Matrices and their operations No. 1

Size: px
Start display at page:

Download "Matrices and their operations No. 1"

Transcription

1 Matrices and their operations No. 1 Multiplication of 2 2 Matrices Nobuyuki TOSE October 11, 2016

2 Review 1: 2 2 Matrices 2 2 matrices A ( a 1 a 2 ) ( a1 a 2 ) ( ) a11 a 12 a 21 a 22 A 2 2 matrix is given in the following ways. (i) Combining two column vectors a 1, a 2 R 2 (ii) Combining two row vectors a 1 and a 2 (iii) Giving 2 2 components. NB a ij is used for the component of the ith row and of the jth column.

3 Review 2 Multiplication of 2-dim. vectors to 2 2 matrices A ( ) x y x a 1 + y a 2 ( ) a11 x + y a 21 ( ) x a 1 y ( ) x a 2 y ( a12 a 22 ) ( ) xa11 + ya 12 xa 21 + ya 22 Here we use the multiplication of a row vector and a column vector defined by ( ) x (α β) αx + βy y

4 Review 3: Multiplication of two 2 2 matrices Take another 2 2 matrix B ( b 1 b2 ) ( b1 b 2 ). Then ( AB (A b 1 A a b 2 ) 1 b1 a 2 b1 ) a 1 b2 a 2 b2

5 Linear Map defined by using A A Map defined by A Given a 2 2 matrix we can define a map A ( a 1 a 2 ) ( a1 a 2 ) ( ) a11 a 12, a 21 a 22 F A : R 2 R 2 ( ) ( ) s s A s a t t 1 + t a 2

6 Linearity of F A Linearity of F A F A satisfies the following basic properties called Linearity. (i) F A ( x + y) F A ( x) + F A ( y) (ii) F A (λ x) λf A ( x) (iii) F A (λ x + µ y) λf A ( x) + µf A ( y) These three propeties are identical to the following. (i) A( x + y) A x + A y (ii) A(λ x) λ(a x) (iii) A(λ x + µ y) λ(a x) + µ(a y) Moreover remark that (iii) can be easily derived from (i) and (ii). In fact A(λ x + µ y) A(λ x) + A(µ y) λ(a x) + µ(a y)

7 Proof Proof for (i) LHS A (( x1 x 2 ) + ( y1 y 2 (x 1 + y 1 ) a 1 + (x 2 + y 2 ) a 2 )) ( ) x1 + y A 1 x 2 + y 2 Proof for (ii) x 1 a 1 + y 1 a 1 + x 2 a 2 + y 2 a 2 (x 1 a 1 + x 2 a 2 ) + (y 1 a 1 + y 2 a 2 ) ( ) ( ) x1 y1 A + A RHS x 2 y 2 ( ) λx1 LHS A λx 2 (λx 1 ) a 1 + (λx 2 ) a 2 λ(x 1 a 1 ) + λ(x 2 a 2 ) λ(x 1 a 1 + x 2 a 2 ) RHS

8 Associativity Thanks to the Linearity, we can prove the following theorem about Associativity. Theorem: Associativity Given 2 2 matrices A and B. Then we have for x R 2. In fact, (AB) x A(B x) RHS A(x 1 b1 + x 2 b2 ) x 1 (A b 1 ) + x 2 (A b 2 ) ( ) (A b 1 A x1 b 2 ) (AB) x LHS x 2

9 Associativity 2 Theorem: Associativity Given 2 2 matrices A, B and C. Then (AB)C A(BC)

10 Scalar Multiplication to Matirces Scalar Multiplication to 2 2 Matrices Given a 2 2 matix A ( a 1 a 2 ) ( a1 a 2 ) ( ) a11 a 12, a 21 a 22 we define a scalar multiplication by λ to A as follows: ( ) ( ) λa1 λa11 λa λa (λ a 1 λ a 2 ) 12 λa 2 λa 21 λa 22

11 Scalar Multiplication to Matirces Theorem (i) (λa) x λ(a x) A(λ x) (ii) (λa)b λ(ab) A(λB) The proof for (i) is given as follows: (λa) x (λ a 1 λ a 2 ) x (λx 1 ) a 1 + (λx 2 ) a 2 λ(x 1 a 1 ) + λ(x 2 a 2 ) λ(x 1 a 1 + x 2 a 2 ) λ(a x) Moreover the property (ii) is derived easily from (i).

