Failure Tolerance of Multicore Real-Time Systems scheduled by a Pfair Algorithm

Size: px
Start display at page:

Download "Failure Tolerance of Multicore Real-Time Systems scheduled by a Pfair Algorithm"

Transcription

1 Failure Tolerance of Multicore Real-Time Systems scheduled by a Pfair Algorithm Yves MOUAFO Supervisors A. CHOQUET-GENIET, G. LARGETEAU-SKAPIN

2 OUTLINES 2 1. Context and Problematic 2. State of the art 3. Different scenarios 4. First feasibility result 5. Second feasibility result 6. Future works

3 The Context Increased use of multicore platforms in Real-Time System 3 Period T i r i 1 st release Relative deadline D i + C i r i + D i 1 st deadline r i + T i 2 nd release time - Independa nt - periodic - r i = 0 - D i = T i WCET Temporal modelling of a periodic task

4 Context Scheduling by the Pfair algorithm PD2 4 - Optimal in our context - Feasibility condition on m-cores : U = (U i = C i T i ) m Feasibility windows C i D i =T i r i =0 r j i = j U d j i i = j + 1 Pseudo-release date U i Pseudo-deadline τ i < C i, T i > C i subtasks τ i j r i j, di j - Priority order: increasing pseudo-deadlines + rules for ex-aequo.

5 Problematic Failure occurrence on any core at any time 5 Increased processing capacity Low weight Small size Cheap Low energy consumption Several transistors on a single chip Feasibility condition may not longer be satisfied

6 Problematic Some tasks may be affected by the failure 6 Core 1 l: lost execution Failing Core x: delay 1 core affected x = 1 time unit l 1 subtask Core m t p failure time t d detection time

7 State of the art Existing techniques are not suitable 7 Classical approaches Hardware redundancy [Pradhan 1996] Provide each core with a spare or a twin => Over redundant cores as needed Software redundancy [Koren et al, 2007] Provide to each task 2 copies: a primary and a backup => Increase of system load Time redundancy [Kopetz et al. 2003] Exploit the slack between task completion and deadline => similar to our approach => useful only for transient and intermittant failures Most used in partitioned scheduling

8 Our goals Avoid the limitations of the classical techniques 8 Provide strictly the number of cores needed m = U + 1 Limit the hardware redundancy to one core Avoid the use of backup copies Resume only the lost execution

9 Different scenarios 9 At any time, a failure may occur on any of the cores

10 Two Possible Scenarios Allocate or not additional time to affected tasks No task is affected Continue the execution One affected task 10 Partial completion is acceptable No further time allocation eg. iterative tasks Full completion is needed Additional time allocation

11 No Further Time Allocation Limited Hardware Redundancy 11 U m 0 time m + 1 t m p cores cores Provide an additional core

12 First Feasibility Result Limited Hardware Redundancy provide a valid schedule 12 Notations - Sched m S : PD2 schedule of S on a m-core processor S - Sched m+1 m Theorem : PD2 schedule of S with limited hardware redundancy - Pending(Sched, t) : List of pending subtasks in schedule Sched at time t - Exec(τ i j, Sched) : Execution time of subtask τ i j in schedule Sched Assumption - U m => SchedS S m and Sched m+1 are valid and fair S The resulting schedule Sched m+1 m is valid and fair τ i j, r j i Exec τ j S i, Sched m+1 m < d i j

13 Proof Based on two lemmas 13 Lemma 1 S At any time, subtasks pending in are Sched m+1 m Lemma 2 Pending(τ j S i, Sched m+1 m ) Pending(τ i j, Sched m S ) also pending in Sched m S S Any subtask is scheduled earlier in Sched m+1 m than in Sched m S τ j i, Exec(τ j S i, Sched m+1 m Proof of the theorem ) Exec(τ i j, Sched m S ) S S - At t t p Sched m+1 m = Sched m+1 valid and fair - At t p t H, τ j i, r j i Exec τ j S i, Sched m+1 m S S - At t > H Sched m+1 m = Sched m valid and fair Exec(τ i j, Sched m S ) < d i j (lemma2)

14 Additional Time Allocated Two combined techniques Limited hardware redundancy 14 Constrain and release C i Tolerance margin C i r i =0 D i T i r i =0 D i =T i Before the failure detection After the failure detection

15 Deadlines computation Ghost subtasks method Add one ghost subtask 2. Compute the feasibility windows with the ghost subtasks 3. Task deadline = pseudodeadline of the subtask before the last

16 Dynamic Reconfiguration Subtasks switch from one system parameters to another Involved systems - Initial System S: τ i < C i, D i = T i > 16 - Constrained System S : τ i < C i, D i < T i > - Intermediate System S i0 : τ i i0 < C i, D i = T i >, τ i0 < C i0 + 1, D i0 = T i0 > Resulting system notation: S tp S i0 U S = CH S = U Si0 = C i T i m C i D i C i T i i i0 m m C i0 + 1 T i0 Non-affected tasks Affected task m+1 cores m cores 0 t p t d Next H t S S i0 S

