Lower limit of weak flame in a heated channel

Size: px
Start display at page:

Download "Lower limit of weak flame in a heated channel"

Transcription

1 Lower limit of weak flame in a heated channel Yosuke Tsuboi, Takeshi Yokomori*, Kaoru Maruta IFS, Tohoku University * Keio University

2 Background No.2 For highly efficient combustion, HiCOT, HCCI, etc - Controlling initial state of combustion important - Exergy (Availability) efficiencies of combustion process significantly improved General characteristics of combustion with heat recirculation studied in the context of microcombustion (Maruta et al. PCI 30, 2005) 1-D straight meso-scale channel with temperature gradient - S-shaped curve (Normal and weak flames identified) - Flames with repetitive extinction and ignition (FREI) identified

3 Background No.3 1-D straight meso-scale channel with temperature gradient covered by: -Dynamics of flame in narrow tube examined (Jackson, Buckmaster, Lu, Kyritsis, Massa, PCI31, 2007) - DNS study, Hydrogen/air flames confirmed details of FREI Flames in high velocity region highlighted (Pizza, Frouzakis, Mantzaras, Tomboulides, Boulouchos CNF152, 2008)

4 Objectives No.4 Further understandings of weak flame characteristics required - Weak flame limit? - Relation with ignition and weak flame?

5 Overviews of our completed studies Overall picture of flame responses understood by linear stability analysis V Flow Stable v Unstable v v v Stable x S-shaped flame responses (Maruta et al. CESW40, 2004: PCI 30, 2005) No.5

6 Overviews of our completed studies No.6 V Flow Stable Extinction points of FREI v Stable Ignition points of FREI x Unstable middle branch confirmed to correspond flames with repetitive ignition and extinction (FREI) (Minaev et al., CTM 2007)

7 Experimental apparatus No.7 Wall temperature profile established by an external heat source Fuel/Air U cm/s flame Meso-scale channel Mixture Visualization Quartz glass tube d=2.0mm, L=300mm Channel : Methane / Air Digital still camera with CH filter

8 Experimental results ~ Flame responses ~ Mean flow velocity (cm/s) φ = 1.0 Normal flame FREI Estimated points of ignition Extinction Flow T w Ignition Wall Temperature, T w (K) (1) Normal (2) FREI (3) Normal V=50cm/s V=20cm/s Location (mm) V=0.2cm/s High and low flow velocity regions Middle velocity region Normal flame FREI S-shaped flame responses No.8

9 Experiments ~ Higher velocity region ~ Mean flow velocity (cm/s) φ = 1.0 Normal flame FREI Estimated points of ignition Extinction (2) FREI (1) Normal Flow T w Ignition Wall Temperature, T w (K) (1) Normal (2) FREI (3) Normal V=50cm/s V=20cm/s 0 (3) Normal Location (mm) V=0.2cm/s Self-ignition at downstream side stabilized at upstream location Flame position shifts toward upstream with the decrease of flow velocity No.9

10 Experiments ~ Moderate velocity region ~ Mean flow velocity (cm/s) φ = 1.0 Normal flame FREI Estimated points of ignition Extinction (2) FREI (1) Normal Flow T w Ignition Wall Temperature, T w (K) (1) Normal (2) FREI (3) Normal V=50cm/s V=20cm/s (3) Normal Location (mm) V=0.2cm/s Ignition in downstream Flame kernel moves toward the upstream Flame extinction due to low temperature of the wall No.10

11 Experiments ~ Lower velocity region ~ Mean flow velocity (cm/s) φ = 1.0 Normal flame FREI Estimated points of ignition (2) FREI (1) Normal Wall Temperature, T w (K) (1) Normal (2) FREI (3) Normal V=50cm/s V=20cm/s 0 (3) Normal Location (mm) V=0.2cm/s (Exposure time : 1200 s) V m < 0.2 cm/s No luminous flame Lowest burning velocity? Flame is stabilized near the ignition position with very small heat release No.11

12 Experiments ~ Gas and wall temperature differences ~ Temperature difference (K) T g - T w φ = 1.2 φ = 1.0 φ = 0.85 φ = Mean flow velocity (cm/s) V = 0.2 cm/sec, T w = 1225 K T g - T w < 2 K Small temperature increase Flame position of weak flame close to an ignition point Lowest flame temperature corresponds to ignition temperature Universal ignition temperature can be identified No.12

13 Experiments ~ Gas and wall temperature differences ~ Temperature difference (K) φ = 1.2 φ = 1.0 φ = 0.85 φ = Mean flow velocity (cm/s) Mechanism of lower limit of weak flame? No.13

14 Computations Calculation code 1-D steady state flame code ( Kee et al., 1989 ) Energy equation K K dt 1 d dt A dt A A 4 Nu M& λ λa + ρyv c + & ω hw ( T T) = 0 dx c dx dx c dx c c d k k pk k k k 2 w p p k= 1 p k= 1 p Chemistry GRI-mech 3.0 Assumption - Fixed wall temperature - Nu = 4 (Constant) Temperature(K) Convective heat transfer Location (cm) Wall temperature profile No.14

15 No.15 Computations ~ Flame responses ~ (1) Normal (2) FREI (3) Normal (No flame) Experimental flame responses Mean flow velocity (cm/s) Flame position (φ =1.0) Wall temperature Wall temperature (K) Location (cm) Two stable and two unstable solutions agreed with experimental regimes Flame responses exhibit ε-shape Limit in lower stable branch

