTION AND AN ALTERNATE FORMULATION OF THE RIEMANN HYPOTHESIS. M. Aslam Chaudhry. Received May 18, 2007 Scientiae Mathematicae Japonicae Online, e-2009, 05 05 EXTENDED RECIPROCAL ZETA FUNCTION AND AN ALTERNATE FORMULATION OF THE RIEMANN HYPOTHESIS M. Aslam Chaudhry Received May 8, 2007 Abstract. We define

More information

Alan Turing and the Riemann hypothesis. Andrew Booker

Alan Turing and the Riemann hypothesis. Andrew Booker Alan Turing and the Riemann hypothesis Andrew Booker Introduction to ζ(s) and the Riemann hypothesis The Riemann ζ-function is defined for a complex variable s with real part R(s) > 1 by ζ(s) := n=1 1

More information

The Prime Number Theorem

The Prime Number Theorem Chapter 3 The Prime Number Theorem This chapter gives without proof the two basic results of analytic number theory. 3.1 The Theorem Recall that if f(x), g(x) are two real-valued functions, we write to

More information

Gauss and Riemann versus elementary mathematics

Gauss and Riemann versus elementary mathematics 777-855 826-866 Gauss and Riemann versus elementary mathematics Problem at the 987 International Mathematical Olympiad: Given that the polynomial [ ] f (x) = x 2 + x + p yields primes for x =,, 2,...,

More information

(i) tn = f î {nk)tk(i - ty-\dx{t) (»>o).

(i) tn = f î {nk)tk(i - ty-\dx{t) (»>o). PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 102, Number 1, January 1988 A TAUBERIAN THEOREM FOR HAUSDORFF METHODS BRIAN KUTTNER AND MANGALAM R. PARAMESWARAN (Communicated by R. Daniel Mauldin)

More information

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99 ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS N. HEGYVÁRI, F. HENNECART AND A. PLAGNE Abstract. We study the gaps in the sequence of sums of h pairwise distinct elements

More information

International Journal of Pure and Applied Mathematics Volume 60 No ,

International Journal of Pure and Applied Mathematics Volume 60 No , International Journal of Pure and Applied Mathematics Volume 60 No. 3 200, 259-267 ON CERTAIN CLASS OF SZÁSZ-MIRAKYAN OPERATORS IN EXPONENTIAL WEIGHT SPACES Lucyna Rempulska, Szymon Graczyk 2,2 Institute

More information

Introduction to Tauberian theory A distributional approach. Jasson Vindas Department of Mathematics Ghent University, Belgium

Introduction to Tauberian theory A distributional approach. Jasson Vindas Department of Mathematics Ghent University, Belgium Introduction to Tauberian theory A distributional approach Jasson Vindas Department of Mathematics Ghent University, Belgium jvindas@cage.ugent.be Preface These are lecture notes of a series of lectures

More information

The spectral zeta function

The spectral zeta function The spectral zeta function Bernd Ammann June 4, 215 Abstract In this talk we introduce spectral zeta functions. The spectral zeta function of the Laplace-Beltrami operator was already introduced by Minakshisundaram

More information

Convergence of Some Divergent Series!

Convergence of Some Divergent Series! Convergence of Some Divergent Series! T. Muthukumar tmk@iitk.ac.in 9 Jun 04 The topic of this article, the idea of attaching a finite value to divergent series, is no longer a purely mathematical exercise.

More information

EXTENSIONS OF THE BLOCH PÓLYA THEOREM ON THE NUMBER OF REAL ZEROS OF POLYNOMIALS

EXTENSIONS OF THE BLOCH PÓLYA THEOREM ON THE NUMBER OF REAL ZEROS OF POLYNOMIALS EXTENSIONS OF THE BLOCH PÓLYA THEOREM ON THE NUMBER OF REAL ZEROS OF POLYNOMIALS Tamás Erdélyi Abstract. We prove that there are absolute constants c 1 > 0 and c 2 > 0 for every {a 0, a 1,..., a n } [1,

More information

Gap Between Consecutive Primes By Using A New Approach

Gap Between Consecutive Primes By Using A New Approach Gap Between Consecutive Primes By Using A New Approach Hassan Kamal hassanamal.edu@gmail.com Abstract It is nown from Bertrand s postulate, whose proof was first given by Chebyshev, that the interval [x,

