ODES Package. Aleksas Domarkas. November 18, 2013

Size: px
Start display at page:

Download "ODES Package. Aleksas Domarkas. November 18, 2013"

Transcription

1 ODES Package Aleksas Domarkas November 8, 3 We use open-source computer algebra system(cas) maxima The ODES package contains commands that help you work with ordinary differential equations. List of functions in ODES package: odecv dchange odec solvet ode ic ode ic P iter odetaylor odetaylor odeexact intfactor odel odel ic fs partsol odem odem ic matrix exp odelinsys wronskian A.Domarkas, VU, 3

2 odecv.wxm / odecv Function: odecv(tr,eq,y,x) Makes the change of independed variable in ODE. (%i) load(odes)$. x^3y''' + xy' - y = x (%i) eq:x^3*'diff(y,x,3)+x*'diff(y,x)-y=x$ (%i3) odecv(x=exp(t),eq,y,x); (%o3) d3 y-3 d d t 3 y d t +3 d d t y -y=%et (%i) odel(%,y,t); (%o) y=t %e t C3 + t %e t C + %e t C + t3 %e t (%i5) sol:subst(t=log(x),%); (%o5) y=x log( x) C3 + x log( x) C+x C+ x log( ) 6. ( + x^)y'' + xy' + y = 6 x 3 (%i6) eq:(+x^)*'diff(y,x,)+x*'diff(y,x)+y=$ (%i7) trans(eq):=block( coeff(lhs(eq),'diff(y,x))/coeff(lhs(eq),'diff(y,x,)), t=radcan(integrate(exp(-integrate(%%,x)),x)))$ (%i8) itr:trans(eq); tr:solve(itr,x)[]; (%o8) t=asinh( x) (%o9) x=sinh( t) (%i) odecv(tr,eq,y,x); (%o) d d y+y= t (%i) ode(%,y,t); (%o) y = %k sin( t ) + %k cos( t) (%i) sol:subst(itr,%); (%o) y = %k sin( asinh( x ) + %k cos( asinh( x) A.Domarkas, VU, 3

3 odecv.wxm / 3. y'' - y'/x + x^y = (%i3) eq:'diff(y,x,)-/x*'diff(y,x)+*x^*y=$ (%i) itr:t=x^; tr:x=sqrt(t); (%o) t=x (%o5) x= t (%i6) odecv(t=x^,eq,y,x); (%o6) t d y + ty= d t (%i7) ode(%,y,t); (%o7) y = %k sin( t ) + %k cos( t) (%i8) sol:subst(itr,%); (%o8) y = %k sin( x ) + %k cos( x ). kamke 3.7. x^ y'''-x^3 y'' + x^ y' = (%i9) eq:*x^*'diff(y,x,3)-*x^3*'diff(y,x,)+*x^*'diff(y,x)=$ (%i) odecv(x=exp(t),eq,y,x); (%o) %e t d 3 d y t 3-6 %et d d y t +6 %et d d t y = (%i) eq:%//exp(t),expand; (%o) d3 d y- d t 3 d y t + d d t y =%e-t (%i) odel(eq,y,t); (%o) y=t %e t C3 + %e t C + C + %e-t ( 3 t %e 3 t - ) 7 (%i3) subst(t=log(x),%),expand; (%o3) y=x log( x) C3+x C + C + x log( x) - 36 x (%i) y=collectterms(rhs(%),log(x),x); (%o) y=x log( x) C3 + +x C + C - 36 x (%i5) sol:subst([c=%k,c=%k,c3=%k3-/],%); (%o5) y = %k3 x log( x ) + %k x - 36 x + %k 3 A.Domarkas, VU, 3

4 dchange.wxm / 3 dchange Function: dchange(tr,eq,y,x,new_func,new_var) Makes the change tr:x=f(new_var) of independent variable x. (%i) load(odes)$ load(contrib_ode)$. (-x^)y'' - xy' + n^y = (%i3) eq:(-x^)*diff(y(x),x,)-x*diff(y(x),x)+n^*y(x)=$ (%i) assume(n>)$ (%i5) tr:x=cos(t); itr:t=acos(x); (%o5) x=cos( t) (%o6) t=acos( x) (%i7) dchange(tr,eq,y(x),x,y(t),t)$ eq:trigsimp(%); (%o8) d y( d t ) t +n y( t ) = (%i9) ode(%,y(t),t); (%o9) y( t ) = %k sin( n t ) + %k cos( nt) (%i) sol:dchange(itr,%,y(t),t,y(x),x); (%o) y( x ) = %k sin( n acos( x ) + %k cos( n acos( x). xy'' + y'/-y = (%i) eq:x*diff(y(x),x,)+diff(y(x),x)/-y(x)=$ (%i) tr:x=t^/; itr:solve(%,t)[]; (%o) x= t (%o3) t= x (%i) eq:dchange(tr,eq,y(x),x,y(t),t),ratsimp; (%o) d y( d t) -y( t ) = t (%i5) ode(%,y(t),t); (%o5) y( t ) = %k %e t + %k %e -t (%i6) sol:dchange(itr,%,y(t),t,y(x),x); (%o6) y( x ) = %k %e x + %k %e - x A.Domarkas, VU, 3

5 dchange.wxm / 3 3. x^y'' - xy' + y = x^5*log(x) (%i7) eq:x^*diff(y(x),x,)-*x*diff(y(x),x)+*y(x)=x^5*log(x); (%o7) x d y( x) d x - x d d x y( x ) +y( x ) =x5 log( x) (%i8) tr:x=exp(t); itr:solve(%,t)[]; (%o8) x=%e t (%o9) t=log( ) x (%i) eq:dchange(tr,eq,y(x),x,y(t),t); (%o) d y( d t) -3 d t d t y( t ) +y( t ) =t %e5 t (%i) ode(%,y(t),t); (%o) y( t ) = ( t-7 ) %e5 t + %k %e t + %k %e t (%i) sol:dchange(itr,%,y(t),t,y(x),x); (%o) y( x ) = x5 ( log( x) -7) + %k x + %k x. kamke.8 (%i3) eq:(*x+)^*diff(y(x),x,)-*(*x+)*diff(y(x),x)-*y(x)=3*x+$ (%i) tr:x=(%e^t-)/; itr:solve(tr,t)[]; (%o) x= %et - (%o5) t=log( x+) (%i6) eq:dchange(tr,eq,y(x),x,y(t),t); (%o6) d y( t) d t -8 d d t y( t ) - y( ) t =3( %et - ) + (%i7) ode(eq,y(t),t); (%o7) y( t ) = %k %e 3 t - 9%et - + %k %e -t 96 (%i8) sol:dchange(itr,%,y(t),t,y(x),x); (%o8) y( x ) = %k( x+) 3 + %k x+ - 9( x+) - 96 (%i9) y(x)=map(factor,rhs(sol)); (%o9) y( x ) = %k( x+) 3 + %k 8 x+5 - x A.Domarkas, VU, 3

6 dchange.wxm 3 / 3 5. (%i3) eq:diff(y(x),x,)-diff(y(x),x)+exp(*x)*y(x)=; (%o3) d y( x) - d d x d x y( x ) +%e x y( x ) = (%i3) tr:x=log(t)/; (%o3) x= log( t) (%i3) itr:solve(tr,t)[]; (%o3) t=%e x (%i33) eq:dchange(tr,eq,y(x),x,y(t),t); (%o33) 6 t d y( t ) + t d d t d t y( t ) +t y( ) t = (%i3) eq:subst(y(t)=y,eq); (%o3) 6 t d d y t + t d y +t y= d t (%i35) contrib_ode(eq,y,t); (%o35) [ y=bessel_y, t %k t / 8 + bessel_j, t (%i36) sol:subst(itr,%[]); (%o36) y=bessel_y, %e x %k %e x/ + bessel_j, %e x %k t / 8 ] %k %e x/ 6 A.Domarkas, VU, 3

