Coalitional Manipulation for Schulze s Rule

Size: px
Start display at page:

Download "Coalitional Manipulation for Schulze s Rule"

Transcription

1 Colitionl Mnipultion for Shulz s Rul Srg Gsprs UNSW n NICTA Syny, Austrli srgg@s.unsw.u.u Thoms Klinowski Univrsity of Rostok Rostok, Grmny thoms.klinowski@unirostok. Toy Wlsh NICTA n UNSW Syny, Austrli toy.wlsh@nit.om.u Nin Nroytsk NICTA n UNSW Syny, Austrli nin.nroytsk@nit.om.u ABSTRACT Shulz s rul is us in th ltions of lrg numr of orgniztions inluing Wikimi n Din. Prt of th rson for its populrity is th lrg numr of xiomti proprtis, lik monotoniity n Conort onsistny, whih it stisfis. W intify potntil shortoming of Shulz s rul: it is omputtionlly vulnrl to mnipultion. In prtiulr, w prov tht omputing n unwight olitionl mnipultion (UCM) is polynomil for ny numr of mnipultors. This rsult hols for oth th uniqu winnr n th o-winnr vrsions of UCM. This rsolvs n opn qustion in [14]. W lso prov tht omputing wight olitionl mnipultion (WCM) is polynomil for oun numr of nits. Finlly, w isuss th rltion twn th uniqu winnr UCM prolm n th o-winnr UCM prolm n rgu tht thy hv sustntilly iffrnt nssry n suffiint onitions for th xistn of sussful mnipultion. Ctgoris n Sujt Dsriptors I.2. [Distriut Artifiil Intllign]: Multignt Systms; F.2 [Thory of Computtion]: Anlysis of Algorithms n Prolm Complxity Gnrl Trms Eonomis, Thory Kywors soil hoi, voting, mnipultion 1. INTRODUCTION On importnt issu with voting is tht gnts my st strtgi vots inst of rvling thir tru prfrns. Gir [] n Sttrtwhit [15] prov tht most voting ruls r mnipull in this wy. Brtholi, Tovy n Trik [3] suggst omputtionl omplxity my nvrthlss t s rrir to mnipultion. Intrstingly, it is NP-hr to omput mnipultion for mny ommonly us voting ruls, inluing mximin, rnk pirs [17], Apprs in: Proings of th 12th Intrntionl Confrn on Autonomous Agnts n Multignt Systms (AAMAS 2013), Ito, Jonkr, Gini, n Shhory (s.), My, 6, 2013, Sint Pul, Minnsot, USA. Copyright 2013, Intrntionl Fountion for Autonomous Agnts n Multignt Systms ( All rights rsrv. Bor [6, 4], 2n orr Copln, STV [2], Nnson n Blwin [13]. A rnt survy on omputtionl omplxity s rrir ginst mnipultion in ltions n foun in []. W stuy hr th omputtionl omplxity of mnipulting Shulz s voting rul, whih is rguly th most wispr Conort voting mtho in us toy. Shulz s rul ws propos y Mrkus Shulz in 17, n ws quikly opt y mny orgniztions. It is, for xmpl, us y th Annox Assoition, Blitz, Cssnr, Din, th Europn Dmorti Eution Confrn, th Fr Softwr Fountion, GNU Privy Gur, th Hskll Logo Comptition, Knight Fountion, MTV, No, Opn Stk, th Pirt Prty, RLL- MUK, Sugr Ls, TopCor, Uuntu n th Wikimi Fountion. In ition to ing Conort onsistnt, Shulz s rul stisfis mny othr sirl xiomti proprtis, inluing Prto optimlity, monotoniity, Conort losr ritrion, inpnn to lons, rvrsl symmtry n th mjority ritrion. Shulz s rul is known y svrl othr nms inluing th Btpth Mtho n Pth Voting. Th mtho n sn s th invrs prour to nothr Conort onsistnt voting mtho, rnk pirs. Th rnk pirs mtho strts with th lrgst fts n uss s muh informtion out ths fts s it n without rting miguity. By omprison, Shulz s rul rptly rmovs th wkst ft until miguity is rmov. Shulz s rul hs numr of intrsting omputtionl proprtis. Whilst it is polynomil to omput th winnr of Shulz s rul, it rquirs fining pths in irt grph ll with th strngth of fts. Suh pths n foun using vrint of th ui tim Floy-Wrshll lgorithm [1]. Mor rntly, Prks n Xi initit th stuy of th omputtionl omplxity of mnipulting this voting rul [14]. Thy prov tht in th uniqu winnr UCM prolm it is polynomil for singl gnt to omput mnipulting vot if on xists. Thy lso invstigt th vulnrility of Shulz s rul to vrious typs of ontrol. Howvr, thy lft th omputtionl omplxity of UCM with mor thn on mnipultor s n opn qustion. In this ppr, w ontinu this stuy n show tht UCM rmins polynomil for n ritrry numr of mnipultors. For usrs of Shulz s rul, this rsult hs oth positiv n ngtiv onsquns. On th ngtiv si, this mns tht th rul is omputtionlly vulnrl to ing mnipult. On th positiv si, this mns tht whn liiting vots, w n omput in polynomil tim whn w hv ollt nough vots to lr th winnr. Our rsults lso highlight th importn of istinguishing rfully twn mnipultion prolms whr w r looking for singl winnr ompr to o-winnrs.