12 Other Basic Properties of Scalar Multiplication Theorem (iii) (λ + µ)a λa + µa (iv) (λµ)a λ (µa) (v) 1A A and 0A O 2 These properties can derived from the following corresponding properties for vectors. It is necessary to define the addition of matrices to understand (iii), and we put it off for a couple of weeks. (iii) (λ + µ) a λ a + µ a (iv) (λµ) a λ(µ a) (v) 1 a a and 0 a 0

13 Special Matrices O 2 Zero Matrix O 2 ( 0 0) ( ) is called the zero matrix. It satisfies the identity O 2 X O 2 follows from and XO 2 O 2 from O 2 x ( 0 0) X 0 ( x 1 x 2 ) O 2 X XO 2 O 2 ( x1 x 2 ) x x ( ) 0 0 x x 2 0

14 Special Matrices 2 I 2 Identity Matrix I 2 ( e 1 e 2 ) ( ) is called the Identity Matrix. It enjoys for a 2 2 matrix X, the identity XI 2 I 2 X X It follows from the identities that ( a b) e 1 1 a + 0 b a, ( a b) e 2 0 a + 1 b b XI 2 ( x 1 x 2 )( e 1 e 2 ) ( x 1 x 2 ) X Moreover I 2 X X from ( ) x ( e 1 e 2 ) x e y 1 + y e 2 x ( ) 1 + y 0 ( ) 0 1 ( ) x y

15 Inverse matrix We have the identity ( ) ( ) ( ) ( ) a b d b d b a b c d c a c a c d ( ad bc 0 ) 0 ad bc Cofactor Matrix ( ) a b For A, its cofactor matrix is defeined by c d Then we have the identity ( ) d b à c a Aà ÃA A I 2

16 Inverse Matrix 2 Assume that A 0. Then multiply by 1 A and get A 1 A Ã 1 A Ã A I 2 Inverse Matrix In case A 0, the Inverse Matrix of A is defined by A 1 1 ( ) A Ã 1 d b ad bc c a

17 Regularity of Matrices, Uniqueness of Inverse Regularity of Matrices A 2 2 matrix A is called regular if there exists another 2 2 matrix X satisfying AX XA I 2 In this situation X is called the inverse of A. (i) If A 0, A is regular. (ii) (Uniqueness of the inverse) Assume AX XA I 2, AY YA I 2 Then X Y. In fact, from AX I 2 multiplied by Y from the left follows Y (AX ) YI 2 Y On the other hand, Y (AX ) (YA)X I 2 X X. Accordingly X Y.

18 In case A 0 Theorem A ( ) a b Let A a 2 2 matrix with A 0. Then there exists c d v 0 satisfying A v 0. ( ) ( ) a b d c d c ( a b c d ) ( ) b a ( ) 0 0 ( ) ( ) d d (i) In case d 0 or c 0, 0 AND A c c ( ) ( ) b b (ii) In case b 0 or c 0, 0 AND A a a (iii) Not (i) AND Not (ii). Then A O

19 Equivalent conditions for regularity If A is regular, then A v 0 implies v 0. In fact by multiplying A 1 to A v 0 to get A 1 A v A 1 0 namely v I 2 v 0 Thus it follows from Theorem A that if A 0 then A is not regular. Theorem B The following (i), (ii) and (iii) are equivalent for a 2 2 matrix A. (i) A is regular. (ii) A v 0 v 0 (iii) A 0.

20 Proof for Theorem B (i) (iii) The contraposition Not (iii) Not (i) is already shown. (i) (ii) Already shown. (iii) (i) Already shown. The contraposition Not (iii) Not (ii) is given in Theorem A.