7 odec.wxm / odec Function: odec(eq,r,x) Solves ODE in respect to expression r. (%i) load(odes)$. Bernoulli differential equation (%i) eq:'diff(y,x)+*y/(x+)=*sqrt(y)/(x+); (%o) d d x y+ y x+ = y x+ (%i3) odec(eq,sqrt(y),x); (%o3) y= x x+ + %c x+ (%i) ode(eq,y,x); (%o) - log( y- ) = log( x+ ) +%c. boj 36. (%i5) eq:x*'diff(y,x,3)-'diff(y,x,)-x*'diff(y,x)+y=-*x^3; (%o5) x d 3 d y x 3 - d d y-x d x y +y=- x3 d x (%i6) odec(eq,'diff(y,x,)+y,x); (%o6) d d y+y= x y-x3 +%c x (%i7) ode(%,y,x); (%o7) y = %k %e x + %k %e -x +x 3 +( 6 -%c) x (%i8) sol:subst(%c=6-%k3,%); (%o8) y = %k %e x + %k %e -x +x 3 + %k3 x 3. sam.35. (%i9) eq:'diff(x,t)=y+z$ eq:'diff(y,t)=x+z$ eq3:'diff(z,t)=x+y$ (%i) odec(eq+eq+eq3,x+y+z,t)$ s:subst(%c=3*c,%); (%o3) z+y+x=3%e t C 7 A.Domarkas, VU, 3

8 odec.wxm / (%i) odec(eq-eq,y-x,t)$ s:subst(%c=3*c,%); (%o5) y-x=3%e -t C (%i6) odec(eq-eq3,z-y,t)$ s3:subst(%c=3*c3,%); (%o7) z-y=3%e -t C3 (%i8) sol:solve([s,s,s3],[x,y,z])[],expand; (%o8) [ x=-%e -t C3 - %e -t C + %e t C, y=-%e -t C3 + %e -t C + %e t C, z= %e -t C3 + %e -t C + %e t C ] Test: (%i9) subst(sol,[eq,eq,eq3])$ ev(%, nouns)$ makelist(rhs(%[k])-lhs(%[k]),k,,3); (%o) [,,]. filipov 65. (%i) eq:'diff(y,x)=sqrt(*x+*y-); (%o) d y= y+ x- d x (%i3) ode(eq,y,x); (%o3) false (%i) load(contrib_ode)$ (%i5) contrib_ode(eq,y,x); Is p positive, negative or zero? p; (%o5) [ log( y+ x- + ) + y+ x- - x+ =%c] (%i6) odec(eq,*y+*x-,x); (%o6) - log( y+ x- + ) + y+ x- + =x+%c 8 A.Domarkas, VU, 3

9 solvet.wxm / solvet Function: solvet(eq,x) Returns rectform solution of polynomial equation. In "casus irreducibilis" give real solutions expressed in trigonometric functions. One version of "solvet" is: (%i) solvet(eq,x):=block([polf,spr,k], spr:solve(eq,x), polf(x):=block([rx], rx:rectform(x), if freeof(%i,x) or atom(x) or freeof(sin,rx) then return(rx) else map(polarform,x), rectform(%%), trigsimp(%%), trigreduce(%%)), makelist(x=polf(rhs(spr[k])),k,,length(spr)), sort(%%) )$ (%i) solvet(x^3-3*x^+,x); (%o) [ x= cos 9 +,x= cos 5 9 +,x= cos ] (%i3) solvet(x^6-3*x^5-3*x^+*x^3-3*x^-6*x+=,x); (%o3) [ x=,x=- 3,x= 3 +,x= cos 9, x= cos 9, x= cos 8 9 ] (%i) solvet(x^3-5*x-5,x); (%o) [ x= 5 cos atan( 9 ) - 3 3, x= 5 cos atan( 9 ) + 3 3, x= 5 cos atan( 9 ) ] 3 (%i5) solve(x^3-5*x-5,x); (%o5) [ x= - 3%i %i + 5 / 3 5 3%i - +, x= 3%i 5 9 %i + 5 / %i + 5 / 3 5-3%i - +, x= 5 9 %i 5 9 %i + 5 / / ] 5 9 %i + 5 / 3 9 A.Domarkas, VU, 3

10 ode_ic.wxm / ode_ic Function: ode_ic(eqn, dvar, ivar, ic) The function ode_ic solves an ordinary differential equation(ode) of first order with initial condition y(x) = y. Here ic is list [x,y]. (%i) load(odes)$. x^y'+3xy = sin(x)/x, y(pi) =. (%i) ode_ic(x^*'diff(y,x) + 3*y*x = sin(x)/x,y,x,[%pi,]); (%o) y=- cos( x ) + x 3. (y^e^y+x)y' = y, y() =. (%i3) eq:(y^*exp(y)+*x)*'diff(y,x)=y$ (%i) ode_ic(eq,y,x,[,]); (%o) ( y 3 -y ) %e y -x = y (%i5) solve(%,x); (%o5) [ x=( y 3 -y )%e y ] 3. xy' + y = y^log(x), y()=/. (%i6) eq:x*'diff(y,x)+y=*y^*log(x)$ (%i7) ode_ic(eq,y,x,[,/]); (%o7) y= log( x ) +. (x^-)y' + xy^ =, y() =. (%i8) eq:(x^-)*'diff(y,x)+*x*y^=$ (%i9) ode_ic(eq,y,x,[,]); (%o9) y= log( -x ) + A.Domarkas, VU, 3

11 ode_ic.wxm / ode_ic Function: ode_ic(eqn, dvar, ivar, ic) The function ode_ic solve an ordinary differential equation(ode) of second order with initial conditions y(x) = y, y'(x) = y. Here ic is list [x, y, y]. (%i) load(odes)$. y'' + yy'^3=, y()=, y'()= (%i) eq:'diff(y,x,) + y*'diff(y,x)^3 = $ (%i3) sol:ode_ic(eq,y,x,[,,]); (%o3) y=( 9 x x) / 3 - ( 9 x x) / 3 Test: (%i) ev(rhs(sol),x=); (%o) (%i5) diff(rhs(sol),x)$ ev(%,x=); (%o6) (%i7) subst(sol,eq)$ ev(%, nouns)$ radcan(%); (%o9) =. y'' = 8*y^3, y() =, y'() = 8. (%i) eq:'diff(y,x,)=8*y^3$ (%i) ode_ic(eq,y,x,[,,8]); (%o) y=- 8 x- 3. y'' + y = /cos(x), y()=, y'()=. (%i) eq:'diff(y,x,)+y = /cos(x)$ (%i3) sol:ode_ic(eq,y,x,[,,]); (%o3) y=cos( x) log( cos( x ) +x sin( x ) +cos( x) A.Domarkas, VU, 3

12 P_iter.wxm / P_iter Function: P_iter(eq, x, y, x, y, n). Solves first order differential equation using Picard iterative process. (%i) load(odes)$. y'=x^+y^, y()= (%i) eq:'diff(y,x)=x^+y^$ (%i) x:$ y:$ (%i) for k: thru 3 do print(p_iter(eq,x,y,x,y,k))$ x 3 3 x x3 3 x x 79 + x x3 3. y' = x( + y), y() =. (%i5) eq:'diff(y,x)=*x*(+y)$ (%i6) x:$ y:$ (%i8) for k: thru 5 do print(p_iter(eq,x,y,x,y,k))$ x x +x x x +x x 8 + x6 6 + x +x x + x8 + x6 6 + x +x A.Domarkas, VU, 3

13 odetaylor.wxm / odetaylor Function: odetaylor(eq, x, y, n). Solves first order differential equation using Taylor-series expansion. (%i) load(odes)$. y'=x+y^, y()= (%i) eq:diff(y(x),x)=x+y(x)^; (%o) d d x y( x ) =y( x) +x (%i3) odetaylor(eq,,,6); (%o3)/t/ +x+ 3 x + x3 7 x 3 x5 9 x y'=x^+y^, y()= (%i) eq:diff(y(x),x)=x^+y(x)^; (%o) d d x y( x ) =y( x) +x (%i5) odetaylor(eq,,,5); (%o5)/t/ x3 3 + x x 3 x y'=x-y^, y()=- (%i6) eq:diff(y(x),x)=x-y(x)^; (%o6) d d x y( x ) =x-y( x) (%i7) odetaylor(eq,,-,5); (%o7)/t/ - + ( x-) + ( x-) 3 + ( x-) + ( x-) A.Domarkas, VU, 3