2 0 \ 0 \ Figur 1: Th wight mjority grph G P n th tl of S P(x, y), x, y {,,,, } from Exmpl 1. Figur 2: Th WMG n th tl of S P NM PM(x, y), x, y {,,,, } from Exmpl DEFINITIONS Voting systms. Consir n ltion with st of m nits C = { 1,..., m}. Avot is spifi y totl strit orr on C: i1 i2 im.ann-gnt profil P on C onsists of n vots, P =( 1, 2,..., n). Shulz s voting rul. Givn n n-gnt profil P on C, Shulz s rul trmins st of winnrs W P Cs follows. 1. For nits x y, ltn P (x, y) not th numr of gnts who prfr x ovr y, i.. th numr of inis i with x i y. 2. Th wight mjority grph (WMG) is irt grph G P whos vrtx st is C, n with n r of wight w P (x, y) = N P (x, y) N P (y,x) for vry pir (x, y) of istint nits. W not WMG ssoit with profil P y (G P,w P ). 3. Th strngth of irt pth π =(x 1,x 2,...,x k ) in G P is fin to th minimum wight ovr ll its rs, i.. w P (π) = wp (xi,xi+1). min 1 i k 1 4. For nits x n y, lts P (x, y) not th mximum strngth of pth from x to y,i.. S P (x, y) =mx{w P (π) : π is pth from x to y in G P }. A pth from x to y is ritil pth if its strngth is S P (x, y). 5. Th winning st is fin s W P = {x C : y C\{x} S P (x, y) S P (y,x)}. If S P (x, y) >S P (y,x) for two nits x, y, thn w sy tht x omints y. Thus, W P is th st of non-omint vrtis. Th winning st is lwys non-mpty [16]. Not tht ll wights w P (x, y), (x, y) G P r ithr o or vn, pning on th siz of th profil P. Convrsly, for ny wight igrph whr ll wights hv th sm prity, orrsponing profil n onstrut [7]. In th litrtur, for xmpl, [17] n [14] rfr to this s MGrvy s trik [12]. W us this rsult hr s w fin th non-mnipultors profil y thir wight mjority grph inst of y thir vots. EXAMPLE 1. Consir n ltion with 5 ltrntivs {,,,, }. Th wight mjority grph G P is shown in Figur 1. W omit rs with zro or ngtiv wight for lrity. Th tl shows vlus S P (x, y), x, y {,,,, }. As n sn from th tl, S P (, x) > S P (x, ), for ll x {,,, }. Hn, th winning st ontins singl ltrntiv W P = {}. Strtgi hvior. W istinguish twn gnts tht vot truthfully n gnts tht vot strtgilly. W ll th lttr mnipultors. W us th suprsript NM to not th nonmnipultors profil n th suprsript M to not th mnipultors profil. Th o-winnr unwight olitionl mnipultion (UCM) prolm is fin s follows. An instn is tupl (P NM,,M), whrp NM is th non-mnipultors profil, is th nit prfrr y th mnipultors n M is th st of mnipultors. W r sk whthr thr xists profil P M for th mnipultors suh tht W P NM P M.Thuniqu winnr UCM prolm is vrint of th o-winnr UCM whr w r looking for mnipultion suh tht {} = W P NM P M. Th wight olitionl mnipultion (WCM) is fin similrly, whr th wights of th gnts (oth non-mnipultors n mnipultors) r intgrs n r lso givn s inputs. 