More information

RIEMANN HYPOTHESIS: A NUMERICAL TREATMENT OF THE RIESZ AND HARDY-LITTLEWOOD WAVE

RIEMANN HYPOTHESIS: A NUMERICAL TREATMENT OF THE RIESZ AND HARDY-LITTLEWOOD WAVE ALBANIAN JOURNAL OF MATHEMATICS Volume, Number, Pages 6 79 ISSN 90-5: (electronic version) RIEMANN HYPOTHESIS: A NUMERICAL TREATMENT OF THE RIESZ AND HARDY-LITTLEWOOD WAVE STEFANO BELTRAMINELLI AND DANILO

More information

Random Bernstein-Markov factors

Random Bernstein-Markov factors Random Bernstein-Markov factors Igor Pritsker and Koushik Ramachandran October 20, 208 Abstract For a polynomial P n of degree n, Bernstein s inequality states that P n n P n for all L p norms on the unit

More information

REGULARIZATION OF DIVERGENT SERIES AND TAUBERIAN THEOREMS

REGULARIZATION OF DIVERGENT SERIES AND TAUBERIAN THEOREMS REGULARIZATION OF DIVERGENT SERIES AND TAUBERIAN THEOREMS JACK ENYEART Contents Introduction 1 1 The Basics 2 2 Examples of summation techniques 4 3 Abelian theorems 13 4 Tauberian theorems 15 References

More information

February Fourier talks, Zeros of some self-reciprocal polynomials

February Fourier talks, Zeros of some self-reciprocal polynomials February Fourier talks, 2011 Zeros of some self-reciprocal polynomials D. Joyner, USNA FFT 2011 at the Norbert Wiener Center, UMCP February 15, 2011 D. Joyner, USNA Zeros of some self-reciprocal polynomials

More information

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote

h(x) lim H(x) = lim Since h is nondecreasing then h(x) 0 for all x, and if h is discontinuous at a point x then H(x) > 0. Denote Real Variables, Fall 4 Problem set 4 Solution suggestions Exercise. Let f be of bounded variation on [a, b]. Show that for each c (a, b), lim x c f(x) and lim x c f(x) exist. Prove that a monotone function

More information

Riemann s ζ-function

Riemann s ζ-function Int. J. Contemp. Math. Sciences, Vol. 4, 9, no. 9, 45-44 Riemann s ζ-function R. A. Mollin Department of Mathematics and Statistics University of Calgary, Calgary, Alberta, Canada, TN N4 URL: http://www.math.ucalgary.ca/

More information

CALCULUS JIA-MING (FRANK) LIOU

CALCULUS JIA-MING (FRANK) LIOU CALCULUS JIA-MING (FRANK) LIOU Abstract. Contents. Power Series.. Polynomials and Formal Power Series.2. Radius of Convergence 2.3. Derivative and Antiderivative of Power Series 4.4. Power Series Expansion

More information

APPROXIMATION BY MODIFIED SZÁSZ-MIRAKYAN OPERATORS

APPROXIMATION BY MODIFIED SZÁSZ-MIRAKYAN OPERATORS APPROXIMATION BY MODIFIED SZÁSZ-MIRAKYAN OPERATORS Received: 23 Deceber, 2008 Accepted: 28 May, 2009 Counicated by: L. REMPULSKA AND S. GRACZYK Institute of Matheatics Poznan University of Technology ul.

More information

The zeros of the derivative of the Riemann zeta function near the critical line

The zeros of the derivative of the Riemann zeta function near the critical line arxiv:math/07076v [mathnt] 5 Jan 007 The zeros of the derivative of the Riemann zeta function near the critical line Haseo Ki Department of Mathematics, Yonsei University, Seoul 0 749, Korea haseoyonseiackr

More information

A Simple Counterexample to Havil s Reformulation of the Riemann Hypothesis

A Simple Counterexample to Havil s Reformulation of the Riemann Hypothesis A Simple Counterexample to Havil s Reformulation of the Riemann Hypothesis Jonathan Sondow 209 West 97th Street New York, NY 0025 jsondow@alumni.princeton.edu The Riemann Hypothesis (RH) is the greatest

