Some Elliptic Traveling Wave Solutions to the Novikov-Veselov Equation

Size: px
Start display at page:

Download "Some Elliptic Traveling Wave Solutions to the Novikov-Veselov Equation"

Transcription

1 Progress In Electromagnetics Research Symposium 006, Cambridge, USA, March Some Elliptic Traveling Wave Solutions to the Novikov-Veselov Equation J. Nickel, V. S. Serov, and H. W. Schürmann University of Osnabrück, Germany University of Oulu, Finland Abstract An approach is proposed to obtain some exact explicit solutions in terms of elliptic functions to the Novikov-Veselov equation NVE[V x,y,t = 0. An expansion ansatz V ψ = j=0 a jf j is used to reduce the NVE to the ordinary differential equation f = Rf, where Rf is a fourth degree polynomial in f. The well-known solutions of f = Rf lead to periodic and solitary wave like solutions V. Subject to certain conditions containing the parameters of the NVE and of the ansatz V ψ the periodic solutions V can be used as start solutions to apply the linear superposition principle proposed by Khare and Sukhatme.. Introduction The Novikov-Veselov NV equation [ as a natural two-dimensional generalization of the celebrated Korteweg-de Vries KV equation [ has relevance in nonlinear physics in particular in inverse scattering theory [, 4 and mathematics cf. e. g., [5, 6. As regards to physics, Tagami [ derived solitary solutions of the NV equation by means of the Hirota method. Cheng [4 investigated the NV equation associated with the spectral problem x y + uψ = 0 in the plane and presented solutions by applying the inverse scattering transform. With regards to mathematics, Taimanov [5 investigated applications of the modified NV equation to differential geometry of surfaces. Ferapontov [6 used the stationary NV equation to describe a certain class of surfaces in projective differential geometry the so-called isothermally asymptotic surfaces. Apart from these applications solutions of the NV equation are interesting in and of themselves. In the following we derive some solutions of the NV equation by combining a symmetry reduction method [7, 8 and the Khare-Sukhatme superposition principle [9.. Elliptic Solutions.. General Considerations Following Novikov and Veselov [ we consider the system V t = V + V + uv + uv, u = V, where = x i y, = x + i y are the Cauchy-Riemann operators in R. System, is equivalent to V t = 4 V xxx V xyy + V u x + u y + u V x + u V y, V x = u x u y, V y = u y + u x 4 with ux,y,t = u x,y,t+iu x,y,t, where u is defined up to an arbitrary holomorphic function ϕ = ϕ +iϕ so that ϕ x = ϕ y, ϕ y = ϕ x. 4 imply u = x y DV + V + ϕ, u = DV + ϕ. 5 The operator D := x y + y x is well-defined [, 6, so that u, u can be inserted into. Traveling wave solutions V x,y,t = ψz, z = x + ky vt 6

2 50 Progress In Electromagnetics Research Symposium 006, Cambridge, USA, March 6-9 imply x = k y and thus lead to ϕ const. = C 0 + ic. Hence, can be written as vψ z = k ψ zzz + 6 k 4 k + ψψ z + ψ z C 0 + C k. 7 Following an approach outlined previously [7, 8, 4 it seems useful to find elliptic traveling wave solutions of the form p = follows from balancing the linear term of highest order with the nonlinear term in 7 p= ψz = a j fz j 8 j=0 with [5 dfz = αf 4 + 4βf + 6γf + 4δf + ɛ Rf. 9 dz The coefficients a 0, a, a, α, β, γ, δ, ɛ are assumed to be real but otherwise either arbitrary or interrelated. Inserting 8 into 7 and using 9 we obtain a system of algebraic equations that can be reduced to yield the nontrivial solutions α = 0, β = a + k, γ = 4a 0 + k + F k, δ, ɛ arbitrary, subject to a = 0, k 0, 0 α = a + k, β = a + k, γ = F 6k a + 4a 0 a 4a + k, δ = a a 0 a a 8a + k + a a F k, ɛ arbitrary, subject to a 0, k 0 with F = v + C 0 + kc. Thus, the coefficients of the polynomial Rf are partly determined leading to solutions fz of 9. As is well known [5, pp. 4 6, [6, p. 454 fz can be expressed in terms of Weierstrass elliptic function z;g,g according to R f 0 fz = f 0 + [ 4 z;g,g, 4 R f 0 where the primes denote differentiation with respect to f and f 0 is a simple root of Rf. The invariants g,g of z;g,g and the discriminant = g 7g are related to the coefficients of Rf [7, p. 44. They are suitable to classify the behaviour of fz and to discriminate between periodic and solitary wave like solutions [8. Solitary wave like solutions are determined by cf. and Ref. [8, pp R f 0 fz = f 0 + [ 4 e R f 0 + e csch, = 0, g < 0, e z 4 where e = g in. In general, fz according to is neither real nor bounded. Conditions for real and bounded solutions fz can be obtained by considering the phase diagram of Rf [9, p. 5. They are denoted as phase diagram conditions PDC in the following. An example of a phase diagram analysis is given in [4.