3. WEIGHTED COALITIONAL MANIPU- LATION W onsir th o-winnr WCM prolm for Shulz s voting rul. W show tht if thr xists sussful mnipultion P M thn thr xists sussful mnipultion P M whr ll mnipultors vot intilly. W prov this rsult in two stps. First, w onstrut kin of irt spnning tr of th WMG G P NM P M root t, whih givs us ritil pth from to ll othr ltrntivs. Thn, y trvrsing this tr, w uil nw linr orr of nits tht spifis vot for ll mnipultors. EXAMPLE 2. Consir th WMG G P from Exmpl 1. Suppos tht P orrspons to th non-mnipultors profil, so tht P NM = P. Suppos w hv 4 mnipultors with wights, 3, 2 n 5 tht vot in th following wy: th first thr mnipultors vot n th lst mnipultor vots. Hn, th totl wight of th vot in P M is 15 n th totl wight of th vot in P M is 5. Th upt WMG G P NM P M n th orrsponing tl tht shows th vlus of pirwis mximum strngths r shown in Figur 2. Not tht th ltrntiv is non-omint s wll s ltrntivs {,, }. Hn, th winning st W P NM P M = {,,, }. W show tht givn ny profil P, winning nit W P n sust P 0 of th st of vots,.g. P 0 = P M, w n moify th vots in P 0 to ll th sm, n is still in th winning st of th rsulting profil P. To o this, w onstrut vot Λ=( 1 m 1) suh tht is still winnr if w rpl vry vot in P 0 y Λ. Hn, in th ontxt of th mnipultion prolm w n think of P s P NM P M n P 0 s P M. An out-rnhing T of irt grph G root t vrtx r is onnt spnning suigrph of G in whih r hs in-gr 0 n ll othr vrtis hv in-gr 1. LEMMA 1. Lt G = G P th igrph ssoit with th givn profil P. Thr xists n out-rnhing T root t in G

3 Stp 2 Stp 1 Stp 3 Stp 4 0 Stp 1 ( ) () Stp 2 ( ) > > > > () Figur 3: () Th out-rnhing root t tht is prou y Algorithm 1 n th orrsponing ritil -x-pths, x {,,, }; () Th Λ orring onstrut y Algorithm 2. suh tht for vry nit th uniqu pth from to in T is ritil - -pth in G. PROOF. W onstrut n out-rnhing T of G y Algorithm 1. At th initil stp th lgorithm mks th root of T. At h stp,wnwvrtxx, x V (G) \ V (T ), tothtrt iff th r (x, y),y V (T ) hs mximum vlu w(x, y) mong ll rs (x,y ), x V (G) \ V (T ),y V (T ). Algorithm 1 Out-rnhing onstrution Input: wight igrph (G, w) =(G P,w P ) n istinguish nit. Initiliz F 1 = {}, X 1 = C\{} n T 1 = {}. for i =1,...,m 1 o D =mx{w(x, y) : x F i,y X i} Choos F i n X i with w(, ) =D F i+1 = F i {} X i+1 = X i \{} T i+1 = T i {(, )} rturn T = T m Clrly, Algorithm 1 rturns n out-rnhing us th input igrph is omplt. So w just hv to show tht it stisfis th rquir proprty. W o this y inution on th siz of T. For i =1th lim is ovious, so ssum 1 <i<m, n lt thvrtxinstpi, i.. {} = F i+1 \ F i. Lt π = ( = 0, 1,..., k 1, k = ) th --pth in T,nltj th inx of th first r on tht pth rlizing its strngth, i.. j = min{t : w( t, t+1) = w(π)}. Lt q th stp in whih th r ( t, t+1) is to T. Now suppos tht thr is --pth π =(, f 1,...,f r,...,) in G with w(π ) >w(π). Bus π n π T, thr xists som r (f r,f r+1) π with f r F q n f r+1 X q. Thn, w(π) =w( t, t+1) w(f r,f r+1) w(π ), ontriting th ssumption n thus onluing th proof. EXAMPLE 3. Figur 3() shows th out-rnhing for G P NM P M n ritil -x-pths, x {,,, }, of th WMG from Exmpl 2. Consir, for xmpl, th pth (,, ) in th out-rnhing. This pth hs strngth n it orrspons to th mximum strngth --pth in G P NM P M. LEMMA 2. Lt G = G P th grph ssoit with th givn profil P n lt T n out-rnhing root t s in Lmm 1. Thn thr xists n orring Λ=( 1 m 1) on th st of nits with th following proprtis. 