More information

Proc. A. Razmadze Math. Inst. 151(2009), V. Kokilashvili

Proc. A. Razmadze Math. Inst. 151(2009), V. Kokilashvili Proc. A. Razmadze Math. Inst. 151(2009), 129 133 V. Kokilashvili BOUNDEDNESS CRITERION FOR THE CAUCHY SINGULAR INTEGRAL OPERATOR IN WEIGHTED GRAND LEBESGUE SPACES AND APPLICATION TO THE RIEMANN PROBLEM

More information

Zeros of the Riemann Zeta-Function on the Critical Line

Zeros of the Riemann Zeta-Function on the Critical Line Zeros of the Riemann Zeta-Function on the Critical Line D.R. Heath-Brown Magdalen College, Oxford It was shown by Selberg [3] that the Riemann Zeta-function has at least c log zeros on the critical line

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

TAUBERIAN THEOREM FOR HARMONIC MEAN OF STIELTJES TRANSFORMS AND ITS APPLICATIONS TO LINEAR DIFFUSIONS

TAUBERIAN THEOREM FOR HARMONIC MEAN OF STIELTJES TRANSFORMS AND ITS APPLICATIONS TO LINEAR DIFFUSIONS Kasahara, Y. and Kotani, S. Osaka J. Math. 53 (26), 22 249 TAUBERIAN THEOREM FOR HARMONIC MEAN OF STIELTJES TRANSFORMS AND ITS APPLICATIONS TO LINEAR DIFFUSIONS YUJI KASAHARA and SHIN ICHI KOTANI (Received

More information

Hilbert s Inequalities

Hilbert s Inequalities Hilbert s Inequalities 1. Introduction. In 1971, as an off shoot of my research on the Davenport Halberstam inequality involving well spaced numbers, I took the numbers to be equally spaced and was led

More information

Mathematical Association of America

Mathematical Association of America Mathematical Association of America http://www.jstor.org/stable/2975232. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at. http://www.jstor.org/page/info/about/policies/terms.jsp

More information

arxiv:math/ v2 [math.gm] 4 Oct 2000

arxiv:math/ v2 [math.gm] 4 Oct 2000 On Partitions of Goldbach s Conjecture arxiv:math/000027v2 [math.gm] 4 Oct 2000 Max See Chin Woon DPMMS, Cambridge University, Cambridge CB2 2BZ, UK WatchMyPrice Technologies, 200 West Evelyn Ave, Suite

More information

AN EASY GENERALIZATION OF EULER S THEOREM ON THE SERIES OF PRIME RECIPROCALS

AN EASY GENERALIZATION OF EULER S THEOREM ON THE SERIES OF PRIME RECIPROCALS AN EASY GENERALIZATION OF EULER S THEOREM ON THE SERIES OF PRIME RECIPROCALS PAUL POLLACK Abstract It is well-known that Euclid s argument can be adapted to prove the infinitude of primes of the form 4k

More information

The universality of quadratic L-series for prime discriminants

The universality of quadratic L-series for prime discriminants ACTA ARITHMETICA 3. 006) The universality of quadratic L-series for prime discriminants by Hidehiko Mishou Nagoya) and Hirofumi Nagoshi Niigata). Introduction and statement of results. For an odd prime

More information

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION PIOTR HAJ LASZ, JAN MALÝ Dedicated to Professor Bogdan Bojarski Abstract. We prove that if f L 1 R n ) is approximately differentiable a.e., then

More information

On integral representations of q-gamma and q beta functions

On integral representations of q-gamma and q beta functions On integral representations of -gamma and beta functions arxiv:math/3232v [math.qa] 4 Feb 23 Alberto De Sole, Victor G. Kac Department of Mathematics, MIT 77 Massachusetts Avenue, Cambridge, MA 239, USA

More information

Airy Function Zeroes Steven Finch. July 19, J 1 3

Airy Function Zeroes Steven Finch. July 19, J 1 3 Airy Function Zeroes Steven Finch July 9, 24 On the negative real axis (x

More information

arxiv: v22 [math.gm] 20 Sep 2018

arxiv: v22 [math.gm] 20 Sep 2018 O RIEMA HYPOTHESIS arxiv:96.464v [math.gm] Sep 8 RUIMIG ZHAG Abstract. In this work we present a proof to the celebrated Riemann hypothesis. In it we first apply the Plancherel theorem properties of the