3 Progress In Electromagnetics Research Symposium 006, Cambridge, USA, March Periodic Solutions At first the coefficients according to 0 are considered. For simplicity we assume ɛ = 0, so that f 0 = 0 is a simple root of 9. The solution can be evaluated to yield V x,y,t = a 0 + a + k k δ + k F + 6a 0 k + + k k x + ky vt;g,g with g, g according to 0 and [8. Evaluating with coefficients according to with ɛ = 0 for simplicity in the same manner we obtain periodic solutions depending on a 0, a and a... Solitary Wave like Solutions To find the subset of solitary wave like solutions of the NV equation according to 0, the discriminant must vanish. This is given if δ = 0 or δ = 6a 0 k + + k F 8a k + k. For g < 0 we obtain solitary wave like solutions and here the PDC is fulfilled automatically for g < 0. If δ = 0, ɛ = 0, f 0 = 6a 0 k + + k F a k, we obtain cf. 8, V x,y,t = a 0 + 6a 0 k + + k F k sech [ 6a 0 + k + F k x + ky vt 4. 5 If δ = 6a 0 k + + k F 8a k + k, ɛ = 0, f 0 = 0, 8 reads [ V x,y,t = a 0 + 6a 0 k + + k F 4k tanh F k + a 0 x + ky vt. 6 + k Subject to 0 5, 6 represent general physical traveling solitary wave solutions of the NV equation for ɛ = 0. While periodic solutions depend on a 0 and a, solitary solutions only depend on a 0. Solitary wave like solutions according to can be obtained by an analogous procedure.. Superposition Solutions Khare and Sukhatme proposed a superposition principle for nonlinear wave and evolution equations NL- WEEs [9. They have shown that suitable linear combinations of periodic traveling-wave solutions expressed by Jacobian elliptic functions lead to new solutions of the nonlinear equation in question. Combining the approach above with this superposition principle we have evaluated the following start solutions for superposition [0 fz = γ+ 9γ 6βδ 4β dn 4δ γ+ 9γ 6βδ sn γ + 9γ 6βδz, 9γ 6βδ γ+ 9γ 6βδ, βδ > 0, γ > 0, γ + 9γ 6βδz, γ+ 9γ 6βδ, βδ > 0, γ < 0, γ 9γ 6βδ γ+ 9γ 6βδ 4β cn 9γ 6βδ 4 z, γ+ 9γ 6βδ, βδ < 0. 9γ 6βδ In 0 we choose ɛ = 0 for simplicity and thus, we obtain start solutions for superposition according to 7. As an example we consider solutions of the form dn for p =, further results for cn, sn and according to can be obtained in the same manner. According to 8, 0 the start solution for superposition reads 7 V x,y,t = a 0 + a A dn µx + ky vt,m, 8 with A, µ, m according to 7, so that the superposition ansatz can be written as Ṽ x,y,t = a 0 + a A i= dn [ µx + k y v t + i Km,m. 9

4 5 Progress In Electromagnetics Research Symposium 006, Cambridge, USA, March 6-9 Inserting Ṽ x,y,t denoting d i = dn µx + ky v t + i Km,m into 7 v v and using well known relations for c i and s i [, p. 6 leads to 6Aa µm k µ Aa + k c i d is i A a mµ k + k d i c j d j s j 0 i= i= j i 6a0 k Aa µm + k + C 0 + C k + m k µ + v c i d i s i = 0. Remarkably, µ Aa vanishes automatically [0,. By use of [, reads + k Aa µm Aa µm 6a0 k + k + C 0 + C k + m k µ + v c i d i s i i= Aa k m + q + k q c i d i s i = 0. Thus, the speed v in the superposition solution 9 is given by v = 6a 0k + k C 0 + C k + mk µ + Aa k m + q + k q. The start solution V and the superposition solution Ṽ are shown in Fig.. V, V i= i= 6 5 V 4 V -4-4 z Figure : V and Ṽ cf. 8, 9 for c =, k =, a 0 =, a =, C 0 =, C =, δ = 4 therefore: v = Conclusion For the NV equation we have shown that a rather broad set of traveling wave solutions according to 6, 8 and subject to the nonlinear ordinary differential equation 9 can be obtained. Periodic and solitary wave solutions can be presented in compact form in terms of Weierstrass elliptic function and its limiting cases = 0, g 0, respectively. The phase diagram conditions PDC yield constraints for real and bounded solutions. Finally, it is shown that application of the Khare-Sukhatme superposition principle yields new periodic real, bounded solutions of the NV equation. Acknowledgment One of us J. N. gratefully acknowledges support by the German Science Foundation DFG Graduate College 695 Nonlinearities of optical materials.

5 Progress In Electromagnetics Research Symposium 006, Cambridge, USA, March REFERENCES. Novikov, S. P. and A. P. Veselov, Two-dimensional Schrödinger operator: Inverse scattering transform and evolutional equations, Physica D, Vol. 8, 67 7, Bogdanov, L. V., Veselov-Novikov equation as a natural two-dimensional generalization of the Korteweg-de Vries equation, Theor. Math. Phys., Vol. 70, 09, Tagami, Y., Soliton-like solutions to a +-dimensional generalization of the KdV equation, Phys. Lett. A, Vol. 4, 6 0, Cheng, Y., Integrable systems associated with the Schrödinger spectral problem in the plane, J. Math. Phys., Vol., 57 6, Taimanov, I. A., Modified Novikov-Veselov equation and differential geometry of surfaces, arxiv: dgga/95005 v5 0 Nov Ferapontov, E. V., Stationary Veselov-Novikov equation and isothermally asymptotic surfaces in projective differential geometry, Differential Geometry and its Applications, Vol., 7 8, Schürmann, H. W. and V. S. Serov, Traveling wave solutions of a generalized modified Kadomtsev- Petviashvili equation, J. Math. Phys., Vol. 45, 8 87, Schürmann, H. W. and V. S. Serov, Weierstrass solutions to certain nonlinear wave and evolution equations, Proc. Progress in Electromagnetics Research Symposium, Pisa, , Cooper, F., et al., Periodic solutions to nonlinear equations obtained by linear superposition, J. Phys. A: Math. Gen., Vol. 5, , Khare, A. and U. Sukhatme, Cyclic identities involving Jacobi elliptic functions, J. Math. Phys., Vol. 4, , 00.. Khare, A. and A. Lakshminarayan, Cyclic identities for Jacobi elliptic and related functions, J. Math. Phys., Vol. 44, 8 84, 00.. Khare, A. and U. Sukhatme, Linear superposition in nonlinear equations, Phys. Rev. Lett., Vol. 88, , 00.. Veselov, A. P. and S. P. Novikov, Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations, Dokl. Akad. Nauk SSSR, Vol. 79, 0 4, Schürmann, H. W., Traveling-wave solutions of the cubic-quintic nonlinear Schrödinger equation, Phys. Rev. E, Vol. 54, 4 40, Weierstrass, K., Mathematische Werke V, Johnson, New York, Whittaker, E. T. and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, Chandrasekharan, K., Elliptic Functions, Springer, Berlin, Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, 9th ed., Dover, New York, Drazin, P. G., Solitons, Cambridge University Press, Cambridge, Schürmann, H. W., et al., Superposition in nonlinear wave and evolution equations, arxiv: nlin.si/ v Aug Bronstein, I. N., et al., Taschenbuch der Mathematik, 5th ed., Verlag Harri Deutsch, Thun und Frankfurt am Main, Milne-Thomson, L. M., Jacobian Elliptic Function Tables, Dover Publications, New York, cf. Ref. [, Eq. ; cf. Ref. [9, Eqs. 7, 8.