16 Computations ~ Gas and wall temperature difference ~ No.16 Temperature difference (K) T g -T w Mean flow velocity (cm/s) Difference becomes smaller with the decrease of flow velocity T g - T w < 2 K V = 0.1 cm/s,t w = 1230 K There exists the lowest burning velocity

17 Computations ~ Gas and wall temperature difference ~ No.17 Temperature difference (K) T g -T w Mean flow velocity (cm/s) Mechanism of lower limit of weak flame? Our assumption: limit induced by mass dissipation

18 No.18 Computations ~ Discussion ~ Mass transport of light radical (OH) Convective mass flux Diffusive mass flux ρy OH V m ρy OH V OH V m : Mean flow velocity V OH : Diffusion velocity Flux (g/cm 2 s) 2.0x x x x x10-4 OH flux (V m =134cm/s) Diffusion Convection -1.0x Location (cm) V m =134 cm/s Convection > Diffusion Flux (g/cm 2 s) 4.0x x x x x x x10-6 OH flux (V m =1.82cm/s) Diffusion Convection -1.2x Location (cm) V m =1.82 cm/s Convection < Diffusion

19 Computations ~ Discussion ~ No.19 Total mass fluxes Flux (g/cm 2 s) 2.0x x x x10-4 OH flux (V m =134cm/s) Convection + Diffusion Flux (g/cm 2 s) 6.0x x x x x x x Location (cm) V m =134 cm/s -8.0x x10-6 OH flux (V m =1.82cm/s) Convection + Diffusion -1.2x Location (cm) V m =1.82 cm/s Mass dissipation in low velocity region significantly larger than that in higher velocity region: radicals diffuse out Lower limit of weak flame induced by diffusion effects

20 Conclusions No.20 Existence of lower limit of weak flame confirmed experimentally even if heat loss compensated by an external heating. Lowest flame temperature corresponded to ignition temperature. Computed flame responses exhibited ε-shape, which implies existence of lower limit of weak flame in a lower stable branch. Based on computations, mechanism of lower limit of weak flame is supposed to be mass dissipation loss due to mass diffusion in low velocity region.

Micro flow reactor with prescribed temperature profile

Micro flow reactor with prescribed temperature profile The First International Workshop on Flame Chemistry, July 28-29, 2012, Warsaw, Poland Micro flow reactor with prescribed temperature profile Toward fuel Indexing and kinetics study based on multiple weak

More information

Dynamics of Premixed Hydrogen-Air Flames in Microchannels with a Wall Temperature Gradient

Dynamics of Premixed Hydrogen-Air Flames in Microchannels with a Wall Temperature Gradient Combustion Science and Technology ISSN: 0010-2202 (Print) 1563-521X (Online) Journal homepage: http://www.tandfonline.com/loi/gcst20 Dynamics of Premixed Hydrogen-Air Flames in Microchannels with a Wall

More information

Experimental and numerical investigations of flame pattern formations in a radial microchannel

Experimental and numerical investigations of flame pattern formations in a radial microchannel Available online at www.sciencedirect.com Proceedings of the Combustion Institute xxx (2009) xxx xxx Proceedings of the Combustion Institute www.elsevier.com/locate/proci Experimental and numerical investigations

More information

Numerical investigation of flame propagation in small thermally-participating, adiabatic tubes

Numerical investigation of flame propagation in small thermally-participating, adiabatic tubes Paper # 7MI-181 Topic: Microcombustion and New Combustion Devices 8 th US National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of

More information

On the formation of multiple rotating Pelton-like flame structures in radial microchannels with lean methane air mixtures q

On the formation of multiple rotating Pelton-like flame structures in radial microchannels with lean methane air mixtures q Proceedings of the Combustion Institute 31 (2007) 3261 3268 Proceedings of the Combustion Institute www.elsevier.com/locate/proci On the formation of multiple rotating Pelton-like flame structures in radial

More information

Pattern formation of flames in radial microchannels with lean methane-air mixtures

Pattern formation of flames in radial microchannels with lean methane-air mixtures Pattern formation of flames in radial microchannels with lean methane-air mixtures Sudarshan Kumar, 1 Kaoru Maruta, 1 and S. Minaev 2 1 Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku,

More information

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory 8.-1 Systems, where fuel and oxidizer enter separately into the combustion chamber. Mixing takes place by convection and diffusion. Only where

More information

Inhomogeneous Mixing Behavior of Recirculated Exhaust Gas in a Lean Premixed Flame

Inhomogeneous Mixing Behavior of Recirculated Exhaust Gas in a Lean Premixed Flame Inhomogeneous Mixing Behavior of Recirculated Exhaust Gas in a Lean Premixed Flame 2nd Japan-China Joint Seminar July 11, 2016, Gifu University, Japan Masaharu Komiyama Department of Mechanical Engineering

More information

Premixed, Nonpremixed and Partially Premixed Flames

Premixed, Nonpremixed and Partially Premixed Flames Premixed, Nonpremixed and Partially Premixed Flames Flame (Reaction Zone) Flame (Reaction Zone) Flame (Reaction Zone) Fuel Air Fuel + Air φ 1 Products Fuel + Air φ > 1 F + A Air (+ F?) NONPREMIXED PREMIXED

More information

Combustion Behind Shock Waves

Combustion Behind Shock Waves Paper 3F-29 Fall 23 Western States Section/Combustion Institute 1 Abstract Combustion Behind Shock Waves Sandeep Singh, Daniel Lieberman, and Joseph E. Shepherd 1 Graduate Aeronautical Laboratories, California