17 Example t p = 1, x=1, τ i0 17 j0 = τ S: τ 1 < 1, 3 >, τ 2 < 3, 6 >, τ 3 < 3, 4 >, τ 4 < 5, 12 >, τ 5 < 7, 12 >

18 CH S = Scheduling analysis Comparison between S tp S i0 and S i0 schedules C i D i m+1 cores m + 1 m cores Analysis area 18 U S = C i T i m 0 t p t d Next H S S i0 S Valid and fair Valid and fair t m cores S i0 Next H Valid and fair U Si0 = C i T i i i0 + C i0 + 1 T i0 m t

19 An issue Subtasks priority inversion 19 - Pending subtasks at t=0 S : τ 3 0 τ 2 0 τ 5 0 τ 1 0 τ 4 0 S i0 : τ 3 0 τ 5 0 τ 2 0 τ 4 0 τ 1 0 In S In S i0 0 0 τ 2 > PD2 τ τ 5 > PD2 τ τ 1 > PD2 τ τ 4 > PD2 τ 1 > PD2 i.e has higher priority over 2 kinds of subtasks at t d S tp S i0 x t d + 1 anticipated S i0 Staggered t t + 1 t p t d

20 Example 1 Without staggered subtasks 20 S: τ 1 < 1, 3 >, τ 2 < 3, 6 >, τ 3 < 3, 4 >, τ 4 < 5, 12 >, τ 5 < 7, 12 > affected anticipated Staggered

21 S1: τ 0 3 < 1, 20 >, τ 4 7 < 1, 36 >, τ 8 47 < 2, 38 >. Example 2 With staggered subtasks 21 S1 : τ 0 3 < 1, 10,20 >, τ 4 7 < 1, 18,36 >, τ 8 47 < 2, 26,38 >. S1 i3 : τ 0 2 < 1, 20 >, τ 3 < 2, 20 >, τ 4 7 < 1, 36 >, τ 8 47 < 2, 38 >. affected anticipated Staggered Postponed

22 Our Result The resulting scheduling is valid and fair 22 Assumptions - S is feasible on m cores - S is feasible on m+1 cores - S i0 is feasible on m cores - There is no staggered subtask and t p is arbitrary - Or there are some staggered subtasks and t p = 0[H] Theorem The resulting scheduling of S tp S i0 on (m + 1) m cores is valid and fair τ i j, r i j Exec τ i j, S tp S i0 < d i j

23 Proof For any t p with no staggered subtasks Proposition 1 (Remark 1) R t : a subtask is not scheduled later in S tp S i0 than in S i0 Proof At any time t t p : - Prop1 t : Pending(τ i j, S tp S i0 ) Pending(τ i j, S i0 ) - Prop2 t : k subtasks with higher priority than τ i j in S tp S i0 k subtasks with higher priority than τ i j in S i0 Conclusion r i j S i0 Exec τ i j, S tp S i0 Exec τ i j, S i0 < d i j (S i0 ) 23

24 Proof For t p = 0[H] with some staggered subtasks Notations τ s g : staggered subtask Proposition 2 (Remark 2) - x staggered subtasks => x + 1 anticipated subtasks - The staggered subtasks meet their pseudo-deadlines Exec τ s g, S tp S i0 = t d < d s g (Si0 ) - The postponed subtasks meet their pseudo-deadlines Exec τ u p, S i0 = t Exec τ u p, S tp S i0 = t + 1 < d u p (S i0 ) - When the postponement ends subtasks are scheduled earlier Conclusion 24 If Exec τ i j, S i0 t Exec τ i j, S tp S i0 t Then R t of Proposition 1 is true. τu p : postponed subtask r i j S i0 Exec τ i j, S tp S i0 < d i j (S i0 ) τ i j : any subtask

25 Future works Complete the proof and explore other situations 25 Proof: t p H and there are staggered subtasks The failure detection delay x is larger Use an aperiodic flow Several cores are affected Reduce the system load (delete tasks or subtasks)

26 26

EDF Feasibility and Hardware Accelerators

EDF Feasibility and Hardware Accelerators EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo, Waterloo, Canada, arrmorton@uwaterloo.ca Wayne M. Loucks University of Waterloo, Waterloo, Canada, wmloucks@pads.uwaterloo.ca

More information

Energy-aware checkpointing of divisible tasks with soft or hard deadlines

Energy-aware checkpointing of divisible tasks with soft or hard deadlines Energy-aware checkpointing of divisible tasks with soft or hard deadlines Guillaume Aupy 1, Anne Benoit 1,2, Rami Melhem 3, Paul Renaud-Goud 1 and Yves Robert 1,2,4 1. Ecole Normale Supérieure de Lyon,

More information

Andrew Morton University of Waterloo Canada

Andrew Morton University of Waterloo Canada EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo Canada Outline 1) Introduction and motivation 2) Review of EDF and feasibility analysis 3) Hardware accelerators and scheduling