No. 11 A series of new double periodic solutions metry constraint. For more details about the results of this system, the reader can find the

No. 11 A series of new double periodic solutions metry constraint. For more details about the results of this system, the reader can find the Vol 13 No 11, November 2004 cfl 2003 Chin. Phys. Soc. 1009-1963/2004/13(11)/1796-05 Chinese Physics and IOP Publishing Ltd A series of new double periodic solutions to a (2+1)-dimensional asymmetric Nizhnik

More information

Connecting Jacobi elliptic functions with different modulus parameters

Connecting Jacobi elliptic functions with different modulus parameters PRAMANA c Indian Academy of Sciences Vol. 63, No. 5 journal of November 2004 physics pp. 921 936 Connecting Jacobi elliptic functions with different modulus parameters AVINASH KHARE 1 and UDAY SUKHATME

More information

An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson Equation

An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson Equation Commun. Theor. Phys. (Beijing, China) 50 (008) pp. 309 314 c Chinese Physical Society Vol. 50, No., August 15, 008 An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson

More information

Double Elliptic Equation Expansion Approach and Novel Solutions of (2+1)-Dimensional Break Soliton Equation

Double Elliptic Equation Expansion Approach and Novel Solutions of (2+1)-Dimensional Break Soliton Equation Commun. Theor. Phys. (Beijing, China) 49 (008) pp. 8 86 c Chinese Physical Society Vol. 49, No., February 5, 008 Double Elliptic Equation Expansion Approach and Novel Solutions of (+)-Dimensional Break

More information

A PERIODICITY PROBLEM FOR THE KORTEWEG DE VRIES AND STURM LIOUVILLE EQUATIONS. THEIR CONNECTION WITH ALGEBRAIC GEOMETRY

A PERIODICITY PROBLEM FOR THE KORTEWEG DE VRIES AND STURM LIOUVILLE EQUATIONS. THEIR CONNECTION WITH ALGEBRAIC GEOMETRY A PERIODICITY PROBLEM FOR THE KORTEWEG DE VRIES AND STURM LIOUVILLE EQUATIONS. THEIR CONNECTION WITH ALGEBRAIC GEOMETRY B. A. DUBROVIN AND S. P. NOVIKOV 1. As was shown in the remarkable communication

More information

Exact Travelling Wave Solutions to the (3+1)-Dimensional Kadomtsev Petviashvili Equation

Exact Travelling Wave Solutions to the (3+1)-Dimensional Kadomtsev Petviashvili Equation Vol. 108 (005) ACTA PHYSICA POLONICA A No. 3 Exact Travelling Wave Solutions to the (3+1)-Dimensional Kadomtsev Petviashvili Equation Y.-Z. Peng a, and E.V. Krishnan b a Department of Mathematics, Huazhong

More information

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 975 98 c International Academic Publishers Vol. 43, No. 6, June 15, 005 Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional

More information

Periodic, hyperbolic and rational function solutions of nonlinear wave equations

Periodic, hyperbolic and rational function solutions of nonlinear wave equations Appl Math Inf Sci Lett 1, No 3, 97-101 (013 97 Applied Mathematics & Information Sciences Letters An International Journal http://dxdoiorg/101785/amisl/010307 Periodic, hyperbolic and rational function

More information

Department of Applied Mathematics, Dalian University of Technology, Dalian , China

Department of Applied Mathematics, Dalian University of Technology, Dalian , China Commun Theor Phys (Being, China 45 (006 pp 199 06 c International Academic Publishers Vol 45, No, February 15, 006 Further Extended Jacobi Elliptic Function Rational Expansion Method and New Families of

More information

Computational Solutions for the Korteweg devries Equation in Warm Plasma

Computational Solutions for the Korteweg devries Equation in Warm Plasma COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 16(1, 13-18 (1 Computational Solutions for the Korteweg devries Equation in Warm Plasma E.K. El-Shewy*, H.G. Abdelwahed, H.M. Abd-El-Hamid. Theoretical Physics

More information

The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics

The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics Vol.3, Issue., Jan-Feb. 3 pp-369-376 ISSN: 49-6645 The ('/) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics J.F.Alzaidy Mathematics Department, Faculty

More information

Exact and approximate nonlinear waves generated by the periodic superposition of solitons

Exact and approximate nonlinear waves generated by the periodic superposition of solitons Journal of Applied Mathematics and Physics (ZAMP) 0044-2275/89/060940-05 $ 1.50 + 0.20 Vol. 40, November 1989 9 1989 Birkhguser Verlag, Basel Exact and approximate nonlinear waves generated by the periodic

More information

The General Form of Linearized Exact Solution for the KdV Equation by the Simplest Equation Method

The General Form of Linearized Exact Solution for the KdV Equation by the Simplest Equation Method Applied and Computational Mathematics 015; 4(5): 335-341 Published online August 16 015 (http://www.sciencepublishinggroup.com/j/acm) doi: 10.11648/j.acm.0150405.11 ISSN: 38-5605 (Print); ISSN: 38-5613