More information

Turbulent Premixed Combustion

Turbulent Premixed Combustion Turbulent Premixed Combustion Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Example: LES of a stationary gas turbine velocity field flame 2 Course Overview Part II: Turbulent Combustion Turbulence

More information

Extinction Limits of Premixed Combustion Assisted by Catalytic Reaction in a Stagnation-Point Flow

Extinction Limits of Premixed Combustion Assisted by Catalytic Reaction in a Stagnation-Point Flow 44th AIAA Aerospace Sciences Meeting and Exhibit 9-12 January 2006, Reno, Nevada AIAA 2006-164 Extinction Limits of Premixed Combustion Assisted by Catalytic Reaction in a Stagnation-Point Flow Jingjing

More information

HETERO-/HOMOGENEOUS REACTION OF HYDROGEN COMBUSTION OVER PLATINUM IN MICRO-CHANNELS

HETERO-/HOMOGENEOUS REACTION OF HYDROGEN COMBUSTION OVER PLATINUM IN MICRO-CHANNELS U.P.B. Sci. Bull., Series B, Vol. 78, Iss. 2, 2016 ISSN 1454-2331 HETERO-/HOMOGENEOUS REACTION OF HYDROGEN COMBUSTION OVER PLATINUM IN MICRO-CHANNELS Junjie CHEN* 1, Xuhui GAO 2 Hetero-/homogeneous combustion

More information

Laminar Premixed Flames: Flame Structure

Laminar Premixed Flames: Flame Structure Laminar Premixed Flames: Flame Structure Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Course Overview Part I: Fundamentals and Laminar Flames Introduction Fundamentals and mass balances of

More information

Quantitative Study of Fingering Pattern Created by Smoldering Combustion

Quantitative Study of Fingering Pattern Created by Smoldering Combustion Quantitative Study of Fingering Pattern Created by Smoldering Combustion Tada Y. 1, Suzuki K. 1, Iizuka H. 1, Kuwana K. 1, *, Kushida G. 1 Yamagata University, Department of Chemistry and Chemical Engineering,

More information

Yiguang Ju, Hongsheng Guo, Kaoru Maruta and Takashi Niioka. Institute of Fluid Science, Tohoku University, ABSTRACT

Yiguang Ju, Hongsheng Guo, Kaoru Maruta and Takashi Niioka. Institute of Fluid Science, Tohoku University, ABSTRACT 1 Structure and Extinction Limit for Nonadiabatic Methane/Air Premixed Flame Yiguang Ju, Hongsheng Guo, Kaoru Maruta and Takashi Niioka Institute of Fluid Science, Tohoku University, Katahira 2-1-1, Sendai

More information

Enhancement of hydrogen reaction in a micro-channel by catalyst segmentation

Enhancement of hydrogen reaction in a micro-channel by catalyst segmentation INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 33 (2008) 2586 2595 Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/he Enhancement of hydrogen reaction in a micro-channel by catalyst

More information

Chemical Structure and Dynamics in Laminar Flame Propagation

Chemical Structure and Dynamics in Laminar Flame Propagation Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2015 Chemical Structure and Dynamics in Laminar Flame Propagation Mohsen Ayoobi Louisiana State University and

More information

Effects of radiative heat loss on the extinction of counterflow premixed H 2 air flames

Effects of radiative heat loss on the extinction of counterflow premixed H 2 air flames Combust. Theory Modelling 4 (2000) 459 475. Printed in the UK PII: S1364-7830(00)09647-9 Effects of radiative heat loss on the extinction of counterflow premixed H 2 air flames Hongsheng Guo, Yiguang Ju

More information

Flame Visualization and Mechanism of Fast Flame Propagation through a Meso-scale Packed Porous Bed in a High-pressure Environment

Flame Visualization and Mechanism of Fast Flame Propagation through a Meso-scale Packed Porous Bed in a High-pressure Environment 58 184 2016 107-113 Journal of the Combustion Society of Japan Vol.58 No.184 (2016) 107-113 ORIGINAL PAPER Flame Visualization and Mechanism of Fast Flame Propagation through a Meso-scale Packed Porous

More information

The Effect of Mixture Fraction on Edge Flame Propagation Speed

The Effect of Mixture Fraction on Edge Flame Propagation Speed 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 213 The Effect of Mixture Fraction on Edge Flame

More information

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames 6.-1 Previous lecture: Asymptotic description of premixed flames based on an assumed one-step reaction. basic understanding

More information

Numerical study of the effect of wall temperature profiles on the premixed methane air flame dynamics in a narrow channel

Numerical study of the effect of wall temperature profiles on the premixed methane air flame dynamics in a narrow channel PAPER View Journal View Issue Cite this: RSC Adv., 2017, 7, 39940 Received 30th June 2017 Accepted 28th July 2017 DOI: 10.1039/c7ra07265a rsc.li/rsc-advances 1. Introduction Numerical study of the effect

More information

TOPICAL PROBLEMS OF FLUID MECHANICS 97

TOPICAL PROBLEMS OF FLUID MECHANICS 97 TOPICAL PROBLEMS OF FLUID MECHANICS 97 DOI: http://dx.doi.org/10.14311/tpfm.2016.014 DESIGN OF COMBUSTION CHAMBER FOR FLAME FRONT VISUALISATION AND FIRST NUMERICAL SIMULATION J. Kouba, J. Novotný, J. Nožička