More information

Twin primes (seem to be) more random than primes

Twin primes (seem to be) more random than primes Twin primes (seem to be) more random than primes Richard P. Brent Australian National University and University of Newcastle 25 October 2014 Primes and twin primes Abstract Cramér s probabilistic model

More information

An Asymptotic Formula for Goldbach s Conjecture with Monic Polynomials in Z[x]

An Asymptotic Formula for Goldbach s Conjecture with Monic Polynomials in Z[x] An Asymptotic Formula for Goldbach s Conjecture with Monic Polynomials in Z[x] Mark Kozek 1 Introduction. In a recent Monthly note, Saidak [6], improving on a result of Hayes [1], gave Chebyshev-type estimates

More information

SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH EXCEPTIONALLY FEW ZEROS

SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH EXCEPTIONALLY FEW ZEROS Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 23, 1998, 429 452 SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH EXCEPTIONALLY FEW ZEROS Gary G. Gundersen, Enid M. Steinbart, and

More information

On the representation of primes by polynomials (a survey of some recent results)

On the representation of primes by polynomials (a survey of some recent results) On the representation of primes by polynomials (a survey of some recent results) B.Z. Moroz 0. This survey article has appeared in: Proceedings of the Mathematical Institute of the Belarussian Academy

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

64 Garunk»stis and Laurin»cikas can not be satised for any polynomial P. S. M. Voronin [10], [12] obtained the functional independence of the Riemann

64 Garunk»stis and Laurin»cikas can not be satised for any polynomial P. S. M. Voronin [10], [12] obtained the functional independence of the Riemann PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 65 (79), 1999, 63 68 ON ONE HILBERT'S PROBLEM FOR THE LERCH ZETA-FUNCTION R. Garunk»stis and A. Laurin»cikas Communicated by Aleksandar Ivić

More information

Uniform convergence of N-dimensional Walsh Fourier series

Uniform convergence of N-dimensional Walsh Fourier series STUDIA MATHEMATICA 68 2005 Uniform convergence of N-dimensional Walsh Fourier series by U. Goginava Tbilisi Abstract. We establish conditions on the partial moduli of continuity which guarantee uniform

More information

ON THE NUMBER OF PAIRS OF INTEGERS WITH LEAST COMMON MULTIPLE NOT EXCEEDING x H. JAGER

ON THE NUMBER OF PAIRS OF INTEGERS WITH LEAST COMMON MULTIPLE NOT EXCEEDING x H. JAGER MATHEMATICS ON THE NUMBER OF PAIRS OF INTEGERS WITH LEAST COMMON MULTIPLE NOT EXCEEDING x BY H. JAGER (Communicated by Prof. J. PoPKEN at the meeting of March 31, 1962) In this note we shall derive an

More information

Syed Abbas. June 19th, 2009

Syed Abbas. June 19th, 2009 Almost Department of Mathematics and Statistics Indian Institute of Technology Kanpur, Kanpur, 208016, India June 19th, 2009 Harald Bohr Function Almost Bohr s early research was mainly concerned with

More information

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES INTRODUCTION TO REAL ANALYSIS II MATH 433 BLECHER NOTES. As in earlier classnotes. As in earlier classnotes (Fourier series) 3. Fourier series (continued) (NOTE: UNDERGRADS IN THE CLASS ARE NOT RESPONSIBLE

More information

The Continuing Story of Zeta

The Continuing Story of Zeta The Continuing Story of Zeta Graham Everest, Christian Röttger and Tom Ward November 3, 2006. EULER S GHOST. We can only guess at the number of careers in mathematics which have been launched by the sheer

More information

On Sidon sequences of even orders

On Sidon sequences of even orders ACTA ARITHMETICA LXIV.4 (1993 On Sidon sequences of even orders by Sheng Chen (San Marcos, TX Let h 2 be an integer. A set A of positive integers is called a B h - sequence if all sums a 1 +... + a h,

More information

Divergent Series: why = 1/12. Bryden Cais

Divergent Series: why = 1/12. Bryden Cais Divergent Series: why + + 3 + = /. Bryden Cais Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever.. H. Abel. Introduction The notion of convergence