0 Proprty 1: For h i th uniqu - i-pth in T rspts th orring Λ, i.. itisofthform(, j1,..., jk = i) with 1 j 1 <j 2 < <j k. Proprty 2: Th strngth of ritil pth from i, i [1,m) to is noninrsing long th orring Λ: S P ( i,) S P ( j,) for 1 i<j m 1. Th intuition for Proprty 1 is tht th strngth of h ritil pth from to i, i [1,m) os not rs if w hng ll vots in P 0 to Λ. PROOF. Algorithm 2 rturns totl orr on th st of nits. Th lgorithm trvrss th out-rnhing T otin y Algorithm 1. At h stp, w intify vrtx x with th lrgst vlu of th strngth S P (x, ). Thn w fin th pth π from to x in T whih is ritil pth y Lmm 1. A prfix of th pth π might to Λ t this point. Hn, w only fous on th suffix of π tht os not ontin vrtis to Λ. Thn w th vrtis in this suffix of π to Λ in th orr in whih thy ppr in π. W trmint whn Λ is totl orr ovr ll ltrntivs. Algorithm 2 Constrution of th orring Λ Input: wight igrph (G, w) =(G P,w P ), istinguish nit n th out-rnhing T with root from Algorithm 1. Initiliz Λ=(), X = C\{} whil X o D =mx{s P (x, ) : x X} Lt X ny vrtx with S P (, ) =D. Lt π th uniqu --pth in T. A th vrtis in π X to Λ in th orr in whih thy ppr on π. Upt X := X \ π. rturn Λ W show tht it stisfis th two proprtis y inution on th lngth of Λ. Forth initilλ =() it is oviously tru. So suppos w r in th whil loop ing π X for --pth π =( = g 0,g 1,...,g k,). Not tht π X is suffix of π, i..π X = {g j+1,...,g k,} for som j. To s this, lt g j th lst vrtx on π tht is lry in Λ. Thn y onstrution, ll th vrtis g 1,g 2,...,g j hv n to Λ in th stp in whih g j ws or rlir. By th inution hypothsis th -g j-pth in T rspts Λ, n us th suffix g j+1,...,g k, is to Λ n g j+1,...,g k, is su-pth of π, th onition of Proprty 1 is stisfi for ll ths vrtis. Nxt w osrv tht S P (g t,) S P (, ) for t = j +1,...,k. To s this, lt π n --pth of strngth S P (, ). W hv w(g t,g t+1) S P (, ) S P (, ) for ll t, whr th first inqulity is tru us (g t,g t+1) is n r on th --pth in T whih is ritil pth, n th son inqulity us is winnr. Thus th ontntion of g t,g t+1,...,g k, n π provis g t--pth of strngth S P (, ). Now Proprty 2 follows from th osrvtion tht S P (x, ) S P (, ) for ll x X \ π whih follows from th mximlity onition in th stp whr is hosn. EXAMPLE 4. W onstrut n orring Λ s on th outrnhing otin in Exmpl 3. Th ltrntivs {, } r suh tht S P NM P M (, ) = S P NM P M (, ) = mx{s P NM P M (x, ) : x {,, }}. W rk th ti

4 \ Figur 4: An upt WMG n th tl of S P NM PM(x, y), x, y {,,,, } from Exmpl 4 using th Λ orring onstrut y Algorithm 2. twn n ritrrily n slt. Hn, w uil prtil orr. Th nxt ltrntivs tht w onsir r {, } s S P NM P M (, ) = S P NM P M (, ) = mx{s P NM P M (x, ) : x {, }}. W slt n th suffix to th prtil orr, so tht w gt Λ=( ). Hn, 4 mnipultors n vot with rspt to Λ. Figur 3() shows th xution of Algorithm 2. Figur 4 shows th nw WMG n th orrsponing tl of mximum strngths. It is sy to s tht is still winnr ftr th mnipultors hng thir vots. For our givn profil P n istinguish nit, w onstrut n orring Λ s sri in th proof of Lmm 2. THEOREM 1. Lt P ny profil with nit in th winning st, lt P 0 P ny suprofil, n st P 1 = P \ P 0.Lt P th profil givn y P = P 1 P 0 i=1 {Λ}, whrλ is th orring onstrut in Lmm 2. Thn isstill in th winning st W P. PROOF. Dnot th WMGs ssoit with th two profils y (G, w) =(G P,w P ) n (G,w )=(G P,w P ). W rll tht w