14 odetaylor.wxm / odetaylor Function: odetaylor(eq, x, y, y, n). Solves second order differential equation using Taylor-series expansion. (%i) load(odes)$. Airy's Equation y''-xy=, y()=, y'()=. (%i) eq:'diff(y(x),x,)-x*y(x)=; (%o) d y( x ) -x y( x ) = d x (%i3) odetaylor(eq,,,,5); (%o3)/t/ + x3 6 + x6 8 + x x 77 + x y''=(y')^+xy, y()=, y'()= (%i) eq:'diff(y(x),x,)='diff(y(x),x,)^+x*y(x); (%o) d y( d x ) = d x d x y( x) +x y( x) (%i5) odetaylor(eq,,,,5); (%o5)/t/ + ( x-) + ( x-) 3 + ( x-) + ( x-) (%i6) eq:'diff(y(x),x,)+x*'diff(y(x),x)+y(x)=; (%o6) d y( x ) +x d d x d x y( x ) +y( x ) = (%i7) odetaylor(eq,,,,5); (%o7)/t/ x- x3 3 + x5 5 - x7 5 + x x x x (%i8) sum((-)^n*^n*n!*x^(*n+)/(*n+)!,n,,7); (%o8) - x x x x x7 5 + x5 5 - x3 3 +x A.Domarkas, VU, 3

15 odeexact.wxm / odeexact (%i) load(odes)$ Function: odeexact(eq). Solves first order exact equation. (%i) eq:*x*y*dx+(x^+3*y^)*dy=; (%o) dy( 3 y +x ) + dx x y = (%i3) odeexact(eq); (%o3) y 3 +x y=c. (%i) eq:(6*x^-y+3)*dx+(3*y^-x-3)*dy=; (%o) dy( 3 y -x-3) +dx( -y+6 x + 3 ) = (%i5) odeexact(eq); (%o5) y 3 -x y-3 y+ x x=c 3. (%i6) eq:exp(y)*dx+(*y+x*exp(y))*dy=; (%o6) dy( x %e y + y ) +dx %e y = (%i7) odeexact(eq); (%o7) x %e y +y =C. (%i8) eq:(x*dx+y*dy)/sqrt(x^+y^)+(x*dy-y*dx)/x^=; dy y + dx x dy x - dx y (%o8) + = y +x x (%i9) odeexact(eq); (%o9) y +x + y x =C 5 A.Domarkas, VU, 3

16 intfactor.wxm / intfactor Function: intfactor(eq, omega). Find intfactor mu = mu(omega) of the first order differential equation. (%i) load(odes)$. (%i) eq:(+y^)*dx+x*y*dy=$ (%i3) intfactor(eq,x); (%o3) x (%i) odeexact(eq*%); (%o) x y + x =C. (%i5) eq:(x*y^-*y^3)*dx+(3-*x*y^)*dy=$ (%i6) intfactor(eq,y); (%o6) y (%i7) odeexact(eq*%); (%o7) - xy- 3 y + x =C 3. (%i8) eq:y*dx+(x^+y^-x)*dy=$ (%i9) odeexact(eq); (%o9) false (%i) intfactor(eq,x^+y^); (%o) y +x (%i) odeexact(eq*%); (%o) y+atan y 6 A.Domarkas, VU, 3

17 intfactor.wxm /. (%i) eq:x*y*dx+(*x^+3*y^-)*dy=$ (%i3) intfactor(eq,y); (%o3) y 3 (%i) odeexact(eq*%); (%o) y 6 + x y - 5 y =C 5. (%i5) eq:(x^*y^3+6*y^5)*dx+(*x^3*y^+*x^)*dy=$ (%i6) intfactor(eq/y,x*y); (%o6) x y (%i7) odeexact(-eq/y*%); (%o7) xy + 3 y + x 3 =C Other method: (%i8) mu:x^a*y^b; (%o8) x a y b (%i9) diff(mu*(x^*y^3+6*y^5),y)=diff(mu*(*x^3*y^+*x^),x)$ (%i) factor(lhs(%)-rhs(%)); (%o) x a y b ( 6 by + 3 y +b x y - ax y - 3 x y - ax 3-8 x 3 ) (%i) collectterms(%/mu,x,y); (%o) ( 6 b+3) y +( b- a-3) x y +( - a-8) x 3 (%i) solve([coeff(%,y^),coeff(%,x^*y^),coeff(%,x^3)],[a,b]); solve: dependent equations eliminated: () (%o) [[a=-,b=-5]] (%i3) 'mu=subst(%[],mu); (%o3) = x y 5 7 A.Domarkas, VU, 3

18 odel.wxm / odel Function: odel(eqn, dvar, ivar) The function odel solves an linear ODEs with constant coefficients. (%i) load(odes)$ load(contrib_ode)$. y''' - y'' + y' =. (%i3) eq:'diff(y,x,3)-*'diff(y,x,)+'diff(y,x) = $ (%i) odel(eq,y,x); (%o) y=x %e x C3 + %e x C + C. y'''' + 8y'' + 6y = x exp(3x) + sin(x)^ + (%i5) eq:'diff(y,x,)+8*'diff(y,x,)+6*y=x*exp(3*x)+sin(x)^+$ (%i6) sol:odel(eq,y,x); (%o6) y=x sin( x) C+sin( x) C3+x cos( x) C+cos( x) C+ 97 x cos( x ) +( 83 x-768 )%e 3 x (%i7) ode_check(eq,sol); (%o7) 3. y'''- 3y'' + y = sin(x)^3. (%i8) eq:'diff(y,x,3)-3*'diff(y,x,)+y=sin(x)^3; (%o8) d3 y-3 d d x 3 y d x +y=sin( x) 3 (%i9) solvet(k^3-3*k^+=,k); (%o9) [ k= cos 5 9 +,k= cos 7 9 +,k= cos 9 + ] (%i) sol:odel(eq,y,x); (%o) y=%e cos 7 x+x cos 5 x+x cos 9 C3 + %e 9 C + %e 9 x+x C - 8 sin( 3 x ) +7 cos( 3 x) -68 sin( x) -67 cos( x) 65 (%i) ode_check(eq,sol); (%o) 8 A.Domarkas, VU, 3

19 odel_ic.wxm / odel_ic Function: odel_ic(eqn, dvar, ivar, ic) The function odel_ic solves initial value problems for linear ODEs with constant coefficients. (%i) load(odes)$ load(contrib_ode)$. y''' + y'' = x + exp(-x), y() =, y'() =, y''() =. (%i3) eq:'diff(y,x,3)+'diff(y,x,)=x + exp(-x); (%o3) d3 d y+ d x3 d x y=%e-x +x (%i) odel_ic(eq, y, x, [,,, ]),expand; (%o) y=x %e -x + %e -x + x3 6 - x + 3 x-3. y''''-y=8*exp(x), y()=, y'()=, y''()=, y'''()=6. (%i5) eq:'diff(y,x,)-y=8*exp(x); (%o5) d d x y-y=8%ex (%i6) odel_ic(eq, y, x, [,,,, 6]); (%o6) y= x %e x 3. y''''' - y' =, y()=, y'()=, y''()=, y'''()=, y''''()=. (%i7) eq:'diff(y,x,5)-'diff(y,x)=; (%o7) d5 d y- d x 5 d x y= (%i8) sol:odel_ic(eq,y,x,[,,,,,]); (%o8) y=cos( x ) +%e x - Test: (%i9) ode_check(eq,sol); (%o9) (%i) makelist(diff(rhs(sol),x,k),k,,)$ ev(%,x=); (%o) [,,,,] 9 A.Domarkas, VU, 3

20 fs.wxm / fs Function: fs(eq, y, x). Find fundamental system of solutions of the linear n-th order differential equation with constant coeficients. (%i) load(odes)$. (%i) eq:'diff(y,x,3)+3*'diff(y,x,)-*'diff(y,x)=x-; (%o) d3 y+3 d d x 3 y d x - d d x y =x- (%i3) fs(eq,y,x); (%o3) [,%e - 5 x,%e x ] (%i) odel(eq,y,x); (%o) y=%e x C3 + %e - 5 x C + C - 5 x - 7 x. (%i5) eq:'diff(y,x,)+8*'diff(y,x,)+6*y=x^*exp(x)*sin(x); (%o5) d d y+8 d x d y x +6 y=x %e x sin( x) (%i6) fs(eq,y,x); (%o6) [ cos( x ), x cos( x ), sin( x ), x sin( x )] (%i7) sol:odel(eq,y,x); (%o7) y=x sin( x) C+sin( x) C3+x cos( x) C+cos( x) C+ ( 75 x - 6 x+68 )%e x sin( x ) +( - x + 8 x+6 )%e x cos( x) 5 3. (%i8) eq:'diff(y,x,8)+'diff(y,x,)=x^5$ (%i9) solvet(k^8+k^=,k); (%o9) [ k=%i, k= %i - 3, k=-%i - 3 3, k=-%i, k= - %i, k=%i + 3, k=] A.Domarkas, VU, 3