21 Addition of two 2 2 Matrices Definition Given two 2 2 matrices and A ( a 1 a 2 ) B ( b 1 b2 ) ( a1 a 2 ( b1 b 2 ) ( ) a11 a 12 a 21 a 22 ) ( ) b11 b 12 b 21 b 22 Then the 2 2 matrixa + B is defined by ( ) ( ) A + B ( a 1 + b 1 a 2 + a1 + b b 2 ) 1 a11 + b 11 a 12 + b 12 a 2 + b 2 a 21 + b 21 a 22 + b 22

22 Basic Properties (1) Basic Properties (1) (i) (A + B) + C A + (B + C) (ii) A + O 2 O 2 + A A (iii) A + B B + A (iv) λ(a + B) λa + λb (v) (λ + µ)a λa + µa (i) follows from ( a + b) + c a + ( b + c). (ii) follows from a a a. (iii) follows from a + b b + a. (v) follows from (λ + µ) a λ a + µ a. (iv) is proved as follows. LHS λ( a 1 + b 1 a 2 + b 2 ) (λ( a 1 + b 1 ) λ( a 2 + b 2 )) (λ a 1 + λ b 1 λ a 2 + λ b 2 ) (λ a 1 λ a 2 ) + (λ b 1 λ b 2 ) RHS

23 Basic Properties (2) Basic Properties (2) (vi) A(B + C) AB + AC (vii) (B + C)A BA + CA (vi) follows from A( b + c) A b + A c. In fact LHS A( b 1 + c 1 b2 + c 2 ) (A( b 1 + c 1 ) A( b 2 + c 2 )) (A b 1 + A c 1 A b 2 + A c 2 ) (A b 1 A b 2 ) + (A c 1 A c 2 ) RHS (vii) follows from the identity (B + C) a B a + C a which is derived as follows. ( ) LHS ( b 1 + c 1 a1 b2 + c 2 ) a 1 ( b 1 + c 1 ) + a 2 ( b 2 + c 2 ) a 2 (a 1 b1 + a 2 b2 ) + (a 1 c 1 + a 2 c 2 ) RHS

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in Chapter 4 - MATRIX ALGEBRA 4.1. Matrix Operations A a 11 a 12... a 1j... a 1n a 21. a 22.... a 2j... a 2n. a i1 a i2... a ij... a in... a m1 a m2... a mj... a mn The entry in the ith row and the jth column

More information

Phys 201. Matrices and Determinants

Phys 201. Matrices and Determinants Phys 201 Matrices and Determinants 1 1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3 3 matrix 2 1.1 Matrices A 2 3 7 =! " 1

More information

Appendix A: Matrices

Appendix A: Matrices Appendix A: Matrices A matrix is a rectangular array of numbers Such arrays have rows and columns The numbers of rows and columns are referred to as the dimensions of a matrix A matrix with, say, 5 rows

More information

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS MTH 35, SPRING 2017 NIKOS APOSTOLAKIS 1. Linear transformations Definition 1. A function T : R n R m is called a linear transformation if, for any scalars λ,µ R and any vectors u,v R n we have: T(λu+µv)

More information

Matrix operations Linear Algebra with Computer Science Application

Matrix operations Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 14, 2018 1 Matrix operations 11 Matrix operations If A is an m n matrix that is, a matrix with m rows and n columns then the scalar entry in the

More information

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1...

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1... Chapter Matrices We review the basic matrix operations What is a Matrix? An array of numbers a a n A = a m a mn with m rows and n columns is a m n matrix Element a ij in located in position (i, j The elements

More information

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8.

Linear Algebra M1 - FIB. Contents: 5. Matrices, systems of linear equations and determinants 6. Vector space 7. Linear maps 8. Linear Algebra M1 - FIB Contents: 5 Matrices, systems of linear equations and determinants 6 Vector space 7 Linear maps 8 Diagonalization Anna de Mier Montserrat Maureso Dept Matemàtica Aplicada II Translation:

More information

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33

Chapter 5: Matrices. Daniel Chan. Semester UNSW. Daniel Chan (UNSW) Chapter 5: Matrices Semester / 33 Chapter 5: Matrices Daniel Chan UNSW Semester 1 2018 Daniel Chan (UNSW) Chapter 5: Matrices Semester 1 2018 1 / 33 In this chapter Matrices were first introduced in the Chinese Nine Chapters on the Mathematical

More information

CLASS 12 ALGEBRA OF MATRICES

CLASS 12 ALGEBRA OF MATRICES CLASS 12 ALGEBRA OF MATRICES Deepak Sir 9811291604 SHRI SAI MASTERS TUITION CENTER CLASS 12 A matrix is an ordered rectangular array of numbers or functions. The numbers or functions are called the elements