More information

Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden

Embedded Systems Design: Optimization Challenges. Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden of /4 4 Embedded Systems Design: Optimization Challenges Paul Pop Embedded Systems Lab (ESLAB) Linköping University, Sweden Outline! Embedded systems " Example area: automotive electronics " Embedded systems

More information

Clock-driven scheduling

Clock-driven scheduling Clock-driven scheduling Also known as static or off-line scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017

More information

Embedded Systems 14. Overview of embedded systems design

Embedded Systems 14. Overview of embedded systems design Embedded Systems 14-1 - Overview of embedded systems design - 2-1 Point of departure: Scheduling general IT systems In general IT systems, not much is known about the computational processes a priori The

More information

Multiprocessor Real-Time Scheduling Considering Concurrency and Urgency

Multiprocessor Real-Time Scheduling Considering Concurrency and Urgency Multiprocessor Real-Time Scheduling Considering Concurrency Urgency Jinkyu Lee, Arvind Easwaran, Insik Shin Insup Lee Dept. of Computer Science, KAIST, South Korea IPP-HURRAY! Research Group, Polytechnic

More information

Desynchronized Pfair Scheduling on Multiprocessors

Desynchronized Pfair Scheduling on Multiprocessors Desynchronized Pfair Scheduling on Multiprocessors UmaMaheswari C. Devi and James H. Anderson Department of Computer Science, The University of North Carolina, Chapel Hill, NC Abstract Pfair scheduling,

More information

Multi-core Real-Time Scheduling for Generalized Parallel Task Models

Multi-core Real-Time Scheduling for Generalized Parallel Task Models Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-011-45 011 Multi-core Real-Time

More information

CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators

CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators Sandeep D souza and Ragunathan (Raj) Rajkumar Carnegie Mellon University High (Energy) Cost of Accelerators Modern-day

More information

The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems

The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems Zhishan Guo and Sanjoy Baruah Department of Computer Science University of North Carolina at Chapel

More information

Efficient Power Management Schemes for Dual-Processor Fault-Tolerant Systems

Efficient Power Management Schemes for Dual-Processor Fault-Tolerant Systems Efficient Power Management Schemes for Dual-Processor Fault-Tolerant Systems Yifeng Guo, Dakai Zhu The University of Texas at San Antonio Hakan Aydin George Mason University Outline Background and Motivation

More information

Task Reweighting under Global Scheduling on Multiprocessors

Task Reweighting under Global Scheduling on Multiprocessors ask Reweighting under Global Scheduling on Multiprocessors Aaron Block, James H. Anderson, and UmaMaheswari C. Devi Department of Computer Science, University of North Carolina at Chapel Hill March 7 Abstract

More information

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Lecture #14 Risat Pathan Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Specification Implementation Multiprocessor scheduling -- Partitioned

More information

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund Non-Preemptive and Limited Preemptive Scheduling LS 12, TU Dortmund 09 May 2017 (LS 12, TU Dortmund) 1 / 31 Outline Non-Preemptive Scheduling A General View Exact Schedulability Test Pessimistic Schedulability

More information

Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors

Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors Technical Report No. 2009-7 Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors RISAT MAHMUD PATHAN JAN JONSSON Department of Computer Science and Engineering CHALMERS UNIVERSITY

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Marcus Völp, Hermann Härtig WS 2013/14 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed

More information

Multi-core Real-Time Scheduling for Generalized Parallel Task Models

Multi-core Real-Time Scheduling for Generalized Parallel Task Models Noname manuscript No. (will be inserted by the editor) Multi-core Real-Time Scheduling for Generalized Parallel Task Models Abusayeed Saifullah Jing Li Kunal Agrawal Chenyang Lu Christopher Gill Received:

More information

Aperiodic Task Scheduling

Aperiodic Task Scheduling Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2017 年 11 月 29 日 These slides use Microsoft clip arts. Microsoft copyright

More information

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling Real-Time Systems Lecture 6 Dynamic Priority Scheduling Online scheduling with dynamic priorities: Earliest Deadline First scheduling CPU utilization bound Optimality and comparison with RM: Schedulability

More information

Scheduling Slack Time in Fixed Priority Pre-emptive Systems

Scheduling Slack Time in Fixed Priority Pre-emptive Systems Scheduling Slack Time in Fixed Priority Pre-emptive Systems R.I.Davis Real-Time Systems Research Group, Department of Computer Science, University of York, England. ABSTRACT This report addresses the problem

More information

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach Process Scheduling for RTS Dr. Hugh Melvin, Dept. of IT, NUI,G RTS Scheduling Approach RTS typically control multiple parameters concurrently Eg. Flight Control System Speed, altitude, inclination etc..