21 fs.wxm / (%i) fs(eq,y,x); (%o) [,x,%e - cos( x ), sin( x )] 3 x cos x,%e 3 x cos x,%e- 3 x sin x,%e 3 x sin x, (%i) sol:odel(eq,y,x); (%o) y=sin( x) C8+cos( x) C7+%e cos x C + %e- 3 x 3 x sin x C6 + %e- cos x C3 + x C + C + x7-5 x 3 x sin x C5 + %e 3 x Test: (%i) load(contrib_ode)$ (%i3) ode_check(eq,sol); (%o3). (%i) eq:'diff(y,x,6)-3*'diff(y,x,5)-3*'diff(y,x,)+*'diff(y,x,3) -3*'diff(y,x,)-6*'diff(y,x,)+*y=*x^7+sin(x)^3; (%o) d6 d y-3 d 5 x 6 d y x 5-3 d d y x + d 3 d y x 3-3 d d y x -6 d y + y=sin( ) d x x 3 + x 7 (%i5) fs(eq,y,x); (%o5) [%e x,%e cos 9 (%i6) sol:odel(eq,y,x)$ x cos,%e 9 x cos,%e 8 9 x,%e x- 3 x,%e 3 x+x ] (%i7) expand(%); (%o7) y=%e 3 x+x C6 + %e x- 3 x C5 + %e cos 8 x cos x 9 C + %e 9 C3 + %e cos x 9 C + %e x 93 sin( ) C + 3 x 7 cos( - 3 x ) + 3 sin( x) 63 cos( + x ) +x 7 + x x x x x x+735 Test: (%i8) ode_check(eq,sol)$ trigreduce(%)$ trigrat(%); (%o) A.Domarkas, VU, 3

22 partsol.wxm / partsol Function: partsol(eq, y, x). Find partial solution of the linear n-th order differential equation with constant coefficients. (%i) load(odes)$. (%i) eq:'diff(y,x,3)+3*'diff(y,x,)-*'diff(y,x)=x-; (%o) d3 y+3 d d x 3 y d x - d d x y =x- (%i3) partsol(eq,y,x); (%o3) - 5 x - 7 x (%i) odel(eq,y,x); (%o) y=%e x C3 + %e - 5 x C + C - 5 x - 7 x. (%i5) eq:'diff(y,x,)+'diff(y,x,3)-3*'diff(y,x,)-5*'diff(y,x)-*y= exp(*x)-exp(-x); (%o5) d d3 y+ d x d y-3 d x 3 d y x -5 d d x y - y=%e x - %e -x (%i6) partsol(eq,y,x); (%o6) %e-x ( x %e 3 x + 3 x 3 + x + x) 5 (%i7) odel(eq,y,x); (%o7) y=%e x C + x %e -x C3 + x %e -x C + %e -x C + %e -x ( x %e 3 x + 3 x 3 + x + x) 5 (%i8) expand(%)$ (%i9) y=collectterms(rhs(%),exp(-x),exp(*x)); (%o9) y=%e x C + x 7 + %e-x x C3 + x C + C + x3 8 + x 7 + x 7 A.Domarkas, VU, 3

23 partsol.wxm / 3. (%i) eq:'diff(y,x,3)+'diff(y,x,)=/cos(x)$ (%i) partsol(eq,y,x); log sin( x) - sin( x ) + - sin( x) log( cos( x ) + x cos( x ) (%o) - (%i) sol:odel(eq,y,x); log sin( x) - sin( x ) + - sin( x) log( cos( x ) + x cos( x ) (%o) y=sin( x) C3+cos( x) C + C - Test: (%i3) load(contrib_ode)$ (%i) ode_check(eq,sol); (%o). (%i5) eq:'diff(y,x,3)+8*'diff(y,x,)+9*y=cos(x)^3; (%o5) d3 d y+8 d x 3 y +9 y=cos( ) d x x 3 (%i6) partsol(eq,y,x); 3 sin( 3 x) -39 cos( 3 x) -63 sin( x) -8 cos( ) (%o6) - x 56 (%i7) sol:odel(eq,y,x); (%o7) y=%e x/ sin 5 7 x C3 + %e x/ cos 3 sin( 3 x) -39 cos( 3 x) -63 sin( x) -8 cos( x) x C + %e -x C - Test: (%i8) load(contrib_ode)$ (%i9) ode_check(eq,sol); (%o9) 3 A.Domarkas, VU, 3

24 odem.wxm / odem Function: odem(a,f,t) Find solutions of linear system of ODEs with constant coefficients in matrix form: Y' = AY + F (%i) load(odes)$. Y' = AY + F. (%i) A:matrix([,],[,]); (%o) (%i3) F:transpose([t-,*t-]); (%o3) t- t- (%i) sol:odem(a,f,t); (%o) Test: %e 3 t %e 3 t - %e-t C + + %e-t %e 3 t + %e-t C - t C +( %e 3 t - %e -t ) C + (%i5) diff(sol,t)-a.sol-f$ expand(%); (%o6). Y' = AY. (%i7) A:matrix([,,-8,-3],[-8,-,,],[-9,-3,-5,-9],[33,,9,3]); (%o7) (%i8) F:transpose([,,,])$ A.Domarkas, VU, 3

25 odem.wxm / (%i9) charpoly(a, x),factor; (%o9) ( x - x+3) (%i) solve(%); (%o) [ x= - 3%i,x=3%i+ ] (%i) odem(a,f,t)$ (%i) sol:ratsimp(%); (%o) (- 3 t- )%e t sin( 3 t) C+( (- 9 t-3 )%e t sin( 3 t ) +t %e t cos( 3 t) C3- ( 9 t+3 )%e t sin( 3 t) -9 t %e t cos( 3 t) C+( ( t+ )%e t sin( 3 t) -3 t %e t cos( 3 t) C3+(3 t % - 3%e t sin( 3 t) C+( %e t cos( 3 t) -9%e t sin( 3 t) C ( 9%e t sin( 3 t ) +( 3 t+ )%e t cos( 3 t) C+( ( t+7 )%e t sin( 3 t ) +9 t %e t cos( 3 t) C3+(3 (%i3) sol[,]; (%o3) (- 3 t- )%e t sin( 3 t) C+( (- 9 t-3 )%e t sin( 3 t ) +t %e t cos( 3 t) C3- t %e t sin( 3 t) C+( %e t cos( 3 t) -3 t %e t sin( 3 t) C (%i) sol[,]; (%o) ( 9 t+3 )%e t sin( 3 t) -9 t %e t cos( 3 t) C+ ( t+ )%e t sin( 3 t) -3 t %e t cos( 3 t) C3+ ( 3 t %e t sin( 3 t ) +( - 3 t )%e t cos( 3 t) C+ ( 9 t-3 )%e t sin( 3 t) -9 t %e t cos( 3 t) C (%i5) sol[3,]; (%o5) - 3%e t sin( 3 t) C+( %e t cos( 3 t) -9%e t sin( 3 t) C3-%e t sin( 3 t) C - 3%e t sin( 3 t) C (%i6) sol[,]; (%o6) ( 9%e t sin( 3 t ) +( 3 t+ )%e t cos( 3 t) C+ ( t+7 )%e t sin( 3 t ) +9 t %e t cos( 3 t) C3+( 3%e t sin( 3 t ) +t %e t cos( 3 t) C +( %e t sin( 3 t ) +3 t %e t cos( 3 t) C Test: (%i7) diff(sol,t)-a.sol$ expand(%); (%o8) 5 A.Domarkas, VU, 3