More information

Applied Matrix Algebra Lecture Notes Section 2.2. Gerald Höhn Department of Mathematics, Kansas State University

Applied Matrix Algebra Lecture Notes Section 2.2. Gerald Höhn Department of Mathematics, Kansas State University Applied Matrix Algebra Lecture Notes Section 22 Gerald Höhn Department of Mathematics, Kansas State University September, 216 Chapter 2 Matrices 22 Inverses Let (S) a 11 x 1 + a 12 x 2 + +a 1n x n = b

More information

JUST THE MATHS UNIT NUMBER 9.8. MATRICES 8 (Characteristic properties) & (Similarity transformations) A.J.Hobson

JUST THE MATHS UNIT NUMBER 9.8. MATRICES 8 (Characteristic properties) & (Similarity transformations) A.J.Hobson JUST THE MATHS UNIT NUMBER 9.8 MATRICES 8 (Characteristic properties) & (Similarity transformations) by A.J.Hobson 9.8. Properties of eigenvalues and eigenvectors 9.8. Similar matrices 9.8.3 Exercises

More information

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B Chapter 8 - S&B Algebraic operations Matrix: The size of a matrix is indicated by the number of its rows and the number of its columns. A matrix with k rows and n columns is called a k n matrix. The number

More information

DM559 Linear and Integer Programming. Lecture 3 Matrix Operations. Marco Chiarandini

DM559 Linear and Integer Programming. Lecture 3 Matrix Operations. Marco Chiarandini DM559 Linear and Integer Programming Lecture 3 Matrix Operations Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline and 1 2 3 and 4 2 Outline and 1 2

More information

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full n n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in n variables x 1, x 2,..., x n a 11 x 1 + a 12 x

More information

Prelims Linear Algebra I Michaelmas Term 2014

Prelims Linear Algebra I Michaelmas Term 2014 Prelims Linear Algebra I Michaelmas Term 2014 1 Systems of linear equations and matrices Let m,n be positive integers. An m n matrix is a rectangular array, with nm numbers, arranged in m rows and n columns.

More information

Massachusetts Institute of Technology Department of Economics Statistics. Lecture Notes on Matrix Algebra

Massachusetts Institute of Technology Department of Economics Statistics. Lecture Notes on Matrix Algebra Massachusetts Institute of Technology Department of Economics 14.381 Statistics Guido Kuersteiner Lecture Notes on Matrix Algebra These lecture notes summarize some basic results on matrix algebra used

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2.3 Composition Math 4377/6308 Advanced Linear Algebra 2.3 Composition of Linear Transformations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math4377

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v 1,, v p } in n is said to be linearly independent if the vector equation x x x

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

1 The Basics: Vectors, Matrices, Matrix Operations

1 The Basics: Vectors, Matrices, Matrix Operations 14.102, Math for Economists Fall 2004 Lecture Notes, 9/9/2004 These notes are primarily based on those written by George Marios Angeletos for the Harvard Math Camp in 1999 and 2000, and updated by Stavros

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form:

Lemma 8: Suppose the N by N matrix A has the following block upper triangular form: 17 4 Determinants and the Inverse of a Square Matrix In this section, we are going to use our knowledge of determinants and their properties to derive an explicit formula for the inverse of a square matrix

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

Matrix Algebra 2.1 MATRIX OPERATIONS Pearson Education, Inc.

Matrix Algebra 2.1 MATRIX OPERATIONS Pearson Education, Inc. 2 Matrix Algebra 2.1 MATRIX OPERATIONS MATRIX OPERATIONS m n If A is an matrixthat is, a matrix with m rows and n columnsthen the scalar entry in the ith row and jth column of A is denoted by a ij and

More information

UNIT 1 DETERMINANTS 1.0 INTRODUCTION 1.1 OBJECTIVES. Structure

UNIT 1 DETERMINANTS 1.0 INTRODUCTION 1.1 OBJECTIVES. Structure UNIT 1 DETERMINANTS Determinants Structure 1.0 Introduction 1.1 Objectives 1.2 Determinants of Order 2 and 3 1.3 Determinants of Order 3 1.4 Properties of Determinants 1.5 Application of Determinants 1.6

More information

MATRICES AND MATRIX OPERATIONS

MATRICES AND MATRIX OPERATIONS SIZE OF THE MATRIX is defined by number of rows and columns in the matrix. For the matrix that have m rows and n columns we say the size of the matrix is m x n. If matrix have the same number of rows (n)