More information

Effects of catalytic walls on hydrogen/air combustion inside a micro-tube

Effects of catalytic walls on hydrogen/air combustion inside a micro-tube Applied Catalysis A: General 332 (2007) 89 97 www.elsevier.com/locate/apcata Effects of catalytic walls on hydrogen/air combustion inside a micro-tube Guan-Bang Chen a, Chih-Peng Chen b, Chih-Yung Wu b,

More information

Frontiers in Heat and Mass Transfer. Available at

Frontiers in Heat and Mass Transfer. Available at Frontiers in Heat and Mass Transfer Available at www.thermalfluidscentral.org EFFECT OF WALL THERMAL CONDUCTIVITY ON MICRO-SCALE COMBUSTION CHARACTERISTICS OF HYDROGEN-AIR MIXTURES WITH DETAILED CHEMICAL

More information

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS

Best Practice Guidelines for Combustion Modeling. Raphael David A. Bacchi, ESSS Best Practice Guidelines for Combustion Modeling Raphael David A. Bacchi, ESSS PRESENTATION TOPICS Introduction; Combustion Phenomenology; Combustion Modeling; Reaction Mechanism; Radiation; Case Studies;

More information

Modeling and Simulation of Plasma-Assisted Ignition and Combustion

Modeling and Simulation of Plasma-Assisted Ignition and Combustion Modeling and Simulation of Plasma-Assisted Ignition and Combustion Vigor Yang and Sharath Nagaraja Georgia Institute of Technology Atlanta, GA AFOSR MURI Fundamental Mechanisms, Predictive Modeling, and

More information

Lecture 7 Flame Extinction and Flamability Limits

Lecture 7 Flame Extinction and Flamability Limits Lecture 7 Flame Extinction and Flamability Limits 7.-1 Lean and rich flammability limits are a function of temperature and pressure of the original mixture. Flammability limits of methane and hydrogen

More information

Computer Simulation Approach in Development of Propane-air Combustor Microreactor Konakov, S.A.; Dzyubanenko, S.V.; Krzhizhanovskaya, V.

Computer Simulation Approach in Development of Propane-air Combustor Microreactor Konakov, S.A.; Dzyubanenko, S.V.; Krzhizhanovskaya, V. UvA-DARE (Digital Academic Repository) Computer Simulation Approach in Development of Propane-air Combustor Microreactor Konakov, S.A.; Dzyubanenko, S.V.; Krzhizhanovskaya, V. Published in: Procedia Computer

More information

A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved

A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved Center for Turbulence Research Annual Research Briefs 2009 185 A validation study of the flamelet approach s ability to predict flame structure when fluid mechanics are fully resolved By E. Knudsen AND

More information

arxiv: v1 [physics.flu-dyn] 25 Nov 2018

arxiv: v1 [physics.flu-dyn] 25 Nov 2018 Combustion regimes in sequential combustors: Flame propagation and autoignition at elevated temperature and pressure O. Schulz,a, N. Noiray,a a CAPS Laboratory, Department of Mechanical and Process Engineering,

More information

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane

Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane The MIT Faculty has made this article openly available. Please share how this

More information

Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex

Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex Paper # 070LT-0211 The 8th US National Meeting of the Combustion Institute, Park City, UT, May 19-22, 2013 Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex S.K. Menon

More information

A G-equation formulation for large-eddy simulation of premixed turbulent combustion

A G-equation formulation for large-eddy simulation of premixed turbulent combustion Center for Turbulence Research Annual Research Briefs 2002 3 A G-equation formulation for large-eddy simulation of premixed turbulent combustion By H. Pitsch 1. Motivation and objectives Premixed turbulent

More information

Well Stirred Reactor Stabilization of flames

Well Stirred Reactor Stabilization of flames Well Stirred Reactor Stabilization of flames Well Stirred Reactor (see books on Combustion ) Stabilization of flames in high speed flows (see books on Combustion ) Stabilization of flames Although the

More information

EFFECT OF CARBON DIOXIDE, ARGON AND HYDROCARBON FUELS ON THE STABILITY OF HYDROGEN JET FLAMES

EFFECT OF CARBON DIOXIDE, ARGON AND HYDROCARBON FUELS ON THE STABILITY OF HYDROGEN JET FLAMES EFFECT OF CARBON DIOXIDE, ARGON AND HYDROCARBON FUELS ON THE STABILITY OF HYDROGEN JET FLAMES Wu, Y 1, Al-Rahbi, I. S. 1, Lu, Y 1. and Kalghatgi, G. T. 2 1 Department of Chemical and Process Engineering,

More information

Introduction Flares: safe burning of waste hydrocarbons Oilfields, refinery, LNG Pollutants: NO x, CO 2, CO, unburned hydrocarbons, greenhouse gases G

Introduction Flares: safe burning of waste hydrocarbons Oilfields, refinery, LNG Pollutants: NO x, CO 2, CO, unburned hydrocarbons, greenhouse gases G School of Process, Environmental and Materials Engineering Computational study of combustion in flares: structure and emission of a jet flame in turbulent cross-flow GERG Academic Network Event Brussels

More information

Effects of Variation of the Flame Area and Natural Damping on Primary Acoustic Instability of Downward Propagating Flames in a Tube

Effects of Variation of the Flame Area and Natural Damping on Primary Acoustic Instability of Downward Propagating Flames in a Tube 5 th ICDERS August 7, 015 Leeds, UK Effects of Variation of the Flame Area and Natural Damping on Primary Acoustic Instability of Downward Propagating Flames in a Tube Sung Hwan Yoon and Osamu Fujita Division