26 odem_ic.wxm / odem_ic Function: odem_ic(a, F, t, t, Y) Find solutions of initial problem for linear system of ODEs in matrix form: Y' = AY + F, Y(t) = Y. (updated version of odelinsys) (%i) load(odes)$. Y' = AY + F, Y()=Y (%i) A:matrix([,-],[,-]); - (%o) - (%i3) F:transpose([*%e^(-*t),]); (%o3) %e-t (%i) Y:transpose([,]); (%o) (%i5) sol:odem_ic(a,f,t,,y); sin( t) (%o5) sin( t) -cos( t ) +%e - t Test: (%i6) diff(sol,t)-a.sol-f$ expand(%); (%o7) (%i8) ev(sol,t=); (%o8) 6 A.Domarkas, VU, 3

27 odem_ic.wxm /. Y' = AY, Y()=transpose([5,35,55,75]). (%i9) A:matrix([,,,7],[,,,],[,,,],[7,,,]); 7 (%o9) 7 (%i) F:transpose([,,,])$ (%i) Y:transpose([5,35,55,75]); 5 (%o) (%i) charpoly(a, x),factor; (%o) ( x-5 )( x- )( x+3( ) x+6) (%i3) sol:odem_ic(a,f,t,,y); 7 %e 5 t + 8 %e t - 3 %e - 3 t (%o3) 5 %e 5 t - 9%e t - %e - 6 t 5 %e 5 t - 9%e t + %e - 6 t 7 %e 5 t + 8 %e t + 3 %e - 3 t Test: (%i) diff(sol,t)-a.sol$ expand(%); (%o5) (%i6) ev(sol,t=); 5 (%o6) A.Domarkas, VU, 3

28 matrix_exp.wxm / matrix_exp Function: matrix_exp(a,t) Returns matrix exponential e^(at) computed via Laplace transforms. (%i) matrix_exp(a,r):= block([n,b,s,t,lap,f], n:length(a), B:invert(s*ident(n)-A), Lap(f):=ilt(f, s, t), matrixmap(lap,b), subst(t=r,%%))$. (%i) A:matrix([,],[,]); (%o) (%i3) matrix_exp(a,t); (%o3) %et t %e t %e t (%i) e^'a=matrix_exp(a,); (%o) e A = %e %e %e. (%i5) A:matrix([,7,6],[-5,-,-6],[,,6]); (%o5) (%i6) e^'a=matrix_exp(a,); (%o6) e A = 3 %e 6 %e - %e - 9%e6 3 %e 6 5%e - 5%e - 9%e6 %e 6 - %e %e - %e6 %e 6 %e 6 %e 6 8 A.Domarkas, VU, 3

29 odelinsys.wxm / odelinsys Function: odelinsys(a, F, x, x, Y) Find solutions of initial problem for linear system of ODEs in matrix form: Y' = AY + F, Y(x) = Y. (%i) load(odes)$ load(diag)$. Solve Y' = AY + F, Y() = Y (%i3) A:matrix([,3],[-,5]); (%o3) 3-5 (%i) F:transpose([-x,*x])$ Y:transpose([3,])$ (%i6) sol:odelinsys(a,f,x,,y); (%o6) 7%e x 5 %e x + + x %e x 3 + 5%ex - x Test: (%i7) diff(sol,x)-a.sol-f,expand; (%o7). Solve Y' = AY (%i8) A:matrix([,-,],[3,,-],[,,]); (%o8) (%i9) sol:odelinsys(a,[,,],t,,[c,c,c3]),factor; (%o9) %e t ( t C3 - t C - tc+t C + tc+ C) %e t ( t C3 - t C3 - t C - t C + C + t C + 3 tc) %e t ( t C3 - tc3+ C3 - t C + t C + tc) 9 A.Domarkas, VU, 3

30 wronskian.wxm / wronskian Function: wronskian ([f_,..., f_n], x) Returns the Wronskian matrix of the list of expressions [f_,..., f_n] in the variable x. (%i) load(odes)$. (%i) wronskian([f(x),g(x),h(x)],x); f( x) g( x) h( x) (%o) d d x f( x) d d x g( x) d d x h( x) d f( x) d x d g( x) d x d h( x) d x. Form a linear homogeneous differential equation, knowing its fundamental system of solutions: y=x, y=x^3. (%i3) depends(y,x); (%o3) [y( ) x ] (%i) wronskian([x,x^3,y],x); x x 3 y (%o) 3 x d d x y 6 x d d x y (%i5) determinant(%)=; (%o5) x 3 x d y d x -6 x d d x y -x3 d y +6 xy= d x (%i6) eq:expand(%/x/); (%o6) x d y d x -3 x d y +3 y= d x (%i7) ode(eq,y,x); (%o7) y = %k x 3 + %k x 3 A.Domarkas, VU, 3

31 References: Kamke, E., 9. Differentialgleichungen. Losungsmethoden und Losungen. AkademischeVerlagsgesellschaft, Leipzig. 3 A.Domarkas, VU, 3

Trigtools Package. Aleksas Domarkas. November 27, 2013

Trigtools Package. Aleksas Domarkas.  November 27, 2013 Trigtools Package Aleksas Domarkas aleksasd873@gmail.com aleksas.domarkas@mif.vu.lt November 7, 013 We use open-source computer algebra system(cas) maxima 5.31.. The trigtools package contains commands

More information

Green Lab. MAXIMA & ODE2. Cheng Ren, Lin. Department of Marine Engineering National Kaohsiung Marine University

Green Lab. MAXIMA & ODE2. Cheng Ren, Lin. Department of Marine Engineering National Kaohsiung Marine University Green Lab. 1/20 MAXIMA & ODE2 Cheng Ren, Lin Department of Marine Engineering National Kaohsiung Marine University email: crlin@mail.nkmu.edu.tw Objectives learn MAXIMA learn ODE2 2/20 ODE2 Method First

More information

Mathematical Computing

Mathematical Computing IMT2b2β Department of Mathematics University of Ruhuna A.W.L. Pubudu Thilan Differential Equations Types of Differential Equations Differential equations can basically be classified as ordinary differential

More information

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods. Lesson 3: Linear differential equations of the first der Solve each of the following differential equations by two methods. Exercise 3.1. Solution. Method 1. It is clear that y + y = 3 e dx = e x is an

More information

2. Second-order Linear Ordinary Differential Equations

2. Second-order Linear Ordinary Differential Equations Advanced Engineering Mathematics 2. Second-order Linear ODEs 1 2. Second-order Linear Ordinary Differential Equations 2.1 Homogeneous linear ODEs 2.2 Homogeneous linear ODEs with constant coefficients

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Chapter 1 Introduction and Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

Department of Mathematics. MA 108 Ordinary Differential Equations

Department of Mathematics. MA 108 Ordinary Differential Equations Department of Mathematics Indian Institute of Technology, Bombay Powai, Mumbai 476, INDIA. MA 8 Ordinary Differential Equations Autumn 23 Instructor Santanu Dey Name : Roll No : Syllabus and Course Outline

More information

1 Solution to Homework 4

1 Solution to Homework 4 Solution to Homework Section. 5. The characteristic equation is r r + = (r )(r ) = 0 r = or r =. y(t) = c e t + c e t y = c e t + c e t. y(0) =, y (0) = c + c =, c + c = c =, c =. To find the maximum value

More information

HW2 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22]

HW2 Solutions. MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22] HW2 Solutions MATH 20D Fall 2013 Prof: Sun Hui TA: Zezhou Zhang (David) October 14, 2013 Checklist: Section 2.6: 1, 3, 6, 8, 10, 15, [20, 22] Section 3.1: 1, 2, 3, 9, 16, 18, 20, 23 Section 3.2: 1, 2,

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 7. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C x is the general solution of a differential

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

FINAL EXAM MATH303 Theory of Ordinary Differential Equations. Spring dx dt = x + 3y dy dt = x y.

FINAL EXAM MATH303 Theory of Ordinary Differential Equations. Spring dx dt = x + 3y dy dt = x y. FINAL EXAM MATH0 Theory of Ordinary Differential Equations There are 5 problems on 2 pages. Spring 2009. 25 points Consider the linear plane autonomous system x + y x y. Find a fundamental matrix of the

More information

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations

An Overly Simplified and Brief Review of Differential Equation Solution Methods. 1. Some Common Exact Solution Methods for Differential Equations An Overly Simplified and Brief Review of Differential Equation Solution Methods We will be dealing with initial or boundary value problems. A typical initial value problem has the form y y 0 y(0) 1 A typical

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

Lecture Notes on. Differential Equations. Emre Sermutlu

Lecture Notes on. Differential Equations. Emre Sermutlu Lecture Notes on Differential Equations Emre Sermutlu ISBN: Copyright Notice: To my wife Nurten and my daughters İlayda and Alara Contents Preface ix 1 First Order ODE 1 1.1 Definitions.............................