More information

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices Matrices A. Fabretti Mathematics 2 A.Y. 2015/2016 Table of contents Matrix Algebra Determinant Inverse Matrix Introduction A matrix is a rectangular array of numbers. The size of a matrix is indicated

More information

ICS 6N Computational Linear Algebra Matrix Algebra

ICS 6N Computational Linear Algebra Matrix Algebra ICS 6N Computational Linear Algebra Matrix Algebra Xiaohui Xie University of California, Irvine xhx@uci.edu February 2, 2017 Xiaohui Xie (UCI) ICS 6N February 2, 2017 1 / 24 Matrix Consider an m n matrix

More information

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2 Week 22 Equations, Matrices and Transformations Coefficient Matrix and Vector Forms of a Linear System Suppose we have a system of m linear equations in n unknowns a 11 x 1 + a 12 x 2 + + a 1n x n b 1

More information

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices Graphics 2009/2010, period 1 Lecture 4 Matrices m n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

Matrix Representation

Matrix Representation Matrix Representation Matrix Rep. Same basics as introduced already. Convenient method of working with vectors. Superposition Complete set of vectors can be used to express any other vector. Complete set

More information

William Stallings Copyright 2010

William Stallings Copyright 2010 A PPENDIX E B ASIC C ONCEPTS FROM L INEAR A LGEBRA William Stallings Copyright 2010 E.1 OPERATIONS ON VECTORS AND MATRICES...2 Arithmetic...2 Determinants...4 Inverse of a Matrix...5 E.2 LINEAR ALGEBRA

More information

2.1 Matrices. 3 5 Solve for the variables in the following matrix equation.

2.1 Matrices. 3 5 Solve for the variables in the following matrix equation. 2.1 Matrices Reminder: A matrix with m rows and n columns has size m x n. (This is also sometimes referred to as the order of the matrix.) The entry in the ith row and jth column of a matrix A is denoted

More information

Linear Algebra and Matrix Inversion

Linear Algebra and Matrix Inversion Jim Lambers MAT 46/56 Spring Semester 29- Lecture 2 Notes These notes correspond to Section 63 in the text Linear Algebra and Matrix Inversion Vector Spaces and Linear Transformations Matrices are much

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via.

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via. Matrix Arithmetic There is an arithmetic for matrices that can be viewed as extending the arithmetic we have developed for vectors to the more general setting of rectangular arrays: if A and B are m n

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections ) c Dr. Igor Zelenko, Fall 2017 1 10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections 7.2-7.4) 1. When each of the functions F 1, F 2,..., F n in right-hand side

More information

Graduate Mathematical Economics Lecture 1

Graduate Mathematical Economics Lecture 1 Graduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 23, 2012 Outline 1 2 Course Outline ematical techniques used in graduate level economics courses Mathematics for Economists

More information

Introduction to Matrices

Introduction to Matrices 214 Analysis and Design of Feedback Control Systems Introduction to Matrices Derek Rowell October 2002 Modern system dynamics is based upon a matrix representation of the dynamic equations governing the

More information

Undergraduate Mathematical Economics Lecture 1

Undergraduate Mathematical Economics Lecture 1 Undergraduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 15, 2014 Outline 1 Courses Description and Requirement 2 Course Outline ematical techniques used in economics courses

More information

Matrix Arithmetic. j=1

Matrix Arithmetic. j=1 An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the i-th row and j-th column

More information

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop

Fall Inverse of a matrix. Institute: UC San Diego. Authors: Alexander Knop Fall 2017 Inverse of a matrix Authors: Alexander Knop Institute: UC San Diego Row-Column Rule If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding

More information

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p Math Bootcamp 2012 1 Review of matrix algebra 1.1 Vectors and rules of operations An p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the

More information

Prepared by: M. S. KumarSwamy, TGT(Maths) Page

Prepared by: M. S. KumarSwamy, TGT(Maths) Page Prepared by: M. S. KumarSwamy, TGT(Maths) Page - 50 - CHAPTER 3: MATRICES QUICK REVISION (Important Concepts & Formulae) MARKS WEIGHTAGE 03 marks Matrix A matrix is an ordered rectangular array of numbers