More information

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure

Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure 21 st ICDERS July 23-27, 27 Poitiers, France Numerical Investigation of Ignition Delay in Methane-Air Mixtures using Conditional Moment Closure Ahmad S. El Sayed, Cécile B. Devaud Department of Mechanical

More information

Mauro Valorani Dipartimento di Meccanica e Aeronautica, University of Rome

Mauro Valorani Dipartimento di Meccanica e Aeronautica, University of Rome Classification of ignition regimes in thermally stratified n-heptane-air air mixtures using computational singular perturbation Saurabh Gupta, Hong G. Im Department of Mechanical Engineering, University

More information

Homogeneous and Heterogeneous Combustion in Hydrogen-Fueled Catalytic Microreactors Junjie Chen * and Baofang Liu

Homogeneous and Heterogeneous Combustion in Hydrogen-Fueled Catalytic Microreactors Junjie Chen * and Baofang Liu International Letters of Chemistry, Physics and Astronomy Submitted: 2016-02-20 ISSN: 2299-3843, Vol. 66, pp 133-142 Accepted: 2016-05-12 doi:10.18052/www.scipress.com/ilcpa.66.133 Online: 2016-05-30 2016

More information

PDF Modeling and Simulation of Premixed Turbulent Combustion

PDF Modeling and Simulation of Premixed Turbulent Combustion Monte Carlo Methods Appl. Vol. No. (), pp. 43 DOI 5 / MCMA.7. c de Gruyter PDF Modeling and Simulation of Premixed Turbulent Combustion Michael Stöllinger and Stefan Heinz Abstract. The use of probability

More information

Lecture 15. The Turbulent Burning Velocity

Lecture 15. The Turbulent Burning Velocity Lecture 15 The Turbulent Burning Velocity 1 The turbulent burning velocity is defined as the average rate of propagation of the flame through the turbulent premixed gas mixture. In the laminar case, solutions

More information

PDF modeling and simulation of premixed turbulent combustion

PDF modeling and simulation of premixed turbulent combustion Monte Carlo Methods Appl. Vol. 4 No. 4 (8), pp. 343 377 DOI. / MCMA.8.6 c de Gruyter 8 PDF modeling and simulation of premixed turbulent combustion Michael Stöllinger and Stefan Heinz Abstract. The use

More information

Lecture 9 Laminar Diffusion Flame Configurations

Lecture 9 Laminar Diffusion Flame Configurations Lecture 9 Laminar Diffusion Flame Configurations 9.-1 Different Flame Geometries and Single Droplet Burning Solutions for the velocities and the mixture fraction fields for some typical laminar flame configurations.

More information

Effects of radiative emission and absorption on the propagation and extinction of premixed gas flames

Effects of radiative emission and absorption on the propagation and extinction of premixed gas flames Effects of radiative emission and absorption on the propagation and extinction of premixed gas flames Yiguang Ju and Goro Masuya Department of Aeronautics and Space Engineering Tohoku University, Aoba-ku,

More information

Scalar dissipation rate at extinction and the effects of oxygen-enriched combustion

Scalar dissipation rate at extinction and the effects of oxygen-enriched combustion Combustion and Flame 142 (2005) 62 71 www.elsevier.com/locate/combustflame Scalar dissipation rate at extinction and the effects of oxygen-enriched combustion R. Chen, R.L. Axelbaum Department of Mechanical

More information

EFFECT OF N-BUTANOL ADDITION ON SOOT FORMATION OF N- HEPTANE IN A MICRO FLOW REACTOR WITH A CONTROLLED TEMPERATURE PROFILE

EFFECT OF N-BUTANOL ADDITION ON SOOT FORMATION OF N- HEPTANE IN A MICRO FLOW REACTOR WITH A CONTROLLED TEMPERATURE PROFILE EFFECT OF N-BUTANOL ADDITION ON SOOT FORMATION OF N- HEPTANE IN A MICRO FLOW REACTOR WITH A CONTROLLED TEMPERATURE PROFILE Mohd Hafidzal Bin Mohd Hanafi 1, Hisashi Nakamura 1, Takuya Tezuka 1 and Kaoru

More information

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives Center for Turbulence Research Annual Research Briefs 2005 325 The dynamics of premixed flames propagating in non-uniform velocity fields: Assessment of the significance of intrinsic instabilities in turbulent

More information

Introduction. Mathematical model and experimental

Introduction. Mathematical model and experimental COMPARISON OF THE PERFORMANCE OF A REVERSE FLOW REACTOR AND NETWORKS OF NON-STATIONARY CATALYTIC REACTORS FOR CATALYTIC COMBUSTION OF METHANE IN LEAN MIXTURES Miguel A. G. Hevia 1, Davide Fissore 2, Salvador

More information

Thermal NO Predictions in Glass Furnaces: A Subgrid Scale Validation Study

Thermal NO Predictions in Glass Furnaces: A Subgrid Scale Validation Study Feb 12 th 2004 Thermal NO Predictions in Glass Furnaces: A Subgrid Scale Validation Study Padmabhushana R. Desam & Prof. Philip J. Smith CRSIM, University of Utah Salt lake city, UT-84112 18 th Annual

More information

LOW TEMPERATURE MODEL FOR PREMIXED METHANE FLAME COMBUSTION

LOW TEMPERATURE MODEL FOR PREMIXED METHANE FLAME COMBUSTION ISTP-16, 2005, PRAGUE 16TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA LOW TEMPERATURE MODEL FOR PREMIXED METHANE FLAME MBUSTION M. Forman, J.B.W.Kok,M. Jicha Department of Thermodynamics and Environmental