More information

Real-Time and Embedded Systems (M) Lecture 5

Real-Time and Embedded Systems (M) Lecture 5 Priority-driven Scheduling of Periodic Tasks (1) Real-Time and Embedded Systems (M) Lecture 5 Lecture Outline Assumptions Fixed-priority algorithms Rate monotonic Deadline monotonic Dynamic-priority algorithms

More information

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas February 11, 2014

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas February 11, 2014 Paper Presentation Amo Guangmo Tong University of Taxes at Dallas gxt140030@utdallas.edu February 11, 2014 Amo Guangmo Tong (UTD) February 11, 2014 1 / 26 Overview 1 Techniques for Multiprocessor Global

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

Task Models and Scheduling

Task Models and Scheduling Task Models and Scheduling Jan Reineke Saarland University June 27 th, 2013 With thanks to Jian-Jia Chen at KIT! Jan Reineke Task Models and Scheduling June 27 th, 2013 1 / 36 Task Models and Scheduling

More information

There are three priority driven approaches that we will look at

There are three priority driven approaches that we will look at Priority Driven Approaches There are three priority driven approaches that we will look at Earliest-Deadline-First (EDF) Least-Slack-Time-first (LST) Latest-Release-Time-first (LRT) 1 EDF Earliest deadline

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information

Fault Tolerance. Dealing with Faults

Fault Tolerance. Dealing with Faults Fault Tolerance Real-time computing systems must be fault-tolerant: they must be able to continue operating despite the failure of a limited subset of their hardware or software. They must also allow graceful

More information

Resilient and energy-aware algorithms

Resilient and energy-aware algorithms Resilient and energy-aware algorithms Anne Benoit ENS Lyon Anne.Benoit@ens-lyon.fr http://graal.ens-lyon.fr/~abenoit CR02-2016/2017 Anne.Benoit@ens-lyon.fr CR02 Resilient and energy-aware algorithms 1/

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Hermann Härtig WS 2018/19 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed Priority schedulers

More information

Multiprocessor Scheduling II: Global Scheduling. LS 12, TU Dortmund

Multiprocessor Scheduling II: Global Scheduling. LS 12, TU Dortmund Multiprocessor Scheduling II: Global Scheduling Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 28, June, 2016 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 42 Global Scheduling We will only focus on identical

More information

Schedulability analysis of global Deadline-Monotonic scheduling

Schedulability analysis of global Deadline-Monotonic scheduling Schedulability analysis of global Deadline-Monotonic scheduling Sanjoy Baruah Abstract The multiprocessor Deadline-Monotonic (DM) scheduling of sporadic task systems is studied. A new sufficient schedulability

More information

CIS 4930/6930: Principles of Cyber-Physical Systems

CIS 4930/6930: Principles of Cyber-Physical Systems CIS 4930/6930: Principles of Cyber-Physical Systems Chapter 11 Scheduling Hao Zheng Department of Computer Science and Engineering University of South Florida H. Zheng (CSE USF) CIS 4930/6930: Principles

More information

Design and Analysis of Time-Critical Systems Response-time Analysis with a Focus on Shared Resources

Design and Analysis of Time-Critical Systems Response-time Analysis with a Focus on Shared Resources Design and Analysis of Time-Critical Systems Response-time Analysis with a Focus on Shared Resources Jan Reineke @ saarland university ACACES Summer School 2017 Fiuggi, Italy computer science Fixed-Priority

More information

Scheduling. Uwe R. Zimmer & Alistair Rendell The Australian National University

Scheduling. Uwe R. Zimmer & Alistair Rendell The Australian National University 6 Scheduling Uwe R. Zimmer & Alistair Rendell The Australian National University References for this chapter [Bacon98] J. Bacon Concurrent Systems 1998 (2nd Edition) Addison Wesley Longman Ltd, ISBN 0-201-17767-6

More information

Budgeting Under-Specified Tasks for Weakly-Hard Real-Time Systems

Budgeting Under-Specified Tasks for Weakly-Hard Real-Time Systems Budgeting Under-Specified Tasks for Weakly-Hard Real-Time Systems Zain Hammadeh, Sophie Quinton, Marco Panunzio, Rafik Henia, Laurent Rioux, Rolf Ernst To cite this version: Zain Hammadeh, Sophie Quinton,

More information

Semi-Partitioned Fixed-Priority Scheduling on Multiprocessors

Semi-Partitioned Fixed-Priority Scheduling on Multiprocessors Semi-Partitioned Fixed-Priority Scheduling on Multiprocessors Shinpei Kato and Nobuyuki Yamasaki Department of Information and Computer Science Keio University, Yokohama, Japan {shinpei,yamasaki}@ny.ics.keio.ac.jp

More information

Tardiness Bounds under Global EDF Scheduling on a Multiprocessor

Tardiness Bounds under Global EDF Scheduling on a Multiprocessor Tardiness ounds under Global EDF Scheduling on a Multiprocessor UmaMaheswari C. Devi and James H. Anderson Department of Computer Science The University of North Carolina at Chapel Hill Abstract This paper

More information

Reliability-aware Thermal Management for Hard Real-time Applications on Multi-core Processors

Reliability-aware Thermal Management for Hard Real-time Applications on Multi-core Processors Reliability-aware Thermal Management for Hard Real-time Applications on Multi-core Processors Vinay Hanumaiah Electrical Engineering Department Arizona State University, Tempe, USA Email: vinayh@asu.edu