More information

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012

Polytechnic Institute of NYU MA 2132 Final Practice Answers Fall 2012 Polytechnic Institute of NYU MA Final Practice Answers Fall Studying from past or sample exams is NOT recommended. If you do, it should be only AFTER you know how to do all of the homework and worksheet

More information

1+t 2 (l) y = 2xy 3 (m) x = 2tx + 1 (n) x = 2tx + t (o) y = 1 + y (p) y = ty (q) y =

1+t 2 (l) y = 2xy 3 (m) x = 2tx + 1 (n) x = 2tx + t (o) y = 1 + y (p) y = ty (q) y = DIFFERENTIAL EQUATIONS. Solved exercises.. Find the set of all solutions of the following first order differential equations: (a) x = t (b) y = xy (c) x = x (d) x = (e) x = t (f) x = x t (g) x = x log

More information

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations

ENGI Second Order Linear ODEs Page Second Order Linear Ordinary Differential Equations ENGI 344 - Second Order Linear ODEs age -01. Second Order Linear Ordinary Differential Equations The general second order linear ordinary differential equation is of the form d y dy x Q x y Rx dx dx Of

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

0.1 Problems to solve

0.1 Problems to solve 0.1 Problems to solve Homework Set No. NEEP 547 Due September 0, 013 DLH Nonlinear Eqs. reducible to first order: 1. 5pts) Find the general solution to the differential equation: y = [ 1 + y ) ] 3/. 5pts)

More information

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3

Math 201 Solutions to Assignment 1. 2ydy = x 2 dx. y = C 1 3 x3 Math 201 Solutions to Assignment 1 1. Solve the initial value problem: x 2 dx + 2y = 0, y(0) = 2. x 2 dx + 2y = 0, y(0) = 2 2y = x 2 dx y 2 = 1 3 x3 + C y = C 1 3 x3 Notice that y is not defined for some

More information

LINEAR DIFFERENTIAL EQUATIONS. Theorem 1 (Existence and Uniqueness). [1, NSS, Section 6.1, Theorem 1] 1 Suppose. y(x)

LINEAR DIFFERENTIAL EQUATIONS. Theorem 1 (Existence and Uniqueness). [1, NSS, Section 6.1, Theorem 1] 1 Suppose. y(x) LINEAR DIFFERENTIAL EQUATIONS MINSEON SHIN 1. Existence and Uniqueness Theorem 1 (Existence and Uniqueness). [1, NSS, Section 6.1, Theorem 1] 1 Suppose p 1 (x),..., p n (x) and g(x) are continuous real-valued

More information

Math 3313: Differential Equations Second-order ordinary differential equations

Math 3313: Differential Equations Second-order ordinary differential equations Math 3313: Differential Equations Second-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Mass-spring & Newton s 2nd law Properties

More information

Section 9.8 Higher Order Linear Equations

Section 9.8 Higher Order Linear Equations Section 9.8 Higher Order Linear Equations Key Terms: Higher order linear equations Equivalent linear systems for higher order equations Companion matrix Characteristic polynomial and equation A linear

More information

Math 322. Spring 2015 Review Problems for Midterm 2

Math 322. Spring 2015 Review Problems for Midterm 2 Linear Algebra: Topic: Linear Independence of vectors. Question. Math 3. Spring Review Problems for Midterm Explain why if A is not square, then either the row vectors or the column vectors of A are linearly

More information

6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS

6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS 6.0 Introduction to Differential Equations Contemporary Calculus 1 6.0 INTRODUCTION TO DIFFERENTIAL EQUATIONS This chapter is an introduction to differential equations, a major field in applied and theoretical

More information

Homework Solutions: , plus Substitutions

Homework Solutions: , plus Substitutions Homework Solutions: 2.-2.2, plus Substitutions Section 2. I have not included any drawings/direction fields. We can see them using Maple or by hand, so we ll be focusing on getting the analytic solutions

More information

Assignment # 7, Math 370, Fall 2018 SOLUTIONS: y = e x. y = e 3x + 4xe 3x. y = e x cosx.

Assignment # 7, Math 370, Fall 2018 SOLUTIONS: y = e x. y = e 3x + 4xe 3x. y = e x cosx. Assignment # 7, Math 370, Fall 2018 SOLUTIONS: Problem 1: Solve the equations (a) y 8y + 7y = 0, (i) y(0) = 1, y (0) = 1. Characteristic equation: α 2 8α+7 = 0, = 64 28 = 36 so α 1,2 = (8 ±6)/2 and α 1

More information

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C.

(1 + 2y)y = x. ( x. The right-hand side is a standard integral, so in the end we have the implicit solution. y(x) + y 2 (x) = x2 2 +C. Midterm 1 33B-1 015 October 1 Find the exact solution of the initial value problem. Indicate the interval of existence. y = x, y( 1) = 0. 1 + y Solution. We observe that the equation is separable, and

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

A( x) B( x) C( x) y( x) 0, A( x) 0

A( x) B( x) C( x) y( x) 0, A( x) 0 3.1 Lexicon Revisited The nonhomogeneous nd Order ODE has the form: d y dy A( x) B( x) C( x) y( x) F( x), A( x) dx dx The homogeneous nd Order ODE has the form: d y dy A( x) B( x) C( x) y( x), A( x) dx

More information

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016

Math 4B Notes. Written by Victoria Kala SH 6432u Office Hours: T 12:45 1:45pm Last updated 7/24/2016 Math 4B Notes Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: T 2:45 :45pm Last updated 7/24/206 Classification of Differential Equations The order of a differential equation is the

More information

3. Identify and find the general solution of each of the following first order differential equations.

3. Identify and find the general solution of each of the following first order differential equations. Final Exam MATH 33, Sample Questions. Fall 6. y = Cx 3 3 is the general solution of a differential equation. Find the equation. Answer: y = 3y + 9 xy. y = C x + C is the general solution of a differential

More information

TAM3B DIFFERENTIAL EQUATIONS Unit : I to V

TAM3B DIFFERENTIAL EQUATIONS Unit : I to V TAM3B DIFFERENTIAL EQUATIONS Unit : I to V Unit I -Syllabus Homogeneous Functions and examples Homogeneous Differential Equations Exact Equations First Order Linear Differential Equations Reduction of

More information

Ex. 1. Find the general solution for each of the following differential equations:

Ex. 1. Find the general solution for each of the following differential equations: MATH 261.007 Instr. K. Ciesielski Spring 2010 NAME (print): SAMPLE TEST # 2 Solve the following exercises. Show your work. (No credit will be given for an answer with no supporting work shown.) Ex. 1.

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

Diff. Eq. App.( ) Midterm 1 Solutions

Diff. Eq. App.( ) Midterm 1 Solutions Diff. Eq. App.(110.302) Midterm 1 Solutions Johns Hopkins University February 28, 2011 Problem 1.[3 15 = 45 points] Solve the following differential equations. (Hint: Identify the types of the equations

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 25 First order ODE s We will now discuss

More information

Study # 1 11, 15, 19

Study # 1 11, 15, 19 Goals: 1. Recognize Taylor Series. 2. Recognize the Maclaurin Series. 3. Derive Taylor series and Maclaurin series representations for known functions. Study 11.10 # 1 11, 15, 19 f (n) (c)(x c) n f(c)+

More information

Handbook of Ordinary Differential Equations

Handbook of Ordinary Differential Equations Handbook of Ordinary Differential Equations Mark Sullivan July, 28 i Contents Preliminaries. Why bother?...............................2 What s so ordinary about ordinary differential equations?......

More information

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS)

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS) Name: November 8, 011 Worksheet # : Higher Order Linear ODEs (SOLUTIONS) 1. A set of n-functions f 1, f,..., f n are linearly independent on an interval I if the only way that c 1 f 1 (t) + c f (t) +...