More information

Ignition Delay Time of Small Hydrocarbons-Nitrous Oxide(-Oxygen) Mixtures

Ignition Delay Time of Small Hydrocarbons-Nitrous Oxide(-Oxygen) Mixtures 24 th ICDERS July 28 - August 2, 2013 Taipei, Taiwan Ignition Delay Time of Small Hydrocarbons-Nitrous Oxide(-Oxygen) Mixtures Rémy Mével and Joseph Shepherd Graduate Aerospace Laboratories, California

More information

Parallel Plate Heat Exchanger

Parallel Plate Heat Exchanger Parallel Plate Heat Exchanger Parallel Plate Heat Exchangers are use in a number of thermal processing applications. The characteristics are that the fluids flow in the narrow gap, between two parallel

More information

Title. Author(s)Gao, Jian; Nakamura, Yuji. CitationFUEL, 106: Issue Date Doc URL. Type. File Information

Title. Author(s)Gao, Jian; Nakamura, Yuji. CitationFUEL, 106: Issue Date Doc URL. Type. File Information Title Two-stage ignition of DME/air mixture at low-tempera Author(s)Gao, Jian; Nakamura, Yuji CitationFUEL, 106: 241-248 Issue Date 2013-04 Doc URL http://hdl.handle.net/2115/52753 Type article (author

More information

Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C. Kaohsiung, 821, Taiwan, R.O.C.

Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan, R.O.C. Kaohsiung, 821, Taiwan, R.O.C. 5 th ICDERS August 7, 15 Leeds, UK Experimental and Numerical Study of Oxygen Enrichment on Methane Diffusion Flame in a Triple Port Burner Yueh-Heng Li 1*, Chih-Yung Wu, Hsien-Tsung Lin 1, Jain-Shun Wu

More information

Asymptotic Structure of Rich Methane-Air Flames

Asymptotic Structure of Rich Methane-Air Flames Asymptotic Structure of Rich Methane-Air Flames K. SESHADRI* Center for Energy and Combustion Research, Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla,

More information

DARS overview, IISc Bangalore 18/03/2014

DARS overview, IISc Bangalore 18/03/2014 www.cd-adapco.com CH2O Temperatur e Air C2H4 Air DARS overview, IISc Bangalore 18/03/2014 Outline Introduction Modeling reactions in CFD CFD to DARS Introduction to DARS DARS capabilities and applications

More information

Experimental study of the combustion properties of methane/hydrogen mixtures Gersen, Sander

Experimental study of the combustion properties of methane/hydrogen mixtures Gersen, Sander University of Groningen Experimental study of the combustion properties of methane/hydrogen mixtures Gersen, Sander IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF)

More information

Budget analysis and model-assessment of the flamelet-formulation: Application to a reacting jet-in-cross-flow

Budget analysis and model-assessment of the flamelet-formulation: Application to a reacting jet-in-cross-flow Center for Turbulence Research Proceedings of the Summer Program 212 397 Budget analysis and model-assessment of the flamelet-formulation: Application to a reacting jet-in-cross-flow By W. L. Chan, Y.

More information

of Plasma Assisted Combustion

of Plasma Assisted Combustion Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion Overview of OSU research plan Walter Lempert, Igor Adamovich, J. William Rich, and Jeffrey Sutton

More information

ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER

ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER Ing. Vojtech Betak Ph.D. Aerospace Research and Test Establishment Department of Engines Prague, Czech Republic Abstract

More information

Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows

Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows Center for Turbulence Research Annual Research Briefs 009 199 Towards regime identification and appropriate chemistry tabulation for computation of autoigniting turbulent reacting flows By M. Kostka, E.

More information

Dynamics of Lean Premixed Systems: Measurements for Large Eddy Simulation

Dynamics of Lean Premixed Systems: Measurements for Large Eddy Simulation Dynamics of Lean Premixed Systems: Measurements for Large Eddy Simulation D. Galley 1,2, A. Pubill Melsió 2, S. Ducruix 2, F. Lacas 2 and D. Veynante 2 Y. Sommerer 3 and T. Poinsot 3 1 SNECMA Moteurs,

More information

An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion

An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion 43rd AIAA Aerospace Sciences Meeting and Exhibit, -3 Jan 25, Reno, NV An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion Heinz Pitsch and Matthias Ihme Stanford University,

More information

Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition

Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition Catharina Tillmark April 18, 2006 Lund University Dept. of Energy Sciences P.O.Box 118, SE-221 00 Lund

More information

LES Approaches to Combustion

LES Approaches to Combustion LES Approaches to combustion LES Approaches to combustion LES Approaches to Combustion W P Jones Department of Mechanical Engineering Imperial College London Exhibition Road London SW7 2AZ SIG on Combustion

More information

A Priori Model for the Effective Lewis Numbers in Premixed Turbulent Flames

A Priori Model for the Effective Lewis Numbers in Premixed Turbulent Flames Paper # 070LT-0267 Topic: Turbulent Flames 8 th US National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013.