More information

New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations

New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations Volume 28, N. 1, pp. 1 14, 2009 Copyright 2009 SBMAC ISSN 0101-8205 www.scielo.br/cam New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations HASSAN A. ZEDAN Mathematics

More information

Lecture 10: Whitham Modulation Theory

Lecture 10: Whitham Modulation Theory Lecture 10: Whitham Modulation Theory Lecturer: Roger Grimshaw. Write-up: Andong He June 19, 2009 1 Introduction The Whitham modulation theory provides an asymptotic method for studying slowly varying

More information

Soliton solutions of Hirota equation and Hirota-Maccari system

Soliton solutions of Hirota equation and Hirota-Maccari system NTMSCI 4, No. 3, 231-238 (2016) 231 New Trends in Mathematical Sciences http://dx.doi.org/10.20852/ntmsci.2016115853 Soliton solutions of Hirota equation and Hirota-Maccari system M. M. El-Borai 1, H.

More information

A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation

A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation A Note On Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation arxiv:math/6768v1 [math.ap] 6 Jul 6 Claire David, Rasika Fernando, and Zhaosheng Feng Université Pierre et Marie Curie-Paris

More information

Introduction to the Hirota bilinear method

Introduction to the Hirota bilinear method Introduction to the Hirota bilinear method arxiv:solv-int/9708006v1 14 Aug 1997 J. Hietarinta Department of Physics, University of Turku FIN-20014 Turku, Finland e-mail: hietarin@utu.fi Abstract We give

More information

JACOBI ELLIPTIC FUNCTION EXPANSION METHOD FOR THE MODIFIED KORTEWEG-DE VRIES-ZAKHAROV-KUZNETSOV AND THE HIROTA EQUATIONS

JACOBI ELLIPTIC FUNCTION EXPANSION METHOD FOR THE MODIFIED KORTEWEG-DE VRIES-ZAKHAROV-KUZNETSOV AND THE HIROTA EQUATIONS JACOBI ELLIPTIC FUNCTION EXPANSION METHOD FOR THE MODIFIED KORTEWEG-DE VRIES-ZAKHAROV-KUZNETSOV AND THE HIROTA EQUATIONS ZAI-YUN ZHANG 1,2 1 School of Mathematics, Hunan Institute of Science Technology,

More information

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.3,pp.227-234 Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition

More information

New Analytical Solutions For (3+1) Dimensional Kaup-Kupershmidt Equation

New Analytical Solutions For (3+1) Dimensional Kaup-Kupershmidt Equation International Conference on Computer Technology and Science (ICCTS ) IPCSIT vol. 47 () () IACSIT Press, Singapore DOI:.776/IPCSIT..V47.59 New Analytical Solutions For () Dimensional Kaup-Kupershmidt Equation

More information

Periodic and Solitary Wave Solutions of the Davey-Stewartson Equation

Periodic and Solitary Wave Solutions of the Davey-Stewartson Equation Applied Mathematics & Information Sciences 4(2) (2010), 253 260 An International Journal c 2010 Dixie W Publishing Corporation, U. S. A. Periodic and Solitary Wave Solutions of the Davey-Stewartson Equation

More information

Exact Solutions of the Generalized- Zakharov (GZ) Equation by the Infinite Series Method

Exact Solutions of the Generalized- Zakharov (GZ) Equation by the Infinite Series Method Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 193-9466 Vol. 05, Issue (December 010), pp. 61 68 (Previously, Vol. 05, Issue 10, pp. 1718 175) Applications and Applied Mathematics: An International

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents The 6th TIMS-OCAMI-WASEDA Joint International Workshop on Integrable Systems and Mathematical Physics March 22-26, 2014 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN

More information

Diagonalization of the Coupled-Mode System.

Diagonalization of the Coupled-Mode System. Diagonalization of the Coupled-Mode System. Marina Chugunova joint work with Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada Collaborators: Mason A. Porter, California Institute

More information

Travelling wave solutions for a CBS equation in dimensions

Travelling wave solutions for a CBS equation in dimensions AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '8), Harvard, Massachusetts, USA, March -6, 8 Travelling wave solutions for a CBS equation in + dimensions MARIA LUZ GANDARIAS University of Cádiz Department

More information

Relation between Periodic Soliton Resonance and Instability

Relation between Periodic Soliton Resonance and Instability Proceedings of Institute of Mathematics of NAS of Ukraine 004 Vol. 50 Part 1 486 49 Relation between Periodic Soliton Resonance and Instability Masayoshi TAJIRI Graduate School of Engineering Osaka Prefecture

More information

New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation

New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation Physics Letters A 07 (00) 107 11 www.elsevier.com/locate/pla New explicit solitary wave solutions for ( + 1)-dimensional Boussinesq equation and ( + 1)-dimensional KP equation Yong Chen, Zhenya Yan, Honging

More information

arxiv: v1 [nlin.si] 23 Aug 2007

arxiv: v1 [nlin.si] 23 Aug 2007 arxiv:0708.3247v1 [nlin.si] 23 Aug 2007 A new integrable generalization of the Korteweg de Vries equation Ayşe Karasu-Kalkanlı 1), Atalay Karasu 2), Anton Sakovich 3), Sergei Sakovich 4), Refik Turhan

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents Winter School on PDEs St Etienne de Tinée February 2-6, 2015 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN SISSA, Trieste Lecture 2 Recall: the main goal is to compare

More information

Exact solutions through symmetry reductions for a new integrable equation

Exact solutions through symmetry reductions for a new integrable equation Exact solutions through symmetry reductions for a new integrable equation MARIA LUZ GANDARIAS University of Cádiz Department of Mathematics PO.BOX, 1151 Puerto Real, Cádiz SPAIN marialuz.gandarias@uca.es

More information

Extended Jacobi Elliptic Function Expansion Method for Nonlinear Benjamin-Bona-Mahony Equations