More information

Real-time scheduling of sporadic task systems when the number of distinct task types is small

Real-time scheduling of sporadic task systems when the number of distinct task types is small Real-time scheduling of sporadic task systems when the number of distinct task types is small Sanjoy Baruah Nathan Fisher Abstract In some real-time application systems, there are only a few distinct kinds

More information

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Mitra Nasri Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany nasri@eit.uni-kl.de

More information

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i Embedded Systems 15-1 - REVIEW: Aperiodic scheduling C i J i 0 a i s i f i d i Given: A set of non-periodic tasks {J 1,, J n } with arrival times a i, deadlines d i, computation times C i precedence constraints

More information

Rate-monotonic scheduling on uniform multiprocessors

Rate-monotonic scheduling on uniform multiprocessors Rate-monotonic scheduling on uniform multiprocessors Sanjoy K. Baruah The University of North Carolina at Chapel Hill Email: baruah@cs.unc.edu Joël Goossens Université Libre de Bruxelles Email: joel.goossens@ulb.ac.be

More information

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS Modeling, Analysis, and Hard Real-time Scheduling of Adaptive Streaming Applications Jiali Teddy Zhai, Sobhan Niknam, and Todor

More information

Tardiness Bounds for EDF Scheduling on Multi-Speed Multicore Platforms

Tardiness Bounds for EDF Scheduling on Multi-Speed Multicore Platforms Tardiness Bounds for EDF Scheduling on Multi-Speed Multicore Platforms Hennadiy Leontyev and James H. Anderson Department of Computer Science, University of North Carolina at Chapel Hill Abstract Multicore

More information

EDF Scheduling. Giuseppe Lipari May 11, Scuola Superiore Sant Anna Pisa

EDF Scheduling. Giuseppe Lipari   May 11, Scuola Superiore Sant Anna Pisa EDF Scheduling Giuseppe Lipari http://feanor.sssup.it/~lipari Scuola Superiore Sant Anna Pisa May 11, 2008 Outline 1 Dynamic priority 2 Basic analysis 3 FP vs EDF 4 Processor demand bound analysis Generalization

More information

Spare CASH: Reclaiming Holes to Minimize Aperiodic Response Times in a Firm Real-Time Environment

Spare CASH: Reclaiming Holes to Minimize Aperiodic Response Times in a Firm Real-Time Environment Spare CASH: Reclaiming Holes to Minimize Aperiodic Response Times in a Firm Real-Time Environment Deepu C. Thomas Sathish Gopalakrishnan Marco Caccamo Chang-Gun Lee Abstract Scheduling periodic tasks that

More information

Multiprocessor Scheduling I: Partitioned Scheduling. LS 12, TU Dortmund

Multiprocessor Scheduling I: Partitioned Scheduling. LS 12, TU Dortmund Multiprocessor Scheduling I: Partitioned Scheduling Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 22/23, June, 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 47 Outline Introduction to Multiprocessor

More information

Optimal Semi-Partitioned Scheduling in Soft Real-Time Systems

Optimal Semi-Partitioned Scheduling in Soft Real-Time Systems Optimal Semi-Partitioned Scheduling in Soft Real-Time Systems James H. Anderson 1, Benjamin N. Casses 1, UmaMaheswari C. Devi 2, and Jeremy P. Erickson 1 1 Dept. of Computer Science, University of North

More information

Semi-Partitioned Scheduling of Sporadic Task Systems on Multiprocessors

Semi-Partitioned Scheduling of Sporadic Task Systems on Multiprocessors Semi-Partitioned Scheduling of Sporadic Task Systems on Multiprocessors Shinpei Kato, Nobuyuki Yamasaki, and Yutaka Ishikawa Department of Computer Science, The University of Tokyo, Tokyo, Japan Department

More information

On the Design and Application of Thermal Isolation Servers

On the Design and Application of Thermal Isolation Servers On the Design and Application of Thermal Isolation Servers Rehan Ahmed, Pengcheng Huang, Max Millen, Lothar Thiele EMSOFT 2017 October 16, 2017 1/25 2/25 The Temperature Problem 1 1 Extremetech: https://tinyurl.com/y8gmopks

More information

ENERGY EFFICIENT SCHEDULING FOR REAL-TIME SYSTEMS. A Dissertation NIKHIL GUPTA

ENERGY EFFICIENT SCHEDULING FOR REAL-TIME SYSTEMS. A Dissertation NIKHIL GUPTA ENERGY EFFICIENT SCHEDULING FOR REAL-TIME SYSTEMS A Dissertation by NIKHIL GUPTA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree

More information

On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous

On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous Kecheng Yang and James H. Anderson Department of Computer Science, University of North Carolina

More information

Temperature-aware Task Partitioning for Real-Time Scheduling in Embedded Systems

Temperature-aware Task Partitioning for Real-Time Scheduling in Embedded Systems Temperature-aware Task Partitioning for Real-Time Scheduling in Embedded Systems Zhe Wang, Sanjay Ranka and Prabhat Mishra Dept. of Computer and Information Science and Engineering University of Florida,