More information

Extra Problems: Chapter 1

Extra Problems: Chapter 1 MA131 (Section 750002): Prepared by Asst.Prof.Dr.Archara Pacheenburawana 1 Extra Problems: Chapter 1 1. In each of the following answer true if the statement is always true and false otherwise in the space

More information

Announcements Wednesday, October 10

Announcements Wednesday, October 10 Announcements Wednesday, October 10 The second midterm is on Friday, October 19 That is one week from this Friday The exam covers 35, 36, 37, 39, 41, 42, 43, 44 (through today s material) WeBWorK 42, 43

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Unit 3: Matrices. Juan Luis Melero and Eduardo Eyras. September 2018

Unit 3: Matrices. Juan Luis Melero and Eduardo Eyras. September 2018 Unit 3: Matrices Juan Luis Melero and Eduardo Eyras September 2018 1 Contents 1 Matrices and operations 4 1.1 Definition of a matrix....................... 4 1.2 Addition and subtraction of matrices..............

More information

LA lecture 4: linear eq. systems, (inverses,) determinants

LA lecture 4: linear eq. systems, (inverses,) determinants LA lecture 4: linear eq. systems, (inverses,) determinants Yesterday: ˆ Linear equation systems Theory Gaussian elimination To follow today: ˆ Gaussian elimination leftovers ˆ A bit about the inverse:

More information

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran

Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran Assignment 2 (Sol.) Introduction to Machine Learning Prof. B. Ravindran 1. Let A m n be a matrix of real numbers. The matrix AA T has an eigenvector x with eigenvalue b. Then the eigenvector y of A T A

More information

Matrix-Matrix Multiplication

Matrix-Matrix Multiplication Chapter Matrix-Matrix Multiplication In this chapter, we discuss matrix-matrix multiplication We start by motivating its definition Next, we discuss why its implementation inherently allows high performance

More information

POLI270 - Linear Algebra

POLI270 - Linear Algebra POLI7 - Linear Algebra Septemer 8th Basics a x + a x +... + a n x n b () is the linear form where a, b are parameters and x n are variables. For a given equation such as x +x you only need a variable and

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

3 Matrix Algebra. 3.1 Operations on matrices

3 Matrix Algebra. 3.1 Operations on matrices 3 Matrix Algebra A matrix is a rectangular array of numbers; it is of size m n if it has m rows and n columns. A 1 n matrix is a row vector; an m 1 matrix is a column vector. For example: 1 5 3 5 3 5 8

More information

Numerical Linear Algebra Homework Assignment - Week 2

Numerical Linear Algebra Homework Assignment - Week 2 Numerical Linear Algebra Homework Assignment - Week 2 Đoàn Trần Nguyên Tùng Student ID: 1411352 8th October 2016 Exercise 2.1: Show that if a matrix A is both triangular and unitary, then it is diagonal.

More information

Computational modeling

Computational modeling Computational modeling Lecture 1 : Linear algebra - Matrix operations Examination next week: How to get prepared Theory and programming: Matrix operations Instructor : Cedric Weber Course : 4CCP1 Schedule

More information

Two matrices of the same size are added by adding their corresponding entries =.

Two matrices of the same size are added by adding their corresponding entries =. 2 Matrix algebra 2.1 Addition and scalar multiplication Two matrices of the same size are added by adding their corresponding entries. For instance, 1 2 3 2 5 6 3 7 9 +. 4 0 9 4 1 3 0 1 6 Addition of two

More information

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Linear Algebra Lecture 2 1.3.7 Matrix Matrix multiplication using Falk s

More information

Lecture 3 Linear Algebra Background

Lecture 3 Linear Algebra Background Lecture 3 Linear Algebra Background Dan Sheldon September 17, 2012 Motivation Preview of next class: y (1) w 0 + w 1 x (1) 1 + w 2 x (1) 2 +... + w d x (1) d y (2) w 0 + w 1 x (2) 1 + w 2 x (2) 2 +...