us th out-rnhing T with root otin y Algorithm 1. Th thorm is s on th following two lims. CLAIM 1. For h pth π in T strting from th strngth of π os not rs in th grph G,i..w (π) w(π). By onstrution of Λ, whvw (x, y) w(x, y) for vry r (x, y) T, n this implis Clim 1. CLAIM 2. For vry --pth π, th strngth of π in G os not x th strngth of ritil --pth in G, i.. w (π) S P (, ). To prov Clim 2, ssum, for th sk of ontrition, tht is vrtx suh tht thr is n --pth π =( = 1,..., k = ) with w (π) >S P (, ), n w.l.o.g. w ssum tht for ll i-pths σ, 1 i k 1, whvw (σ) S P ( i,). Bus is winnr with rspt to P, π must ontin n r (x, y) of wight w(x, y) suh tht w(x, y) S P (, ). Lt(, ) =( i, i+1) th first r with this proprty, i.. i =min{j : w( j, j+1) S P (, )}. Nxt w show th hin of inqulitis w (π) (1) >S P (, ) (2) S P (, ) (3) S P (, ) (4) S P (, ) (5) w (π), whih is ontrition n thus provs th lim. Th following rgumnts for th singl inqulitis ov r illustrt in Figur 5. (1) By ssumption. 0 i= i+1= Figur 5: A igrm illustrting th rgumnts for stps (2),(3) n (4) of th inqulity hin in th proof of Clim 2. (2) As is winnr for P,vry--pth must ontin n r (x, y) with w(x, y) S P (, ). By th hoi of, w know tht (, ) is th first r suh tht w(, ) S P (, ). Hn, th strngth of th --pth is grtr thn th strngth of th --pth, S P (, ) > S P (, ). Now from S P (, ) min{s P (, ),S P (, )} it follows tht S P (, ) S P (, ). (3) From th ssumption w (π) > S P (, ) it follows tht w (, ) > w(, ) whih implis tht oms for in th orring Λ, n thn th inqulity (3) follows from Lmm 2. (4) By ssumption, w (σ) S P (, ) for ll --pths σ, hn S P (, ) S P (, ). (5) Lt π 1 th --supth of π. ThnS P (, ) w (π 1) w (π). Togthr, Clims 1 n 2 prov th thorm. COROLLARY 1. Th o-winnr WCM prolm for Shulz s rul is polynomil if th numr of nits is oun. PROOF. As th numr of nits is oun w n numrt ll possil istint vots in polynomil tim. From Thorm 1 it follows tht it is suffiint to onsir mnipultions whr ll mnipultors vot intilly. 4. UNWEIGHTED COALITIONAL MA- NIPULATION In this stion w prsnt our min rsult: o-winnr UCM is polynomil for ny numr of mnipultors. This loss n opn qustion ris in [14]. By Thorm 1, (P NM,,M) is Ysinstn for o-winnr UCM if n only if thr is vot suh tht W P NM P M whr vots in P M orrspons to. It rmins to i if suh vot xists. As in th wight s, w not (G, w) =(G P,w P ) n (G,w ) = (G P,w P ) th WMGs of th voting profils P = P NM n P = P NM P M with r wight funtions w n w, rsptivly, n S P (x, y) nots th mximum strngth of pth from x to y in G. First, w giv high-lvl sription of th two-stg lgorithm. In th first stg, w run prprossing prour on G tht ims to intify st of nssry onstrints on th strngths S P (x, y), suh s S P (x, y) must qul to S P (x, y)+ M. Th prour is s on st of ruls tht nfor nssry onitions for to win, nmly, S P (, x) S P (x, ) must hol. If th prprossing prour tts filur thn thr is no st of vots for M suh tht oms winnr. Th psuoo for th first stg of th lgorithm is givn in Algorithm 3. Stion 4.1 provs th orrtnss of Algorithm 3. If no filur is tt y pplying ths ruls uring th prprossing stg, w show tht mnipultion xists n provi onstrutiv prour tht fins mnipultion. Th psuoo for th son stg of th lgorithm is givn