More information

Static priority scheduling

Static priority scheduling Static priority scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017 Some slides are derived from lectures

More information

Optimizing Fault Tolerance for Real-Time Systems

Optimizing Fault Tolerance for Real-Time Systems Linköping Studies in Science and Technology Licentiate Thesis No. 1558 Optimizing Fault Tolerance for Real-Time Systems by Dimitar Nikolov Department of Computer and Information Science Linköpings universitet

More information

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #7: More on Uniprocessor Scheduling

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #7: More on Uniprocessor Scheduling EECS 571 Principles of Real-Time Embedded Systems Lecture Note #7: More on Uniprocessor Scheduling Kang G. Shin EECS Department University of Michigan Precedence and Exclusion Constraints Thus far, we

More information

Replica-Aware Co-Scheduling for Mixed-Criticality

Replica-Aware Co-Scheduling for Mixed-Criticality Consistent * Complete * Well Documented * Easy to Reuse * Replica-Aware Co-Scheduling for Mixed-Criticality Eberle A. Rambo 1 and Rolf Ernst 2 1 Technische Universität Braunschweig, Braunschweig, Germany

More information

Online Energy-Aware I/O Device Scheduling for Hard Real-Time Systems with Shared Resources

Online Energy-Aware I/O Device Scheduling for Hard Real-Time Systems with Shared Resources Online Energy-Aware I/O Device Scheduling for Hard Real-Time Systems with Shared Resources Abstract The challenge in conserving energy in embedded real-time systems is to reduce power consumption while

More information

Bounding and Shaping the Demand of Mixed-Criticality Sporadic Tasks

Bounding and Shaping the Demand of Mixed-Criticality Sporadic Tasks Bounding and Shaping the Demand of Mixed-Criticality Sporadic Tasks Pontus Ekberg and Wang Yi Uppsala University, Sweden Email: {pontus.ekberg yi}@it.uu.se Abstract We derive demand-bound functions for

More information

Parallel Real-Time Task Scheduling on Multicore Platforms

Parallel Real-Time Task Scheduling on Multicore Platforms Parallel Real-Time Task Scheduling on Multicore Platforms James H. Anderson and John M. Calandrino Department of Computer Science, The University of North Carolina at Chapel Hill Abstract We propose a

More information

Mitra Nasri* Morteza Mohaqeqi Gerhard Fohler

Mitra Nasri* Morteza Mohaqeqi Gerhard Fohler Mitra Nasri* Morteza Mohaqeqi Gerhard Fohler RTNS, October 2016 Since 1973 it is known that period ratio affects the RM Schedulability The hardest-to-schedule task set [Liu and Layland] T 2 T n T 1 T 2

More information

System Model. Real-Time systems. Giuseppe Lipari. Scuola Superiore Sant Anna Pisa -Italy

System Model. Real-Time systems. Giuseppe Lipari. Scuola Superiore Sant Anna Pisa -Italy Real-Time systems System Model Giuseppe Lipari Scuola Superiore Sant Anna Pisa -Italy Corso di Sistemi in tempo reale Laurea Specialistica in Ingegneria dell Informazione Università di Pisa p. 1/?? Task

More information

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Lecture Outline Scheduling periodic tasks The rate monotonic algorithm Definition Non-optimality Time-demand analysis...!2

More information

Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by Completion Rate

Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by Completion Rate Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by Completion Rate Zhishan Guo 1, Kecheng Yang 2, Sudharsan Vaidhun 1, Samsil Arefin 3, Sajal K. Das 3, Haoyi Xiong 4 1 Department of

More information

Periodic scheduling 05/06/

Periodic scheduling 05/06/ Periodic scheduling T T or eriodic scheduling, the best that we can do is to design an algorithm which will always find a schedule if one exists. A scheduler is defined to be otimal iff it will find a

More information

IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00

IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00 TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00 Koen Langendoen Marco Zuniga Question: 1 2 3 4 5 Total Points:

More information

Energy-efficient scheduling

Energy-efficient scheduling Energy-efficient scheduling Guillaume Aupy 1, Anne Benoit 1,2, Paul Renaud-Goud 1 and Yves Robert 1,2,3 1. Ecole Normale Supérieure de Lyon, France 2. Institut Universitaire de France 3. University of

More information

Time and Schedulability Analysis of Stateflow Models

Time and Schedulability Analysis of Stateflow Models Time and Schedulability Analysis of Stateflow Models Marco Di Natale Scuola Superiore S. Anna Haibo Zeng Mc Gill University Outline Context: MBD of Embedded Systems Relationship with PBD An Introduction

More information

EDF Scheduling. Giuseppe Lipari CRIStAL - Université de Lille 1. October 4, 2015

EDF Scheduling. Giuseppe Lipari  CRIStAL - Université de Lille 1. October 4, 2015 EDF Scheduling Giuseppe Lipari http://www.lifl.fr/~lipari CRIStAL - Université de Lille 1 October 4, 2015 G. Lipari (CRIStAL) Earliest Deadline Scheduling October 4, 2015 1 / 61 Earliest Deadline First