Extended Jacobi Elliptic Function Expansion Method for Nonlinear Benjamin-Bona-Mahony Equations International Mathematical Forum, Vol. 7, 2, no. 53, 239-249 Extended Jacobi Elliptic Function Expansion Method for Nonlinear Benjamin-Bona-Mahony Equations A. S. Alofi Department of Mathematics, Faculty

More information

The extended homogeneous balance method and exact 1-soliton solutions of the Maccari system

The extended homogeneous balance method and exact 1-soliton solutions of the Maccari system Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol., No., 014, pp. 83-90 The extended homogeneous balance method and exact 1-soliton solutions of the Maccari system Mohammad

More information

Solitary Wave Solutions for Heat Equations

Solitary Wave Solutions for Heat Equations Proceedings of Institute of Mathematics of NAS of Ukraine 00, Vol. 50, Part, 9 Solitary Wave Solutions for Heat Equations Tetyana A. BARANNYK and Anatoly G. NIKITIN Poltava State Pedagogical University,

More information

Exact Solutions of Space-time Fractional EW and modified EW equations

Exact Solutions of Space-time Fractional EW and modified EW equations arxiv:1601.01294v1 [nlin.si] 6 Jan 2016 Exact Solutions of Space-time Fractional EW and modified EW equations Alper Korkmaz Department of Mathematics, Çankırı Karatekin University, Çankırı, TURKEY January

More information

arxiv:math/ v1 [math.ap] 1 Jan 1992

arxiv:math/ v1 [math.ap] 1 Jan 1992 APPEARED IN BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 26, Number 1, Jan 1992, Pages 119-124 A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS arxiv:math/9201261v1 [math.ap]

More information

Three types of generalized Kadomtsev Petviashvili equations arising from baroclinic potential vorticity equation

Three types of generalized Kadomtsev Petviashvili equations arising from baroclinic potential vorticity equation Chin. Phys. B Vol. 19, No. (1 1 Three types of generalized Kadomtsev Petviashvili equations arising from baroclinic potential vorticity equation Zhang Huan-Ping( 张焕萍 a, Li Biao( 李彪 ad, Chen Yong ( 陈勇 ab,

More information

New Exact Solutions to NLS Equation and Coupled NLS Equations

New Exact Solutions to NLS Equation and Coupled NLS Equations Commun. Theor. Phys. (Beijing, China 4 (2004 pp. 89 94 c International Academic Publishers Vol. 4, No. 2, February 5, 2004 New Exact Solutions to NLS Euation Coupled NLS Euations FU Zun-Tao, LIU Shi-Da,

More information

arxiv:nlin/ v1 [nlin.si] 25 Sep 2006

arxiv:nlin/ v1 [nlin.si] 25 Sep 2006 Remarks on the conserved densities of the Camassa-Holm equation Amitava Choudhuri 1, B. Talukdar 1a and S. Ghosh 1 Department of Physics, Visva-Bharati University, Santiniketan 73135, India Patha Bhavana,

More information

arxiv: v2 [nlin.ps] 5 Apr 2018

arxiv: v2 [nlin.ps] 5 Apr 2018 Nonlinear Dynamics manuscript No. will be inserted by the editor) Superposition solutions to the extended KdV equation for water surface waves Piotr Rozmej Anna Karczewska Eryk Infeld arxiv:708.05975v

More information

A remark on a variable-coefficient Bernoulli equation based on auxiliary -equation method for nonlinear physical systems

A remark on a variable-coefficient Bernoulli equation based on auxiliary -equation method for nonlinear physical systems A remark on a variable-coefficient Bernoulli equation based on auxiliary -equation method for nonlinear physical systems Zehra Pınar a Turgut Öziş b a Namık Kemal University, Faculty of Arts and Science,

More information

New Approach of ( Ǵ/G ) Expansion Method. Applications to KdV Equation

New Approach of ( Ǵ/G ) Expansion Method. Applications to KdV Equation Journal of Mathematics Research; Vol. 6, No. ; ISSN 96-9795 E-ISSN 96-989 Published by Canadian Center of Science and Education New Approach of Ǵ/G Expansion Method. Applications to KdV Equation Mohammad

More information

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.008) No.1,pp.4-5 New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Euations

More information

Yong Chen a,b,c,qiwang c,d, and Biao Li c,d

Yong Chen a,b,c,qiwang c,d, and Biao Li c,d Jacobi Elliptic Function Rational Expansion Method with Symbolic Computation to Construct New Doubly-periodic Solutions of Nonlinear Evolution Equations Yong Chen abc QiWang cd and Biao Li cd a Department

More information

New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation

New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation Yunjie Yang Yan He Aifang Feng Abstract A generalized G /G-expansion method is used to search for the exact traveling wave solutions

More information

THE PERIODIC PROBLEM FOR THE KORTEWEG DE VRIES EQUATION

THE PERIODIC PROBLEM FOR THE KORTEWEG DE VRIES EQUATION THE PERIODIC PROBLEM FOR THE KORTEWEG DE VRIES EQUATION S. P. NOVIKOV Introduction The Korteweg de Vries equation (KV arose in the nineteenth century in connection with the theory of waves in shallow water.