More information

Universally divergent Fourier series via Landau s extremal functions

Universally divergent Fourier series via Landau s extremal functions Comment.Math.Univ.Carolin. 56,2(2015) 159 168 159 Universally divergent Fourier series via Landau s extremal functions Gerd Herzog, Peer Chr. Kunstmann Abstract. We prove the existence of functions f A(D),

More information

MATH GRE PREP: WEEK 2. (2) Which of the following is closest to the value of this integral:

MATH GRE PREP: WEEK 2. (2) Which of the following is closest to the value of this integral: MATH GRE PREP: WEEK 2 UCHICAGO REU 218 (1) What is the coefficient of y 3 x 6 in (1 + x + y) 5 (1 + x) 7? (A) 7 (B) 84 (C) 35 (D) 42 (E) 27 (2) Which of the following is closest to the value of this integral:

More information

THE LAPLACE TRANSFORM OF THE FOURTH MOMENT OF THE ZETA-FUNCTION. Aleksandar Ivić

THE LAPLACE TRANSFORM OF THE FOURTH MOMENT OF THE ZETA-FUNCTION. Aleksandar Ivić THE LAPLACE TRANSFORM OF THE FOURTH MOMENT OF THE ZETA-FUNCTION Aleksandar Ivić Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. (2), 4 48. Abstract. The Laplace transform of ζ( 2 +ix) 4 is investigated,

More information

On the Error Term for the Mean Value Associated With Dedekind Zeta-function of a Non-normal Cubic Field

On the Error Term for the Mean Value Associated With Dedekind Zeta-function of a Non-normal Cubic Field Λ44ΩΛ6fi Ψ ο Vol.44, No.6 05ffμ ADVANCES IN MAHEMAICS(CHINA) Nov., 05 doi: 0.845/sxjz.04038b On the Error erm for the Mean Value Associated With Dedekind Zeta-function of a Non-normal Cubic Field SHI Sanying

More information

Universal shifts and composition operators

Universal shifts and composition operators Universal shifts and composition operators Jonathan R. Partington and Elodie Pozzi Abstract It is shown that a large class of weighted shift operators T have the property that for every λ in the interior

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Analysis Comprehensive Exam Questions Fall 2008

Analysis Comprehensive Exam Questions Fall 2008 Analysis Comprehensive xam Questions Fall 28. (a) Let R be measurable with finite Lebesgue measure. Suppose that {f n } n N is a bounded sequence in L 2 () and there exists a function f such that f n (x)

More information

Continuous Functions on Metric Spaces

Continuous Functions on Metric Spaces Continuous Functions on Metric Spaces Math 201A, Fall 2016 1 Continuous functions Definition 1. Let (X, d X ) and (Y, d Y ) be metric spaces. A function f : X Y is continuous at a X if for every ɛ > 0

More information

VII.8. The Riemann Zeta Function.

VII.8. The Riemann Zeta Function. VII.8. The Riemann Zeta Function VII.8. The Riemann Zeta Function. Note. In this section, we define the Riemann zeta function and discuss its history. We relate this meromorphic function with a simple

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

An Abel-Tauber theorem for Fourier sine transforms

An Abel-Tauber theorem for Fourier sine transforms J. Math. Sci. Univ. Tokyo 2 (1995), 33 39. An Abel-Tauber theorem for Fourier sine transforms By Akihiko Inoue Abstract. We prove an Abel-Tauber theorem for Fourier sine transforms. It can be considered

More information

642 BOOK REVIEWS [September

642 BOOK REVIEWS [September 642 BOOK REVIEWS [September The reader specialist in topology or not will find particularly interesting the elementary proof of Brouwer's fixed-point theorem for closed w-cells and the use of this theorem

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE

FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE FUNCTIONAL ANALYSIS LECTURE NOTES: WEAK AND WEAK* CONVERGENCE CHRISTOPHER HEIL 1. Weak and Weak* Convergence of Vectors Definition 1.1. Let X be a normed linear space, and let x n, x X. a. We say that

More information

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim An idea how to solve some of the problems 5.2-2. (a) Does not converge: By multiplying across we get Hence 2k 2k 2 /2 k 2k2 k 2 /2 k 2 /2 2k 2k 2 /2 k. As the series diverges the same must hold for the