More information

Math 266, Midterm Exam 1

Math 266, Midterm Exam 1 Math 266, Midterm Exam 1 February 19th 2016 Name: Ground Rules: 1. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use

More information

Solving ordinary differential equations and Taylor expansion

Solving ordinary differential equations and Taylor expansion Solving ordinary differential equations and Taylor expansion December 16, 2015 Solving ordinary differential equations and Taylor expansion December 16, 2015 1 / 29 Solving ordinary differential equations

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

Ma 221 Homework Solutions Due Date: January 24, 2012

Ma 221 Homework Solutions Due Date: January 24, 2012 Ma Homewk Solutions Due Date: January, 0. pg. 3 #, 3, 6,, 5, 7 9,, 3;.3 p.5-55 #, 3, 5, 7, 0, 7, 9, (Underlined problems are handed in) In problems, and 5, determine whether the given differential equation

More information

and verify that it satisfies the differential equation:

and verify that it satisfies the differential equation: MOTIVATION: Chapter One: Basic and Review Why study differential equations? Suppose we know how a certain quantity changes with time (for example, the temperature of coffee in a cup, the number of people

More information

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as

MAS113 CALCULUS II SPRING 2008, QUIZ 5 SOLUTIONS. x 2 dx = 3y + y 3 = x 3 + c. It can be easily verified that the differential equation is exact, as MAS113 CALCULUS II SPRING 008, QUIZ 5 SOLUTIONS Quiz 5a Solutions (1) Solve the differential equation y = x 1 + y. (1 + y )y = x = (1 + y ) = x = 3y + y 3 = x 3 + c. () Solve the differential equation

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Chap. 2 Second-Order Linear ODEs Sec. 2.1 Homogeneous Linear ODEs of Second Order On pp. 45-46 we extend concepts defined in Chap. 1, notably solution and homogeneous and nonhomogeneous, to second-order

More information

Differential Equations Class Notes

Differential Equations Class Notes Differential Equations Class Notes Dan Wysocki Spring 213 Contents 1 Introduction 2 2 Classification of Differential Equations 6 2.1 Linear vs. Non-Linear.................................. 7 2.2 Seperable

More information

UNIT-IV DIFFERENTIATION

UNIT-IV DIFFERENTIATION UNIT-IV DIFFERENTIATION BASIC CONCEPTS OF DIFFERTIATION Consider a function yf(x) of a variable x. Suppose x changes from an initial value x 0 to a final value x 1. Then the increment in x defined to be

More information

AMATH 351 Mar 15, 2013 FINAL REVIEW. Instructor: Jiri Najemnik

AMATH 351 Mar 15, 2013 FINAL REVIEW. Instructor: Jiri Najemnik AMATH 351 Mar 15, 013 FINAL REVIEW Instructor: Jiri Najemni ABOUT GRADES Scores I have so far will be posted on the website today sorted by the student number HW4 & Exam will be added early next wee Let

More information

Advanced Eng. Mathematics

Advanced Eng. Mathematics Koya University Faculty of Engineering Petroleum Engineering Department Advanced Eng. Mathematics Lecture 6 Prepared by: Haval Hawez E-mail: haval.hawez@koyauniversity.org 1 Second Order Linear Ordinary

More information

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai APPLIED MATHEMATICS Part 1: Ordinary Differential Equations Contents 1 First Order Differential Equations 3 1.1 Basic Concepts and Ideas................... 4 1.2 Separable Differential Equations................

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS ORDINARY DIFFERENTIAL EQUATIONS Basic concepts: Find y(x) where x is the independent and y the dependent varible, based on an equation involving x, y(x), y 0 (x),...e.g.: y 00 (x) = 1+y(x) y0 (x) 1+x or,

More information

ODE Homework Solutions of Linear Homogeneous Equations; the Wronskian

ODE Homework Solutions of Linear Homogeneous Equations; the Wronskian ODE Homework 3 3.. Solutions of Linear Homogeneous Equations; the Wronskian 1. Verify that the functions y 1 (t = e t and y (t = te t are solutions of the differential equation y y + y = 0 Do they constitute

More information

1 st ORDER O.D.E. EXAM QUESTIONS

1 st ORDER O.D.E. EXAM QUESTIONS 1 st ORDER O.D.E. EXAM QUESTIONS Question 1 (**) 4y + = 6x 5, x > 0. dx x Determine the solution of the above differential equation subject to the boundary condition is y = 1 at x = 1. Give the answer

More information

Mathematics 3 Differential Calculus

Mathematics 3 Differential Calculus Differential Calculus 3-1a A derivative function defines the slope described by the original function. Example 1 (FEIM): Given: y(x) = 3x 3 2x 2 + 7. What is the slope of the function y(x) at x = 4? y

More information

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015. APPM 23: Final Exam :3am :pm, May, 25. ON THE FRONT OF YOUR BLUEBOOK write: ) your name, 2) your student ID number, 3) lecture section, 4) your instructor s name, and 5) a grading table for eight questions.

More information

Nonconstant Coefficients

Nonconstant Coefficients Chapter 7 Nonconstant Coefficients We return to second-order linear ODEs, but with nonconstant coefficients. That is, we consider (7.1) y + p(t)y + q(t)y = 0, with not both p(t) and q(t) constant. The

More information

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS LECTURE 10 APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ordinary Differential Equations Initial Value Problems For Initial Value problems (IVP s), conditions are specified

More information

Algebraic Properties of Solutions of Linear Systems

Algebraic Properties of Solutions of Linear Systems Algebraic Properties of Solutions of Linear Systems In this chapter we will consider simultaneous first-order differential equations in several variables, that is, equations of the form f 1t,,,x n d f

More information

Lecture Notes 1. First Order ODE s. 1. First Order Linear equations A first order homogeneous linear ordinary differential equation (ODE) has the form

Lecture Notes 1. First Order ODE s. 1. First Order Linear equations A first order homogeneous linear ordinary differential equation (ODE) has the form Lecture Notes 1 First Order ODE s 1. First Order Linear equations A first order homogeneous linear ordinary differential equation (ODE) has the form This equation we rewrite in the form or From the last

More information

6 Second Order Linear Differential Equations

6 Second Order Linear Differential Equations 6 Second Order Linear Differential Equations A differential equation for an unknown function y = f(x) that depends on a variable x is any equation that ties together functions of x with y and its derivatives.

More information

Series Solutions of Linear ODEs

Series Solutions of Linear ODEs Chapter 2 Series Solutions of Linear ODEs This Chapter is concerned with solutions of linear Ordinary Differential Equations (ODE). We will start by reviewing some basic concepts and solution methods for

More information

Chapter1. Ordinary Differential Equations

Chapter1. Ordinary Differential Equations Chapter1. Ordinary Differential Equations In the sciences and engineering, mathematical models are developed to aid in the understanding of physical phenomena. These models often yield an equation that

More information

Exam 1 Review: Questions and Answers. Part I. Finding solutions of a given differential equation.

Exam 1 Review: Questions and Answers. Part I. Finding solutions of a given differential equation. Exam 1 Review: Questions and Answers Part I. Finding solutions of a given differential equation. 1. Find the real numbers r such that y = e x is a solution of y y 30y = 0. Answer: r = 6, 5 2. Find the

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

Department of Mathematics, K.T.H.M. College, Nashik F.Y.B.Sc. Calculus Practical (Academic Year )

Department of Mathematics, K.T.H.M. College, Nashik F.Y.B.Sc. Calculus Practical (Academic Year ) F.Y.B.Sc. Calculus Practical (Academic Year 06-7) Practical : Graps of Elementary Functions. a) Grap of y = f(x) mirror image of Grap of y = f(x) about X axis b) Grap of y = f( x) mirror image of Grap

More information

Indefinite Integration

Indefinite Integration Indefinite Integration 1 An antiderivative of a function y = f(x) defined on some interval (a, b) is called any function F(x) whose derivative at any point of this interval is equal to f(x): F'(x) = f(x)

More information

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية الجامعة اإلسالمية كلية العلوم غزة قسم الرياضيات المعادالت التفاضلية العادية Elementary differential equations and boundary value problems المحاضرون أ.د. رائد صالحة د. فاتن أبو شوقة 1 3 4 5 6 بسم هللا

More information

y0 = F (t0)+c implies C = y0 F (t0) Integral = area between curve and x-axis (where I.e., f(t)dt = F (b) F (a) wheref is any antiderivative 2.