More information

-Expansion Method For Generalized Fifth Order KdV Equation with Time-Dependent Coefficients

-Expansion Method For Generalized Fifth Order KdV Equation with Time-Dependent Coefficients Math. Sci. Lett. 3 No. 3 55-6 04 55 Mathematical Sciences Letters An International Journal http://dx.doi.org/0.785/msl/03039 eneralized -Expansion Method For eneralized Fifth Order KdV Equation with Time-Dependent

More information

Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics

Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics PRMN c Indian cademy of Sciences Vol. 77, No. 6 journal of December 011 physics pp. 103 109 pplication of the trial equation method for solving some nonlinear evolution equations arising in mathematical

More information

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems

Group analysis, nonlinear self-adjointness, conservation laws, and soliton solutions for the mkdv systems ISSN 139-5113 Nonlinear Analysis: Modelling Control, 017, Vol., No. 3, 334 346 https://doi.org/10.15388/na.017.3.4 Group analysis, nonlinear self-adjointness, conservation laws, soliton solutions for the

More information

A Generalized Extended F -Expansion Method and Its Application in (2+1)-Dimensional Dispersive Long Wave Equation

A Generalized Extended F -Expansion Method and Its Application in (2+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 6 (006) pp. 580 586 c International Academic Publishers Vol. 6, No., October 15, 006 A Generalized Extended F -Expansion Method and Its Application in (+1)-Dimensional

More information

Soliton Solutions of a General Rosenau-Kawahara-RLW Equation

Soliton Solutions of a General Rosenau-Kawahara-RLW Equation Soliton Solutions of a General Rosenau-Kawahara-RLW Equation Jin-ming Zuo 1 1 School of Science, Shandong University of Technology, Zibo 255049, PR China Journal of Mathematics Research; Vol. 7, No. 2;

More information

Inverse scattering technique in gravity

Inverse scattering technique in gravity 1 Inverse scattering technique in gravity The purpose of this chapter is to describe the Inverse Scattering Method ISM for the gravitational field. We begin in section 1.1 with a brief overview of the

More information

Nonlinear Fourier Analysis

Nonlinear Fourier Analysis Nonlinear Fourier Analysis The Direct & Inverse Scattering Transforms for the Korteweg de Vries Equation Ivan Christov Code 78, Naval Research Laboratory, Stennis Space Center, MS 99, USA Supported by

More information

Exact Periodic Solitary Wave and Double Periodic Wave Solutions for the (2+1)-Dimensional Korteweg-de Vries Equation*

Exact Periodic Solitary Wave and Double Periodic Wave Solutions for the (2+1)-Dimensional Korteweg-de Vries Equation* Exact Periodic Solitary Wave Double Periodic Wave Solutions for the (+)-Dimensional Korteweg-de Vries Equation* Changfu Liu a Zhengde Dai b a Department of Mathematics Physics Wenshan University Wenshan

More information

Exact solutions of the radial Schrödinger equation for some physical potentials

Exact solutions of the radial Schrödinger equation for some physical potentials arxiv:quant-ph/070141v1 14 Feb 007 Exact solutions of the radial Schrödinger equation for some physical potentials Sameer M. Ikhdair and Ramazan Sever Department of Physics, Near East University, Nicosia,

More information

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Published by Canadian Center of Science and Education Exact Solutions for the Nonlinear +-Dimensional Davey-Stewartson Equation

More information

A new integrable system: The interacting soliton of the BO

A new integrable system: The interacting soliton of the BO Phys. Lett., A 204, p.336-342, 1995 A new integrable system: The interacting soliton of the BO Benno Fuchssteiner and Thorsten Schulze Automath Institute University of Paderborn Paderborn & Germany Abstract

More information

Painlevé Test for the Certain (2+1)-Dimensional Nonlinear Evolution Equations. Abstract

Painlevé Test for the Certain (2+1)-Dimensional Nonlinear Evolution Equations. Abstract Painlevé Test for the Certain (2+1)-Dimensional Nonlinear Evolution Equations T. Alagesan and Y. Chung Department of Information and Communications, Kwangju Institute of Science and Technology, 1 Oryong-dong,

More information

Lecture II Search Method for Lax Pairs of Nonlinear Partial Differential Equations

Lecture II Search Method for Lax Pairs of Nonlinear Partial Differential Equations Lecture II Search Method for Lax Pairs of Nonlinear Partial Differential Equations Usama Al Khawaja, Department of Physics, UAE University, 24 Jan. 2012 First International Winter School on Quantum Gases

More information

Wronskians, Generalized Wronskians and Solutions to the Korteweg-de Vries Equation

Wronskians, Generalized Wronskians and Solutions to the Korteweg-de Vries Equation Wronskians, Generalized Wronskians and Solutions to the Korteweg-de Vries Equation Wen-Xiu Ma Department of Mathematics, University of South Florida, Tampa, FL 33620-5700, USA arxiv:nlin/0303068v1 [nlin.si]

More information

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (+2-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION ALI FILIZ ABDULLAH SONMEZOGLU MEHMET EKICI and DURGUN DURAN Communicated by Horia Cornean In this

More information

New exact superposition solutions to KdV2 equation

New exact superposition solutions to KdV2 equation New exact superposition solutions to KdV2 equation arxiv:1804.02222v1 [physics.flu-dyn] 6 Apr 2018 Piotr Rozmej 1 and Anna Karczewska 2 1 Faculty of Physics and Astronomy, University of Zielona Góra, Szafrana

More information

New Formal Solutions of Davey Stewartson Equation via Combined tanh Function Method with Symmetry Method

New Formal Solutions of Davey Stewartson Equation via Combined tanh Function Method with Symmetry Method Commun. Theor. Phys. Beijing China 7 007 pp. 587 593 c International Academic Publishers Vol. 7 No. April 5 007 New Formal Solutions of Davey Stewartson Equation via Combined tanh Function Method with

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents The 6th TIMS-OCAMI-WASEDA Joint International Workshop on Integrable Systems and Mathematical Physics March 22-26, 2014 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN

More information

Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005

Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005 Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005 SOME INVERSE SCATTERING PROBLEMS FOR TWO-DIMENSIONAL SCHRÖDINGER

More information

Exact Solutions for Generalized Klein-Gordon Equation

Exact Solutions for Generalized Klein-Gordon Equation Journal of Informatics and Mathematical Sciences Volume 4 (0), Number 3, pp. 35 358 RGN Publications http://www.rgnpublications.com Exact Solutions for Generalized Klein-Gordon Equation Libo Yang, Daoming

More information

Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric and Hyperbolic Function Methods.

Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric and Hyperbolic Function Methods. ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.14(01) No.,pp.150-159 Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric

More information

Solitary Wave Solutions of a Fractional Boussinesq Equation

Solitary Wave Solutions of a Fractional Boussinesq Equation International Journal of Mathematical Analysis Vol. 11, 2017, no. 9, 407-423 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.7346 Solitary Wave Solutions of a Fractional Boussinesq Equation

More information

Breaking soliton equations and negative-order breaking soliton equations of typical and higher orders

Breaking soliton equations and negative-order breaking soliton equations of typical and higher orders Pramana J. Phys. (2016) 87: 68 DOI 10.1007/s12043-016-1273-z c Indian Academy of Sciences Breaking soliton equations and negative-order breaking soliton equations of typical and higher orders ABDUL-MAJID

More information

A NEW VARIABLE-COEFFICIENT BERNOULLI EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

A NEW VARIABLE-COEFFICIENT BERNOULLI EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS U.P.B. Sci. Bull., Series A, Vol. 76, Iss., 014 ISSN 1-707 A NEW VARIABLE-COEFFICIENT BERNOULLI EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS Bin Zheng 1 In this paper,

More information

A note on the G /G - expansion method

A note on the G /G - expansion method A note on the G /G - expansion method Nikolai A. Kudryashov Department of Applied Mathematics, National Research Nuclear University MEPHI, Kashirskoe Shosse, 115409 Moscow, Russian Federation Abstract

More information

New solutions for a generalized Benjamin-Bona-Mahony-Burgers equation

New solutions for a generalized Benjamin-Bona-Mahony-Burgers equation AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '8) Harvard Massachusetts USA March -6 8 New solutions for a generalized Benjamin-Bona-Mahony-Burgers equation MARIA S. BRUZÓN University of Cádiz Department

More information

arxiv:nlin/ v2 [nlin.si] 9 Oct 2002

arxiv:nlin/ v2 [nlin.si] 9 Oct 2002 Journal of Nonlinear Mathematical Physics Volume 9, Number 1 2002), 21 25 Letter On Integrability of Differential Constraints Arising from the Singularity Analysis S Yu SAKOVICH Institute of Physics, National

More information

About a gauge-invariant description of some 2+1-dimensional integrable nonlinear evolution equations

About a gauge-invariant description of some 2+1-dimensional integrable nonlinear evolution equations About a gauge-invariant description of some +-dimensional integrable nonlinear evolution equations V.G. Dubrovsky, M. Nahrgang Novosibirsk State Technical University, Novosibirsk, prosp. Karl Marx 0, 63009,

More information

COULOMB SYSTEMS WITH CALOGERO INTERACTION

COULOMB SYSTEMS WITH CALOGERO INTERACTION PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 016, 3, p. 15 19 COULOMB SYSTEMS WITH CALOGERO INTERACTION P h y s i c s T. S. HAKOBYAN, A. P. NERSESSIAN Academician G. Sahakyan

More information

arxiv:math-ph/ v1 31 Dec 2003

arxiv:math-ph/ v1 31 Dec 2003 Generalized Landen Transformation Formulas for Jacobi Elliptic Functions arxiv:math-ph/0312074v1 31 Dec 2003 Avinash Khare a,1 and Uday Sukhatme b,2 a Institute of Physics, Sachivalaya Marg, Bhubaneswar

More information

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients Contemporary Engineering Sciences, Vol. 11, 2018, no. 16, 779-784 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.8262 Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable

More information

Complex Analysis Math 205A, Winter 2014 Final: Solutions

Complex Analysis Math 205A, Winter 2014 Final: Solutions Part I: Short Questions Complex Analysis Math 205A, Winter 2014 Final: Solutions I.1 [5%] State the Cauchy-Riemann equations for a holomorphic function f(z) = u(x,y)+iv(x,y). The Cauchy-Riemann equations

More information

A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS

A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 26, Number 1, January 1992 A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS P. DEIFT AND X. ZHOU In this announcement

More information

Traveling Wave Solutions For Three Non-linear Equations By ( G G. )-expansion method

Traveling Wave Solutions For Three Non-linear Equations By ( G G. )-expansion method Traveling Wave Solutions For Three Non-linear Equations By ( )-expansion method Qinghua Feng Shandong University of Technology School of Science Zhangzhou Road 1, Zibo, 55049 China fqhua@sina.com Bin Zheng

More information

Soliton solutions of some nonlinear evolution equations with time-dependent coefficients

Soliton solutions of some nonlinear evolution equations with time-dependent coefficients PRAMANA c Indian Academy of Sciences Vol. 80, No. 2 journal of February 2013 physics pp. 361 367 Soliton solutions of some nonlinear evolution equations with time-dependent coefficients HITENDER KUMAR,

More information

Exact Solutions to the Focusing Discrete Nonlinear Schrödinger Equation

Exact Solutions to the Focusing Discrete Nonlinear Schrödinger Equation Exact Solutions to the Focusing Discrete Nonlinear Schrödinger Equation Francesco Demontis (based on a joint work with C. van der Mee) Università degli Studi di Cagliari Dipartimento di Matematica e Informatica

More information

A note on Abundant new exact solutions for the (3+1)-dimensional Jimbo-Miwa equation

A note on Abundant new exact solutions for the (3+1)-dimensional Jimbo-Miwa equation A note on Abundant new exact solutions for the (3+1)-dimensional Jimbo-Miwa equation Nikolay A. Kudryashov, Dmitry I. Sinelshchikov Deartment of Alied Mathematics, National Research Nuclear University

More information

Exotic Localized Structures of the (2+1)-Dimensional Nizhnik-Novikov- Veselov System Obtained via the Extended Homogeneous Balance Method