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21

ENGR-1100 Introduction to Engineering Analysis. Lecture 21 ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of

[ Here 21 is the dot product of (3, 1, 2, 5) with (2, 3, 1, 2), and 31 is the dot product of . Matrices A matrix is any rectangular array of numbers. For example 3 5 6 4 8 3 3 is 3 4 matrix, i.e. a rectangular array of numbers with three rows four columns. We usually use capital letters for matrices,

More information

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations

Kevin James. MTHSC 3110 Section 2.1 Matrix Operations MTHSC 3110 Section 2.1 Matrix Operations Notation Let A be an m n matrix, that is, m rows and n columns. We ll refer to the entries of A by their row and column indices. The entry in the i th row and j

More information

Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds

Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds These notes are meant to provide a brief introduction to the topics from Linear Algebra that will be useful in Math3315/CSE3365, Introduction

More information

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II MAC 1140 Module 10 System of Equations and Inequalities II Learning Objectives Upon completing this module, you should be able to 1. represent systems of linear equations with matrices. 2. transform a

More information

MATRICES The numbers or letters in any given matrix are called its entries or elements

MATRICES The numbers or letters in any given matrix are called its entries or elements MATRICES A matrix is defined as a rectangular array of numbers. Examples are: 1 2 4 a b 1 4 5 A : B : C 0 1 3 c b 1 6 2 2 5 8 The numbers or letters in any given matrix are called its entries or elements

More information

Linear Equations and Matrix

Linear Equations and Matrix 1/60 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Gaussian Elimination 2/60 Alpha Go Linear algebra begins with a system of linear

More information

Exercise Set Suppose that A, B, C, D, and E are matrices with the following sizes: A B C D E

Exercise Set Suppose that A, B, C, D, and E are matrices with the following sizes: A B C D E Determine the size of a given matrix. Identify the row vectors and column vectors of a given matrix. Perform the arithmetic operations of matrix addition, subtraction, scalar multiplication, and multiplication.

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Linear Algebra Review 1 / 45 Definition of Matrix Rectangular array of elements arranged in rows and

More information

Offline Exercises for Linear Algebra XM511 Lectures 1 12

Offline Exercises for Linear Algebra XM511 Lectures 1 12 This document lists the offline exercises for Lectures 1 12 of XM511, which correspond to Chapter 1 of the textbook. These exercises should be be done in the traditional paper and pencil format. The section

More information

CHAPTER 8: Matrices and Determinants

CHAPTER 8: Matrices and Determinants (Exercises for Chapter 8: Matrices and Determinants) E.8.1 CHAPTER 8: Matrices and Determinants (A) means refer to Part A, (B) means refer to Part B, etc. Most of these exercises can be done without a

More information

Chapter 3. Linear and Nonlinear Systems

Chapter 3. Linear and Nonlinear Systems 59 An expert is someone who knows some of the worst mistakes that can be made in his subject, and how to avoid them Werner Heisenberg (1901-1976) Chapter 3 Linear and Nonlinear Systems In this chapter

More information

Solutions to Exam I MATH 304, section 6

Solutions to Exam I MATH 304, section 6 Solutions to Exam I MATH 304, section 6 YOU MUST SHOW ALL WORK TO GET CREDIT. Problem 1. Let A = 1 2 5 6 1 2 5 6 3 2 0 0 1 3 1 1 2 0 1 3, B =, C =, I = I 0 0 0 1 1 3 4 = 4 4 identity matrix. 3 1 2 6 0

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Review : Powers of a matrix

Review : Powers of a matrix Review : Powers of a matrix Given a square matrix A and a positive integer k, we define A k = AA A } {{ } k times Note that the multiplications AA, AAA,... make sense. Example. Suppose A=. Then A 0 2 =

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

Vectors and Matrices

Vectors and Matrices Vectors and Matrices Scalars We often employ a single number to represent quantities that we use in our daily lives such as weight, height etc. The magnitude of this number depends on our age and whether

More information

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form Topic 7 - Matrix Approach to Simple Linear Regression Review of Matrices Outline Regression model in matrix form - Fall 03 Calculations using matrices Topic 7 Matrix Collection of elements arranged in

More information

Announcements Monday, October 02

Announcements Monday, October 02 Announcements Monday, October 02 Please fill out the mid-semester survey under Quizzes on Canvas WeBWorK 18, 19 are due Wednesday at 11:59pm The quiz on Friday covers 17, 18, and 19 My office is Skiles

More information

Jim Lambers MAT 610 Summer Session Lecture 1 Notes

Jim Lambers MAT 610 Summer Session Lecture 1 Notes Jim Lambers MAT 60 Summer Session 2009-0 Lecture Notes Introduction This course is about numerical linear algebra, which is the study of the approximate solution of fundamental problems from linear algebra

More information

Systems of Linear Equations and Matrices

Systems of Linear Equations and Matrices Chapter 1 Systems of Linear Equations and Matrices System of linear algebraic equations and their solution constitute one of the major topics studied in the course known as linear algebra. In the first

More information

L. Vandenberghe EE133A (Spring 2017) 3. Matrices. notation and terminology. matrix operations. linear and affine functions.