5 Algorithm 3 PREPROCESSINGBOUNDS. Input: wight igrph (G =(V,E),w)=(G P,w P ), th strngths S P n istinguish nit. for (x, y) V V o w(x, y) =w(x, y)+ M w(x, y) =w(x, y) M U(x, y) =S P (x, y)+ M whil no onvrgn o /* Rul 1 */ for x V \{} o U(x, ) =min{u(x, ), U(, x)} /* Rul 2 */ for x V \{} o V r = {y V : U(y,) <U(x, ),y } E r = {(f,g) ( E : w(f,g) ) <U(x, )} V r V V V r G x = (V \ V r), (E \ E r) if G x ontins no -x-pth thn U(x, ) =U(x, ) 2 /* Rul 3 */ for x V \{} o for y V \{x, } o if U(x, ) <w(x, y) U(y, ) =min(u(y, ),U(x, )) for x V \{} o if U(x, ) <S P (x, ) M thn rturn FAIL rturn U in Algorithm 4. Hr, th lgorithm trvrss vrtis in G in spifi orr, whih fins th mnipultors vots. Stion 4.2 provs th orrtnss of Algorithm Stg 1. Prprossing Algorithm 3 uss funtion U(x, y), whih for ny two nits x n y, givs n uppr oun for S P (x, y). Initilly, U(x, y) := S P (x, y) + M for h pir (x, y). W lso us th following nottion for n uppr n lowr oun of w (x, y): w(x, y) :=w(x, y)+ M n w(x, y) :=w(x, y) M. In th first stg, Algorithm 3 rss U(x, y) whn it tts nssry onitions implying S P (x, y) < U(x, y). Th lgorithm is s on th following thr rution ruls. W show tht ths ruls r soun in th sns tht n pplition of rul os not hng th st of solutions of th prolm. Rul 1. If thr is nit x suh tht U(, x) < U(x,),thn st U(x, ) :=U(, x). PROPOSITION 1. Rul 1 is soun. PROOF. To s tht Rul 1 is soun, suppos S P (x, ) > S P (, x). Butthn,/ W P. To stt th nxt rution rul, fin for ny nit x th irt grph G x otin from G y rmoving ll vrtis y with U(y, ) <U(x, ) n ll rs (y, z) suh tht w(y,z) <U(x, ). Rul 2. If thr is nit x suh tht G x hs no irt pth from to x,thnstu(x, ) :=U(x, ) 2. PROPOSITION 2. Rul 2 is soun. PROOF. Suppos th prmiss of th rul hol, n, for th sk of ontrition, suppos thr xists pth in G from x to with 1 f Figur 6: Th WMG G P from Exmpl 5 strngth s, whrs quls U(x, ) for th pplition of th rul. Sin G x hs no irt pth from to x, ll irt pths in G from to x pss ithr through vrtx y with U(y, ) <s or through n r (y, z) suh tht w(y, z) <s. Sin ny suh pth hs strngth lss thn s, whvthts P (, x) <s. But, sin longs to th winning st in G,whvthtS P (, x) S P (x, ) s, ontrition. Thus, S P (x, ) <s. Th sounnss of Rul 2 now follows from th ft tht ll S P (y, z) hv th sm prity s NM + M, y, z V, n w mintin th invrint tht ll U(, ) hv this prity. Rul 3. If thr r nits x, y suh tht U(x, ) < w(x, y) n U(y, ) > U(x, ), thn st U(y, ) := U(x, ). PROPOSITION 3. Rul 3 is soun. PROOF. Suppos S P (y, ) >U(x, ) n π is ritil pth from y to in G. But thn, th pth x π, otin y ontnting x n π, hs strngth min{w (x, y),s P (y,)}. Sinw (x, y) w(x, y) >U(x, ), th strngth of this irt pth from x to is stritly grtr thn U(x, ), ontriting our ssumption tht U(x, ) is nssry uppr oun for S P (x, ). W rmrk tht Ruls 1-3 rmnt U(,) whn nssry onitions r foun tht rquir smllr uppr oun for S P (,). Shoul t ny tim suh vlu U(x, ) om smllr thn S P (x, ) M, thn thr r no vots for M tht mk winnr. In this s, th prprossing lgorithm rturns FAIL. THEOREM 2. Algorithm 3 