y0 = F (t0)+c implies C = y0 F (t0) Integral = area between curve and x-axis (where I.e., f(t)dt = F (b) F (a) wheref is any antiderivative 2. Calulus pre-requisites you must know. Derivative = slope of tangent line = rate. Integral = area between curve and x-axis (where area can be negative). The Fundamental Theorem of Calculus: Suppose f continuous

More information

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation. Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: y y x y2 = 0 : homogeneous equation. x2 v = y dy, y = vx, and x v + x dv dx = v + v2. dx =

More information

Calculus II (Math 122) Final Exam, 19 May 2012

Calculus II (Math 122) Final Exam, 19 May 2012 Name ID number Sections C and D Calculus II (Math 122) Final Exam, 19 May 2012 This is a closed book exam. No notes or calculators are allowed. A table of trigonometric identities is attached. To receive

More information

First order differential equations

First order differential equations First order differential equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T. First

More information

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB

More information

MATH 251 Examination I October 8, 2015 FORM A. Name: Student Number: Section:

MATH 251 Examination I October 8, 2015 FORM A. Name: Student Number: Section: MATH 251 Examination I October 8, 2015 FORM A Name: Student Number: Section: This exam has 14 questions for a total of 100 points. Show all you your work! In order to obtain full credit for partial credit

More information

144 Chapter 3. Second Order Linear Equations

144 Chapter 3. Second Order Linear Equations 144 Chapter 3. Second Order Linear Equations PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation. 1. y + 2y 3y = 0 2. y + 3y + 2y = 0 3. 6y y y = 0 4.

More information

Solution to Review Problems for Midterm II

Solution to Review Problems for Midterm II Solution to Review Problems for Midterm II Midterm II: Monday, October 18 in class Topics: 31-3 (except 34) 1 Use te definition of derivative f f(x+) f(x) (x) lim 0 to find te derivative of te functions

More information

Solved Examples. (Highest power of x in numerator and denominator is ½. Dividing numerator and denominator by x)

Solved Examples. (Highest power of x in numerator and denominator is ½. Dividing numerator and denominator by x) Solved Examples Example 1: (i) (ii) lim x (x 4 + 2x 3 +3) / (2x 4 -x+2) lim x x ( (x+c)- x) (iii) lim n (1-2+3-4+...(2n-1)-2n)/ (n 2 +1) (iv) lim x 0 ((1+x) 5-1)/3x+5x 2 (v) lim x 2 ( (x+7)-3 (2x-3))/((x+6)

More information

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation

Section 3.4. Second Order Nonhomogeneous. The corresponding homogeneous equation Section 3.4. Second Order Nonhomogeneous Equations y + p(x)y + q(x)y = f(x) (N) The corresponding homogeneous equation y + p(x)y + q(x)y = 0 (H) is called the reduced equation of (N). 1 General Results

More information

Math 308 Week 8 Solutions

Math 308 Week 8 Solutions Math 38 Week 8 Solutions There is a solution manual to Chapter 4 online: www.pearsoncustom.com/tamu math/. This online solutions manual contains solutions to some of the suggested problems. Here are solutions

More information

17.2 Nonhomogeneous Linear Equations. 27 September 2007

17.2 Nonhomogeneous Linear Equations. 27 September 2007 17.2 Nonhomogeneous Linear Equations 27 September 2007 Nonhomogeneous Linear Equations The differential equation to be studied is of the form ay (x) + by (x) + cy(x) = G(x) (1) where a 0, b, c are given

More information

M343 Homework 3 Enrique Areyan May 17, 2013

M343 Homework 3 Enrique Areyan May 17, 2013 M343 Homework 3 Enrique Areyan May 17, 013 Section.6 3. Consider the equation: (3x xy + )dx + (6y x + 3)dy = 0. Let M(x, y) = 3x xy + and N(x, y) = 6y x + 3. Since: y = x = N We can conclude that this

More information

MATH 2250 Final Exam Solutions

MATH 2250 Final Exam Solutions MATH 225 Final Exam Solutions Tuesday, April 29, 28, 6: 8:PM Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the exam

More information

Assignment # 8, Math 370, Fall 2018 SOLUTIONS:

Assignment # 8, Math 370, Fall 2018 SOLUTIONS: Assignment # 8, Math 370, Fall 018 SOLUTIONS: Problem 1: Solve the equations (a) y y = 3x + x 4, (i) y(0) = 1, y (0) = 1, y (0) = 1. Characteristic equation: α 3 α = 0 so α 1, = 0 and α 3 =. y c = C 1

More information

MATH 261 MATH 261: Elementary Differential Equations MATH 261 FALL 2005 FINAL EXAM FALL 2005 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley

MATH 261 MATH 261: Elementary Differential Equations MATH 261 FALL 2005 FINAL EXAM FALL 2005 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley MATH 6 MATH 6: Elementary Differential Equations MATH 6 FALL 5 FINAL EXAM FALL 5 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called)

More information

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1)

Chapter 3. Reading assignment: In this chapter we will cover Sections dx 1 + a 0(x)y(x) = g(x). (1) Chapter 3 3 Introduction Reading assignment: In this chapter we will cover Sections 3.1 3.6. 3.1 Theory of Linear Equations Recall that an nth order Linear ODE is an equation that can be written in the

More information

REFERENCE: CROFT & DAVISON CHAPTER 20 BLOCKS 1-3

REFERENCE: CROFT & DAVISON CHAPTER 20 BLOCKS 1-3 IV ORDINARY DIFFERENTIAL EQUATIONS REFERENCE: CROFT & DAVISON CHAPTER 0 BLOCKS 1-3 INTRODUCTION AND TERMINOLOGY INTRODUCTION A differential equation (d.e.) e) is an equation involving an unknown function

More information

Chapter 4: Partial differentiation

Chapter 4: Partial differentiation Chapter 4: Partial differentiation It is generally the case that derivatives are introduced in terms of functions of a single variable. For example, y = f (x), then dy dx = df dx = f. However, most of

More information

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity 1 Second Order Ordinary Differential Equations 1.1 The harmonic oscillator Consider an ideal pendulum as shown below. θ l Fr mg l θ is the angular acceleration θ is the angular velocity A point mass m

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems Math 308 Exam I Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture and all suggested homework problems..

More information

Math 240 Calculus III

Math 240 Calculus III DE Higher Order Calculus III Summer 2015, Session II Tuesday, July 28, 2015 Agenda DE 1. of order n An example 2. constant-coefficient linear Introduction DE We now turn our attention to solving linear

More information

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section: MATH 5 Final Examination May 3, 07 FORM A Name: Student Number: Section: This exam has 6 questions for a total of 50 points. In order to obtain full credit for partial credit problems, all work must be

More information

NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS. Material Available with Question papers CONTACT ,

NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS. Material Available with Question papers CONTACT , NATIONAL ACADEMY DHARMAPURI TRB MATHEMATICS DIFFERENTAL EQUATIONS Material Available with Question papers CONTACT 8486 17507, 70108 65319 TEST BACTH SATURDAY & SUNDAY NATIONAL ACADEMY DHARMAPURI http://www.trbtnpsc.com/013/07/trb-questions-and-stu-materials.html

More information

Math 2Z03 - Tutorial # 6. Oct. 26th, 27th, 28th, 2015

Math 2Z03 - Tutorial # 6. Oct. 26th, 27th, 28th, 2015 Math 2Z03 - Tutorial # 6 Oct. 26th, 27th, 28th, 2015 Tutorial Info: Tutorial Website: http://ms.mcmaster.ca/ dedieula/2z03.html Office Hours: Mondays 3pm - 5pm (in the Math Help Centre) Tutorial #6: 3.4

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

Module Two: Differential Calculus(continued) synopsis of results and problems (student copy)

Module Two: Differential Calculus(continued) synopsis of results and problems (student copy) Module Two: Differential Calculus(continued) synopsis of results and problems (student copy) Srikanth K S 1 Syllabus Taylor s and Maclaurin s theorems for function of one variable(statement only)- problems.

More information

Review for the Final Exam

Review for the Final Exam Calculus 3 Lia Vas Review for the Final Exam. Sequences. Determine whether the following sequences are convergent or divergent. If they are convergent, find their limits. (a) a n = ( 2 ) n (b) a n = n+

More information