More information

David A. Stephens Department of Mathematics and Statistics McGill University. October 28, 2006

David A. Stephens Department of Mathematics and Statistics McGill University. October 28, 2006 556: MATHEMATICAL STATISTICS I COMPUTING THE HYPEBOLIC SECANT DISTIBUTION CHAACTEISTIC FUNCTION David A. Stephens Department of Mathematics and Statistics McGill University October 8, 6 Abstract We give

More information

Trotter s product formula for projections

Trotter s product formula for projections Trotter s product formula for projections Máté Matolcsi, Roman Shvydkoy February, 2002 Abstract The aim of this paper is to examine the convergence of Trotter s product formula when one of the C 0-semigroups

More information

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS

GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS LE MATEMATICHE Vol. LI (1996) Fasc. II, pp. 335347 GRAND SOBOLEV SPACES AND THEIR APPLICATIONS TO VARIATIONAL PROBLEMS CARLO SBORDONE Dedicated to Professor Francesco Guglielmino on his 7th birthday W

More information

Simultaneous Distribution of the Fractional Parts of Riemann Zeta Zeros

Simultaneous Distribution of the Fractional Parts of Riemann Zeta Zeros Simultaneous Distribution of the Fractional Parts of Riemann Zeta Zeros Kevin Ford, Xianchang Meng, and Alexandru Zaharescu arxiv:1511.06814v2 [math.n] 1 Sep 2016 Abstract In this paper, we investigate

More information

1.5 Approximate Identities

1.5 Approximate Identities 38 1 The Fourier Transform on L 1 (R) which are dense subspaces of L p (R). On these domains, P : D P L p (R) and M : D M L p (R). Show, however, that P and M are unbounded even when restricted to these

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

A Proof of the Riemann Hypothesis using Rouché s Theorem and an Infinite Subdivision of the Critical Strip.

A Proof of the Riemann Hypothesis using Rouché s Theorem and an Infinite Subdivision of the Critical Strip. A Proof of the Riemann Hypothesis using Rouché s Theorem an Infinite Subdivision of the Critical Strip. Frederick R. Allen ABSTRACT. Rouché s Theorem is applied to the critical strip to show that the only

More information

The Probability that Random Polynomials Are Relatively r-prime

The Probability that Random Polynomials Are Relatively r-prime The Probability that Random Polynomials Are Relatively r-prime Kent E. Morrison Department of Mathematics California Polytechnic State University San Luis Obispo, CA 93407 kmorriso@calpoly.edu Zhou Dong

More information

Arithmetic progressions in sumsets

Arithmetic progressions in sumsets ACTA ARITHMETICA LX.2 (1991) Arithmetic progressions in sumsets by Imre Z. Ruzsa* (Budapest) 1. Introduction. Let A, B [1, N] be sets of integers, A = B = cn. Bourgain [2] proved that A + B always contains

More information

Chebyshev coordinates and Salem numbers

Chebyshev coordinates and Salem numbers Chebyshev coordinates and Salem numbers S.Capparelli and A. Del Fra arxiv:181.11869v1 [math.co] 31 Dec 018 January 1, 019 Abstract By expressing polynomials in the basis of Chebyshev polynomials, certain

More information

NORM DEPENDENCE OF THE COEFFICIENT MAP ON THE WINDOW SIZE 1

NORM DEPENDENCE OF THE COEFFICIENT MAP ON THE WINDOW SIZE 1 NORM DEPENDENCE OF THE COEFFICIENT MAP ON THE WINDOW SIZE Thomas I. Seidman and M. Seetharama Gowda Department of Mathematics and Statistics University of Maryland Baltimore County Baltimore, MD 8, U.S.A

More information

TOPICS IN NUMBER THEORY - EXERCISE SHEET I. École Polytechnique Fédérale de Lausanne

TOPICS IN NUMBER THEORY - EXERCISE SHEET I. École Polytechnique Fédérale de Lausanne TOPICS IN NUMBER THEORY - EXERCISE SHEET I École Polytechnique Fédérale de Lausanne Exercise Non-vanishing of Dirichlet L-functions on the line Rs) = ) Let q and let χ be a Dirichlet character modulo q.

More information