is soun. PROOF. Algorithm 3 implmnts Ruls 1 3. As ths ruls r soun, th lgorithm is soun. Consir how Algorithm 3 works on n xmpl. EXAMPLE 5. Consir n ltion with lvn ltrntivs { 1, 2, 1, 2,, 1, 2, 1, 2,f 1,f 2} with th WMG in Figur 6, whr M =1n is th prfrr nit. W not tht thr r two nits 1 n 2 suh tht S P (, x) =S P (x, ) 2, x { 1, 2}. For nit 1 thr r two wys to inrs S P (, 1). Th first wy is to inrs th strngth of th pth y rnking 1 1. Th son wy is to inrs th strngth of th pth y rnking 2 2. If w slt th first wy thn n xtnsion of 1 1 to ny totl orr ls to / W P. If w slt th son wy thn w n uil sussful mnipultion. W show tht Algorithms 3 4 sussfully onstrut vli mnipultion. W strt with Algorithm 3. Tl 1 shows xution of Algorithm 3 on this prolm instn. 2 2 f2 2

6 Altrntivs C\{} f 1 f Initil vlus U(, ) 7 U(,) Rul 1 upts U( 2,), U( 1,) n U( 2,) U(, ) 7 U(,) 7 Rul 3 upts U(f 1,) s U( 2,)=7n w( 2,f 1)= U(, ) 7 U(,) 7 7 Rul 2 upts U( 1,) (Figur 7() for G 1 ) U(, ) 7 U(,) Rul 3 upts U( 1,) n U( 1,) U(, ) 7 U(,) Tl 1: Exution of Algorithm 3 on Exmpl 5. U(, )/U(, ) stns for th uppr oun vlu U(, )/U(, ), whr is th ltrntiv in th orrsponing olumn, C\{}. 1 f () 2 2 f f Figur 7: () G 1. Dlt rs n vrtis r in gry. Thr is no pth from to 1;()WMGG P {Λ} from Exmpl 5 whr Λ is vli mnipultion. 4.2 Stg 2. Construt mnipultors vots Algorithm 4 onstruts linr orr Λ s on th following gry prour. Initilly, Λ={}, is th top nit, lstv =, th frontir F = {} n th st of unrh vrtis X = C\{}. During th xution of th lgorithm, Λ is linr orr on F n ontins n lmnt x y for ny two onsutiv vrtis x, y in this orr. Th vrtx lstv is th lst vrtx in this orr lstv. Whil Λ is not totl orr, th lgorithm s on of th unrh vrtis y to th n of prtil orr Λ stisfying th following onitions: x F, y X, U(y, ) = D n w(x, y) D, whrd is th mximum vlu U(y, ) mong ll unrh vrtis y X. THEOREM 3. Algorithm 4 onstruts totl orr Λ with top lmnt. Morovr, for ny vrtx x V \{}, thris-xpth π =( = x 1,...,x p = x) suh tht w(x i,x i+1) U(x, ) n x i x i+1 Λ, i =1,...,p 1. PROOF. First, w n to prov tht th lgorithm n lwys vrtx y to th orr Λ stisfying th onitions ov. Lt z ny nit from X suh tht U(z, ) =D. Sin Rul 2 os not pply, th sugrph G z hs irt pth from to z. Lt (x, y) th r on this pth with x F n y X (w oul 1 () 2 2 f2 2 Algorithm 4 Constrution of orring Λ Input: wight igrph (G =(V,E),w)=(G P,w P ), th strngths S P, istinguish nit n th funtion U rturn y Algorithm 3. for (x, y) V V o w(x, y) =w(x, y)+ M Initiliz F = {}, X = C\{}, lstv = n Λ={}. for i =1,..., V 1 o D =mx{u(y, ) : y X} Choos x F n y X with w(x, y) U(y, ) =D F = F {y} X = X \{y} Λ=Λ {lstv y} lstv = y rturn Λ possily hv tht y = z). Also, y Rul 2 w hv tht U(y, ) U(z, ) n tht w(x, y) U(z, ). Thus, U(y,) = D n w(x, y) D, whih mns tht (x, y) stisfis th onitions of th ltrntiv y to to Λ. W prov th son sttmnt y inution. In th s s, F = {} n w y suh tht w(, y) U(y,). Hn, π =( = x 1,x 2 = y), w(, y) U(y,) n y Λ. Suppos, th sttmnt hols for i 1 stps. Lt (x, y) th r suh tht x F n y X, w(x, y) U(y, ) =D tht w t th ith stp. By th inution hypothsis, w know tht thr is -x-pth π =( = x 1,...,x p = x) suh