More information

Lecture: Workload Models (Advanced Topic)

Lecture: Workload Models (Advanced Topic) Lecture: Workload Models (Advanced Topic) Real-Time Systems, HT11 Martin Stigge 28. September 2011 Martin Stigge Workload Models 28. September 2011 1 System

More information

Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems

Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems Energy-Efficient Real-Time Task Scheduling in Multiprocessor DVS Systems Jian-Jia Chen *, Chuan Yue Yang, Tei-Wei Kuo, and Chi-Sheng Shih Embedded Systems and Wireless Networking Lab. Department of Computer

More information

Laxity dynamics and LLF schedulability analysis on multiprocessor platforms

Laxity dynamics and LLF schedulability analysis on multiprocessor platforms DOI 10.1007/s11241-012-9157-x Laxity dynamics and LLF schedulability analysis on multiprocessor platforms Jinkyu Lee Arvind Easwaran Insik Shin Springer Science+Business Media, LLC 2012 Abstract LLF Least

More information

Real-Time Scheduling and Resource Management

Real-Time Scheduling and Resource Management ARTIST2 Summer School 2008 in Europe Autrans (near Grenoble), France September 8-12, 2008 Real-Time Scheduling and Resource Management Lecturer: Giorgio Buttazzo Full Professor Scuola Superiore Sant Anna

More information

An O(m) Analysis Technique for Supporting Real-Time Self-Suspending Task Systems

An O(m) Analysis Technique for Supporting Real-Time Self-Suspending Task Systems An O(m) Analysis Technique for Supporting Real-Time Self-Suspending Task Systems Cong Liu and James H. Anderson Department of Computer Science, University of North Carolina at Chapel Hill Abstract In many

More information

Probabilistic real-time scheduling. Liliana CUCU-GROSJEAN. TRIO team, INRIA Nancy-Grand Est

Probabilistic real-time scheduling. Liliana CUCU-GROSJEAN. TRIO team, INRIA Nancy-Grand Est Probabilistic real-time scheduling Liliana CUCU-GROSJEAN TRIO team, INRIA Nancy-Grand Est Outline What is a probabilistic real-time system? Relation between pwcet and pet Response time analysis Optimal

More information

Shared Recovery for Energy Efficiency and Reliability Enhancements in Real-Time Applications with Precedence Constraints

Shared Recovery for Energy Efficiency and Reliability Enhancements in Real-Time Applications with Precedence Constraints Shared Recovery for Energy Efficiency and Reliability Enhancements in Real-Time Applications with Precedence Constraints BAOXIAN ZHAO and HAKAN AYDIN, George Mason University DAKAI ZHU, University of Texas

More information

Probabilistic Preemption Control using Frequency Scaling for Sporadic Real-time Tasks

Probabilistic Preemption Control using Frequency Scaling for Sporadic Real-time Tasks Probabilistic Preemption Control using Frequency Scaling for Sporadic Real-time Tasks Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat Mälardalen Real-Time Research Center, Mälardalen University,

More information

Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation*

Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation* Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation* Meng Xu Linh Thi Xuan Phan Hyon-Young Choi Insup Lee University of Pennsylvania Abstract We introduce

More information

Tardiness Bounds under Global EDF Scheduling on a. Multiprocessor

Tardiness Bounds under Global EDF Scheduling on a. Multiprocessor Tardiness Bounds under Global EDF Scheduling on a Multiprocessor UmaMaheswari C. Devi and James H. Anderson Department of Computer Science The University of North Carolina at Chapel Hill Abstract We consider

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University } 2017/11/15 Midterm } 2017/11/22 Final Project Announcement 2 1. Introduction 2.

More information

arxiv: v1 [cs.os] 6 Jun 2013

arxiv: v1 [cs.os] 6 Jun 2013 Partitioned scheduling of multimode multiprocessor real-time systems with temporal isolation Joël Goossens Pascal Richard arxiv:1306.1316v1 [cs.os] 6 Jun 2013 Abstract We consider the partitioned scheduling

More information

Using Supertasks to Improve Processor Utilization in Multiprocessor Real-time Systems

Using Supertasks to Improve Processor Utilization in Multiprocessor Real-time Systems Using Supertasks to Improve Processor Utilization in Multiprocessor Real-time Systems Philip Holman and James H. Anderson Department of Computer Science University of North Carolina Chapel Hill, NC 27599-3175

More information

Multi-core Real-Time Scheduling for Generalized Parallel Task Models

Multi-core Real-Time Scheduling for Generalized Parallel Task Models Multi-core Real-Time Scheduling for Generalized Parallel Task Models Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill Department of Computer Science and Engineering Washington University

More information

Lightweight Real-Time Synchronization under P-EDF on Symmetric and Asymmetric Multiprocessors