More information

Effects of Damköhler number on flame extinction and reignition in turbulent nonpremixed flames using DNS

Effects of Damköhler number on flame extinction and reignition in turbulent nonpremixed flames using DNS Effects of Damköhler number on flame extinction and reignition in turbulent nonpremixed flames using DNS David O. Lignell a,, Jacqueline H. Chen b, Hans A. Schmutz a a Chemical Engineering Department,

More information

Evaluation of Numerical Turbulent Combustion Models Using Flame Speed Measurements from a Recently Developed Fan- Stirred Explosion Vessel

Evaluation of Numerical Turbulent Combustion Models Using Flame Speed Measurements from a Recently Developed Fan- Stirred Explosion Vessel Paper # 070LT-0096 Topic: Turbulent Flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013

More information

CONTROL OF INSTABILITIES IN REACTIVE AND NON-REACTIVE FLOWS

CONTROL OF INSTABILITIES IN REACTIVE AND NON-REACTIVE FLOWS CONTROL OF INSTABILITIES IN REACTIVE AND NON-REACTIVE FLOWS Ann R. Karagozian Department of Mechanical and Aerospace Engineering University of California Los Angeles Propulsion Applications of EPRL Experimental

More information

Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system

Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system Center for Turbulence Research Annual Research Briefs 2007 231 Large-eddy simulation of an industrial furnace with a cross-flow-jet combustion system By L. Wang AND H. Pitsch 1. Motivation and objectives

More information

Modeling ion and electron profiles in methane-oxygen counterflow diffusion flames

Modeling ion and electron profiles in methane-oxygen counterflow diffusion flames Abstract 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 Modeling ion and electron profiles

More information

Dynamic Pressure Characterization of a Dual-Mode Scramjet

Dynamic Pressure Characterization of a Dual-Mode Scramjet 26 th ICDERS July 30 th August 4 th, 2017 Boston, MA, USA Dynamic Pressure Characterization of a Dual-Mode Scramjet Camilo Aguilera, Amardip Ghosh, Kyung-Hoon Shin, Kenneth H. Yu Department of Aerospace

More information

LAMINAR FLAME PROPAGATION IN MIXTURES WITH COMPOSITIONAL STRATIFICATION AT SMALL LENGTH SCALES DAVID P. SCHMIDT THESIS

LAMINAR FLAME PROPAGATION IN MIXTURES WITH COMPOSITIONAL STRATIFICATION AT SMALL LENGTH SCALES DAVID P. SCHMIDT THESIS LAMINAR FLAME PROPAGATION IN MIXTURES WITH COMPOSITIONAL STRATIFICATION AT SMALL LENGTH SCALES BY DAVID P. SCHMIDT THESIS Submitted in partial fulfillment of the requirements for the degree of Master of

More information

2 nd Joint Summer School on Fuel Cell and Hydrogen Technology September 2012, Crete, Greece. Hydrogen fires

2 nd Joint Summer School on Fuel Cell and Hydrogen Technology September 2012, Crete, Greece. Hydrogen fires 2 nd Joint Summer School on Fuel Cell and Hydrogen Technology 17 28 September 2012, Crete, Greece Hydrogen fires Sile Brennan (on behalf of the HySAFER group) Hydrogen Safety Engineering and Research Centre

More information

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames

A comparison between two different Flamelet reduced order manifolds for non-premixed turbulent flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013 A comparison between two different Flamelet

More information

DNS of auto ignition in turbulent diffusion H 2 /air

DNS of auto ignition in turbulent diffusion H 2 /air 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida AIAA 2009-240 DNS of auto ignition in turbulent diffusion H 2 /air flames

More information

Introduction to Heat and Mass Transfer. Week 10

Introduction to Heat and Mass Transfer. Week 10 Introduction to Heat and Mass Transfer Week 10 Concentration Boundary Layer No concentration jump condition requires species adjacent to surface to have same concentration as at the surface Owing to concentration

More information

Solid Rocket Motor Internal Ballistics Using a. Least-Distance Surface-Regression Method

Solid Rocket Motor Internal Ballistics Using a. Least-Distance Surface-Regression Method 23 rd ICDERS July 24-29, 211 Irvine, USA Solid Rocket Motor Internal Ballistics Using a Least-Distance Surface-Regression Method C. H. Chiang Department of Mechanical and Automation Engineering I-Shou

More information

HOT PARTICLE IGNITION OF METHANE FLAMES

HOT PARTICLE IGNITION OF METHANE FLAMES Proceedings of the Combustion Institute, Volume 29, 2002/pp. 1605 1612 HOT PARTICLE IGNITION OF METHANE FLAMES FOKION N. EGOLFOPOULOS, CHARLES S. CAMPBELL and M. GURHAN ANDAC Department of Aerospace and

More information

Experimental Study of 2D-Instabilities of Hydrogen Flames in Flat Layers

Experimental Study of 2D-Instabilities of Hydrogen Flames in Flat Layers 25 th ICDERS August 2 7, 2015 Leeds, UK Experimental Study of 2D-Instabilities of Hydrogen Flames in Flat Layers M. Kuznetsov 1 *, J. Grune 2, S. Tengah 1, J. Yanez 1 1 Intitute for Energy and Nuclear

More information

URS DOGWILER,* PETER BENZ, AND JOHN MANTZARAS

URS DOGWILER,* PETER BENZ, AND JOHN MANTZARAS Two-Dimensional Modelling for Catalytically Stabilized Combustion of a Lean Methane-Air Mixture With Elementary Homogeneous and Heterogeneous Chemical Reactions URS DOGWILER,* PETER BENZ, AND JOHN MANTZARAS

More information

The Seeding of Methane Oxidation

The Seeding of Methane Oxidation The Seeding of Methane Oxidation M. B. DAVIS and L. D. SCHMIDT* Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA Mixtures of light alkanes and

More information

arxiv: v1 [physics.chem-ph] 6 Oct 2011

arxiv: v1 [physics.chem-ph] 6 Oct 2011 Calculation of the Minimum Ignition Energy based on the ignition delay time arxiv:1110.1163v1 [physics.chem-ph] 6 Oct 2011 Jens Tarjei Jensen a, Nils Erland L. Haugen b, Natalia Babkovskaia c a Department

More information

Mass Transfer in Turbulent Flow

Mass Transfer in Turbulent Flow Mass Transfer in Turbulent Flow ChEn 6603 References: S.. Pope. Turbulent Flows. Cambridge University Press, New York, 2000. D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, La Caada CA, 2000.