Exotic Localized Structures of the (2+1)-Dimensional Nizhnik-Novikov- Veselov System Obtained via the Extended Homogeneous Balance Method Exotic Localized Structures of the (2+1)-Dimensional Nizhnik-Novikov- Veselov System Obtained via the Extended Homogeneous Balance Method Chao-Qing Dai a, Guo-quan Zhou a, and Jie-Fang Zhang b a Department

More information

ENVELOPE SOLITONS, PERIODIC WAVES AND OTHER SOLUTIONS TO BOUSSINESQ-BURGERS EQUATION

ENVELOPE SOLITONS, PERIODIC WAVES AND OTHER SOLUTIONS TO BOUSSINESQ-BURGERS EQUATION Romanian Reports in Physics, Vol. 64, No. 4, P. 95 9, ENVELOPE SOLITONS, PERIODIC WAVES AND OTHER SOLUTIONS TO BOUSSINESQ-BURGERS EQUATION GHODRAT EBADI, NAZILA YOUSEFZADEH, HOURIA TRIKI, AHMET YILDIRIM,4,

More information

The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equations

The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equations MM Research Preprints, 275 284 MMRC, AMSS, Academia Sinica, Beijing No. 22, December 2003 275 The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear

More information

Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially Integrable Equations

Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially Integrable Equations Thai Journal of Mathematics Volume 5(2007) Number 2 : 273 279 www.math.science.cmu.ac.th/thaijournal Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially

More information

Research Article Application of the Cole-Hopf Transformation for Finding Exact Solutions to Several Forms of the Seventh-Order KdV Equation

Research Article Application of the Cole-Hopf Transformation for Finding Exact Solutions to Several Forms of the Seventh-Order KdV Equation Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 21, Article ID 194329, 14 pages doi:1.1155/21/194329 Research Article Application of the Cole-Hopf Transformation for Finding

More information

Exact Travelling Wave Solutions of the Coupled Klein-Gordon Equation by the Infinite Series Method

Exact Travelling Wave Solutions of the Coupled Klein-Gordon Equation by the Infinite Series Method Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 6, Issue (June 0) pp. 3 3 (Previously, Vol. 6, Issue, pp. 964 97) Applications and Applied Mathematics: An International Journal (AAM)

More information

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30]

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30] ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.12(2011) No.1,pp.95-99 The Modified Sine-Cosine Method and Its Applications to the Generalized K(n,n) and BBM Equations

More information

HOMOTOPY ANALYSIS METHOD FOR SOLVING KDV EQUATIONS

HOMOTOPY ANALYSIS METHOD FOR SOLVING KDV EQUATIONS Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (21), 89 98 HOMOTOPY ANALYSIS METHOD FOR SOLVING KDV EQUATIONS Hossein Jafari and M. A. Firoozjaee Abstract.

More information

A multiple Riccati equations rational expansion method and novel solutions of the Broer Kaup Kupershmidt system

A multiple Riccati equations rational expansion method and novel solutions of the Broer Kaup Kupershmidt system Chaos, Solitons and Fractals 30 (006) 197 03 www.elsevier.com/locate/chaos A multiple Riccati equations rational expansion method and novel solutions of the Broer Kaup Kupershmidt system Qi Wang a,c, *,

More information

Integrable Curves and Surfaces

Integrable Curves and Surfaces Integrable Curves and Surfaces March 30, 2015 Metin Gürses Department of Mathematics, Faculty of Sciences, Bilkent University 06800 Ankara, Turkey, gurses@fen.bilkent.edu.tr Summary The connection of curves

More information

Reductions to Korteweg-de Vries Soliton Hierarchy

Reductions to Korteweg-de Vries Soliton Hierarchy Commun. Theor. Phys. (Beijing, China 45 (2006 pp. 23 235 c International Academic Publishers Vol. 45, No. 2, February 5, 2006 Reductions to Korteweg-de Vries Soliton Hierarchy CHEN Jin-Bing,,2, TAN Rui-Mei,

More information

EXACT SOLITARY WAVE AND PERIODIC WAVE SOLUTIONS OF THE KAUP-KUPERSCHMIDT EQUATION

EXACT SOLITARY WAVE AND PERIODIC WAVE SOLUTIONS OF THE KAUP-KUPERSCHMIDT EQUATION Journal of Applied Analysis and Computation Volume 5, Number 3, August 015, 485 495 Website:http://jaac-online.com/ doi:10.11948/015039 EXACT SOLITARY WAVE AND PERIODIC WAVE SOLUTIONS OF THE KAUP-KUPERSCHMIDT

More information

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation Contemporary Engineering Sciences Vol. 11 2018 no. 16 785-791 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ces.2018.8267 Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type

More information

Bäcklund transformation and special solutions for Drinfeld Sokolov Satsuma Hirota system of coupled equations

Bäcklund transformation and special solutions for Drinfeld Sokolov Satsuma Hirota system of coupled equations arxiv:nlin/0102001v1 [nlin.si] 1 Feb 2001 Bäcklund transformation and special solutions for Drinfeld Sokolov Satsuma Hirota system of coupled equations Ayşe Karasu (Kalkanli) and S Yu Sakovich Department

More information

Exact travelling wave solutions of a variety of Boussinesq-like equations

Exact travelling wave solutions of a variety of Boussinesq-like equations University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2 Exact travelling wave solutions of a variety

More information

Scattering of Solitons of Modified KdV Equation with Self-consistent Sources

Scattering of Solitons of Modified KdV Equation with Self-consistent Sources Commun. Theor. Phys. Beijing, China 49 8 pp. 89 84 c Chinese Physical Society Vol. 49, No. 4, April 5, 8 Scattering o Solitons o Modiied KdV Equation with Sel-consistent Sources ZHANG Da-Jun and WU Hua

More information

2. Examples of Integrable Equations

2. Examples of Integrable Equations Integrable equations A.V.Mikhailov and V.V.Sokolov 1. Introduction 2. Examples of Integrable Equations 3. Examples of Lax pairs 4. Structure of Lax pairs 5. Local Symmetries, conservation laws and the

More information