Lightweight Real-Time Synchronization under P-EDF on Symmetric and Asymmetric Multiprocessors Consistent * Complete * Well Documented * Easy to Reuse * Lightweight Real-Time Synchronization under P-EDF on Symmetric and Asymmetric Multiprocessors Artifact * AE * Evaluated * ECRTS * Alessandro Biondi

More information

Schedulability Analysis for the Abort-and-Restart Model

Schedulability Analysis for the Abort-and-Restart Model Schedulability Analysis for the Abort-and-Restart Model Hing Choi Wong Doctor of Philosophy University of York Computer Science December 2014 Abstract In real-time systems, a schedulable task-set guarantees

More information

3. Scheduling issues. Common approaches 3. Common approaches 1. Preemption vs. non preemption. Common approaches 2. Further definitions

3. Scheduling issues. Common approaches 3. Common approaches 1. Preemption vs. non preemption. Common approaches 2. Further definitions Common approaches 3 3. Scheduling issues Priority-driven (event-driven) scheduling This class of algorithms is greedy They never leave available processing resources unutilized An available resource may

More information

Scheduling Stochastically-Executing Soft Real-Time Tasks: A Multiprocessor Approach Without Worst-Case Execution Times

Scheduling Stochastically-Executing Soft Real-Time Tasks: A Multiprocessor Approach Without Worst-Case Execution Times Scheduling Stochastically-Executing Soft Real-Time Tasks: A Multiprocessor Approach Without Worst-Case Execution Times Alex F. Mills Department of Statistics and Operations Research University of North

More information

Scheduling of Frame-based Embedded Systems with Rechargeable Batteries

Scheduling of Frame-based Embedded Systems with Rechargeable Batteries Scheduling of Frame-based Embedded Systems with Rechargeable Batteries André Allavena Computer Science Department Cornell University Ithaca, NY 14853 andre@cs.cornell.edu Daniel Mossé Department of Computer

More information

A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption

A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption Rohini Krishnapura, Steve Goddard, Ala Qadi Computer Science & Engineering University of Nebraska Lincoln Lincoln, NE 68588-0115

More information

On-line scheduling of periodic tasks in RT OS

On-line scheduling of periodic tasks in RT OS On-line scheduling of periodic tasks in RT OS Even if RT OS is used, it is needed to set up the task priority. The scheduling problem is solved on two levels: fixed priority assignment by RMS dynamic scheduling

More information

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund Scheduling Periodic Real-Time Tasks on Uniprocessor Systems Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 08, Dec., 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 38 Periodic Control System Pseudo-code

More information

AS computer hardware technology advances, both

AS computer hardware technology advances, both 1 Best-Harmonically-Fit Periodic Task Assignment Algorithm on Multiple Periodic Resources Chunhui Guo, Student Member, IEEE, Xiayu Hua, Student Member, IEEE, Hao Wu, Student Member, IEEE, Douglas Lautner,

More information

Tardiness Bounds for FIFO Scheduling on Multiprocessors

Tardiness Bounds for FIFO Scheduling on Multiprocessors Tardiness Bounds for FIFO Scheduling on Multiprocessors Hennadiy Leontyev and James H. Anderson Department of Computer Science, University of North Carolina at Chapel Hill leontyev@cs.unc.edu, anderson@cs.unc.edu

More information

Schedulability Analysis of the Linux Push and Pull Scheduler with Arbitrary Processor Affinities

Schedulability Analysis of the Linux Push and Pull Scheduler with Arbitrary Processor Affinities Revision 1 July 23, 215 Schedulability Analysis of the Linux Push and Pull Scheduler with Arbitrary Processor Affinities Arpan Gujarati Felipe Cerqueira Björn B. Brandenburg Max Planck Institute for Software

More information

How to deal with uncertainties and dynamicity?

How to deal with uncertainties and dynamicity? How to deal with uncertainties and dynamicity? http://graal.ens-lyon.fr/ lmarchal/scheduling/ 19 novembre 2012 1/ 37 Outline 1 Sensitivity and Robustness 2 Analyzing the sensitivity : the case of Backfilling

More information

On Two Class-Constrained Versions of the Multiple Knapsack Problem

On Two Class-Constrained Versions of the Multiple Knapsack Problem On Two Class-Constrained Versions of the Multiple Knapsack Problem Hadas Shachnai Tami Tamir Department of Computer Science The Technion, Haifa 32000, Israel Abstract We study two variants of the classic

More information

EDF and RM Multiprocessor Scheduling Algorithms: Survey and Performance Evaluation

EDF and RM Multiprocessor Scheduling Algorithms: Survey and Performance Evaluation 1 EDF and RM Multiprocessor Scheduling Algorithms: Survey and Performance Evaluation Omar U. Pereira Zapata, Pedro Mejía Alvarez CINVESTAV-IPN, Sección de Computación Av. I.P.N. 258, Zacatenco, México,

More information

Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption

Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption 12 Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption Jinkyu Lee, Department of Computer Science and Engineering, Sungkyunkwan University, South Korea. Kang G.

More information