More information

Step-Wake Stabilized Jet Diffusion Flame in a Transverse Air Stream

Step-Wake Stabilized Jet Diffusion Flame in a Transverse Air Stream Step-Wake Stabilized Jet Diffusion Flame in a Transverse Air Stream Hiroki Ishida Nagaoka National College of Technology 888 Nishikatakai, Nagaoka, Niigata 94-832 JAPAN Abstract The stabilization and the

More information

Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex

Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex Paper # 070LT-0211 The 8th US National Meeting of the Combustion Institute, Park City, UT, May 19-22, 2013 Investigation of ignition dynamics in a H2/air mixing layer with an embedded vortex S.K. Menon

More information

Experimental investigation of propane-air flame propagation in narrow circular ducts

Experimental investigation of propane-air flame propagation in narrow circular ducts Paper # 070LT-0193 Topic: Laminar Flames 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22, 2013

More information

Direct Numerical Simulation of Autoiginition of a Hydrogen Jet in a Preheated Cross Flow

Direct Numerical Simulation of Autoiginition of a Hydrogen Jet in a Preheated Cross Flow Paper # 070LT-0251 Topic: Laminar & Turbulent Flames 8 th US National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University of Utah May 19-22,

More information

AME 513. " Lecture 8 Premixed flames I: Propagation rates

AME 513.  Lecture 8 Premixed flames I: Propagation rates AME 53 Principles of Combustion " Lecture 8 Premixed flames I: Propagation rates Outline" Rankine-Hugoniot relations Hugoniot curves Rayleigh lines Families of solutions Detonations Chapman-Jouget Others

More information

Internal Flow: Heat Transfer in Pipes

Internal Flow: Heat Transfer in Pipes Internal Flow: Heat Transfer in Pipes V.Vuorinen Aalto University School of Engineering Heat and Mass Transfer Course, Autumn 2016 November 15 th 2016, Otaniemi ville.vuorinen@aalto.fi First about the

More information

HEAT TRANSFER IN A RECIRCULATION ZONE AT STEADY-STATE AND OSCILLATING CONDITIONS - THE BACK FACING STEP TEST CASE

HEAT TRANSFER IN A RECIRCULATION ZONE AT STEADY-STATE AND OSCILLATING CONDITIONS - THE BACK FACING STEP TEST CASE HEAT TRANSFER IN A RECIRCULATION ZONE AT STEADY-STATE AND OSCILLATING CONDITIONS - THE BACK FACING STEP TEST CASE A.K. Pozarlik 1, D. Panara, J.B.W. Kok 1, T.H. van der Meer 1 1 Laboratory of Thermal Engineering,

More information

PECULIARITIES OF RAMJET COMBUSTION CHAMBER WORK WITH RESONATOR UNDER CONDITION OF VIBRATION FUEL COMBUSTION A.V.

PECULIARITIES OF RAMJET COMBUSTION CHAMBER WORK WITH RESONATOR UNDER CONDITION OF VIBRATION FUEL COMBUSTION A.V. PECULIARITIES OF RAMJET COMBUSTION CHAMBER WORK WITH RESONATOR UNDER CONDITION OF VIBRATION FUEL COMBUSTION A.V. Potapkin, A.A. Pavlov, and D.Yu. Moskvichev Institute of Theoretical and Applied mechanics

More information

Unit 1 Fire Engineering Science

Unit 1 Fire Engineering Science IFE Level 4 Certificate in Fire Safety and Fire Science Unit 1 Fire Engineering Science Examiner Report March 2017 Introduction The examination paper appeared to present challenges for candidates and results

More information

Evaluation of a Scalar Probability Density Function Approach for Turbulent Jet Nonpremixed Flames

Evaluation of a Scalar Probability Density Function Approach for Turbulent Jet Nonpremixed Flames THE 5 TH ASIAN COMPUTAITIONAL FLUID DYNAMICS BUSAN, KOREA, OCTOBER 7 30, 003 Evaluation of a Scalar Probability Density Function Approach for Turbulent Jet Nonpremixed Flames S. Noda, Y. Horitani and K.

More information

Process Chemistry Toolbox - Mixing

Process Chemistry Toolbox - Mixing Process Chemistry Toolbox - Mixing Industrial diffusion flames are turbulent Laminar Turbulent 3 T s of combustion Time Temperature Turbulence Visualization of Laminar and Turbulent flow http://www.youtube.com/watch?v=kqqtob30jws

More information

Burning a Hydrocarbon II

Burning a Hydrocarbon II Burning a Hydrocarbon II Name Lab Section Problem Statement: How are the masses of products limited by the amounts of reactants? I. Data Collection: A. Go to http://cheminfo.chem.ou.edu/~mra/home.html

More information