L. Vandenberghe EE133A (Spring 2017) 3. Matrices. notation and terminology. matrix operations. linear and affine functions. L Vandenberghe EE133A (Spring 2017) 3 Matrices notation and terminology matrix operations linear and affine functions complexity 3-1 Matrix a rectangular array of numbers, for example A = 0 1 23 01 13

More information

Systems of Linear Equations and Matrices

Systems of Linear Equations and Matrices Chapter 1 Systems of Linear Equations and Matrices System of linear algebraic equations and their solution constitute one of the major topics studied in the course known as linear algebra. In the first

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

ECON 186 Class Notes: Linear Algebra

ECON 186 Class Notes: Linear Algebra ECON 86 Class Notes: Linear Algebra Jijian Fan Jijian Fan ECON 86 / 27 Singularity and Rank As discussed previously, squareness is a necessary condition for a matrix to be nonsingular (have an inverse).

More information

Section 12.4 Algebra of Matrices

Section 12.4 Algebra of Matrices 244 Section 2.4 Algebra of Matrices Before we can discuss Matrix Algebra, we need to have a clear idea what it means to say that two matrices are equal. Let's start a definition. Equal Matrices Two matrices

More information

Matrix & Linear Algebra

Matrix & Linear Algebra Matrix & Linear Algebra Jamie Monogan University of Georgia For more information: http://monogan.myweb.uga.edu/teaching/mm/ Jamie Monogan (UGA) Matrix & Linear Algebra 1 / 84 Vectors Vectors Vector: A

More information

For comments, corrections, etc Please contact Ahnaf Abbas: Sharjah Institute of Technology. Matrices Handout #8.

For comments, corrections, etc Please contact Ahnaf Abbas: Sharjah Institute of Technology. Matrices Handout #8. Matrices Handout #8 Topic Matrix Definition A matrix is an array of numbers: a a2... a n a2 a22... a 2n A =.... am am2... amn Matrices are denoted by capital letters : A,B,C,.. Matrix size or rank is determined

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University March 2, 2018 Linear Algebra (MTH 464)

More information

Matrix Operations: Determinant

Matrix Operations: Determinant Matrix Operations: Determinant Determinants Determinants are only applicable for square matrices. Determinant of the square matrix A is denoted as: det(a) or A Recall that the absolute value of the determinant

More information

Digital Workbook for GRA 6035 Mathematics

Digital Workbook for GRA 6035 Mathematics Eivind Eriksen Digital Workbook for GRA 6035 Mathematics November 10, 2014 BI Norwegian Business School Contents Part I Lectures in GRA6035 Mathematics 1 Linear Systems and Gaussian Elimination........................

More information

ORIE 6300 Mathematical Programming I August 25, Recitation 1

ORIE 6300 Mathematical Programming I August 25, Recitation 1 ORIE 6300 Mathematical Programming I August 25, 2016 Lecturer: Calvin Wylie Recitation 1 Scribe: Mateo Díaz 1 Linear Algebra Review 1 1.1 Independence, Spanning, and Dimension Definition 1 A (usually infinite)

More information

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises

OHSx XM511 Linear Algebra: Solutions to Online True/False Exercises This document gives the solutions to all of the online exercises for OHSx XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Answers are in square brackets [. Lecture 02 ( 1.1)

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 8: Inverse of a Matrix Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/0 Announcements We will not make it to section. tonight,

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

22m:033 Notes: 3.1 Introduction to Determinants

22m:033 Notes: 3.1 Introduction to Determinants 22m:033 Notes: 3. Introduction to Determinants Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman October 27, 2009 When does a 2 2 matrix have an inverse? ( ) a a If A =

More information