tht w(x j,x j+1) U(x, ) n x j x j+1 Λ, j =1,...,p 1, p i 1. Byth sltion of y, w gt tht w(x, y) U(y, ). By Algorithm 4, w know tht U(x, ) U(y, ). Hn, w(x j,x j+1) U(x, ) U(y, ), j =1,...,p 1. As w x y to Λ w gt tht thr is -y-pth π =( = x 1,...,x p = x, x p+1 = y) suh tht w(x, y) U(y, ) n x j x j+1 Λ, j =1,...,p. This orr Λ fins th vot of th mnipultors. THEOREM 4. Consir th orr Λ rturn y Algorithm 4. Thn W P,whrP = P NM M i=1 {Λ}. PROOF. Du to th onstrution of Λ, w know tht S P (, x) U(x, ), x V \{} s for h vrtx x thr is -x-pth σ =( = x 1,x 2,...,x p = x) suh tht w(x i,x i+1) U(x, ) n x i x i+1 Λ, i =1,...,p 1. Lt us mk sur tht S P (x, ) U(x, ) for h nit x V \{}. On th ontrry, suppos thr is nit x suh tht S P (x, ) >U(x, ) n suppos mong ll suh vrtis, x hs th shortst ritil pth to. Dnot y π =(x, x 1,x 2,...,) shortst ritil pth from x to. Consir two ss pning on whthr x 1 = or x 1. Suppos tht x 1. W hv tht S P (x 1,) S P (x, ) sin th pth π is ritil. Thrfor, U(x 1,) >U(x, ) y th sltion of x n π. Sin nits r y non-inrsing vlus of U(,) to Λ, x 1 ws for x, sothtx 1 x. Thus, w (x, x 1)=w(x, x 1). By Rution Rul 3, w hv tht w(x, x 1) U(x, ). Thus, w (x, x 1) U(x, ), ontriting tht π hs strngth >U(x, ) in G. Suppos tht x 1 =. In this s, π =(x, ) n S P (x, ) = w (x, ). As is th top lmnt of Λ w hv tht w (x, ) = w(x, ) =w(x, ) M. As Algorithm 3 i not tt filur, w know tht U(x, ) S P (x, ) M. Morovr, S P (x, ) w(x, ), y finition of th ritil pth. Thrfor, U(x, ) S P (x, ) M w(x, ) M = w (x, ) =S P (x, ). Hn,

7 S P (x, ) U(x, ), ontriting tht π hs strngth >U(x, ) in G. Not tht Corollry 1 os not follow from Thorm 4, us Algorithm 3 tks O(w mx V 3 ) tim, whr w mx = mx (x,y) V V w(x, y). As w mx n O(2 V ), Algorithm 3 tks xponntil numr of stps in WCM. EXAMPLE 6. Consir how Algorithm 4 works on Exmpl 5. Th lgorithm trvrss G y vrtis orr y th vlu U(x, ), x C \ {}. Initilly, w strt t, n F = {} n X = C\{}. W omput D =mx{u(y, ) : y X}, D =.W onsir ll vrtis y X suh tht U(y,) =, whih is th st Q = {f 2, 2, 2, 2, 1}. W slt on of thos vrtis, f 2, tht stisfis th onition on th vlu w(x, y), x F, y X: w(, f 2)= U(f 2,)=. In th nxt four stps w ll lmnts of Q n otin prtil orr Λ= f Th nxt mximum vlu D =mx{u(y, ) : y C\ {, f 2, 2, 2, 2, 1} is 7. Th st of vrtis suh tht U(y, ) =7 is Q = {f 1, 1, 1, 1, 2}. Hn, w ths vrtis to Λ on y on n otin totl orr Λ= f f Figur 7() shows th WMG G P {Λ}. W omitt ll rs of wight 1 for lrity. 5. UNIQUE WINNER VS CO-WINNER UCM In this stion w onsir th unwight olitionl mnipultion prolm with singl mnipultor tht ws onsir in [14]. Prks n Xi show tht th uniqu winnr UCM for Shulz s rul with singl mnipultor n solv in polynomil tim. W mphsiz tht in this vrint th im is to mk th prfrr nit th uniqu winnr. Th im of this stion is to show tht th proof from [14] nnot xtn to th owinnr UCM prolm with on mnipultor. This monstrts tht th o-winnr UCM prolm with on mnipultor ws not rsolv in [14]. W lso xtn our lgorithm for o-winnr UCM to th uniqu winnr s. Anothr rson to invstigt th rltion twn proprtis of uniqu winnr n o-winnr mnipultion prolms is tht thy r losly rlt to th hoi of tirking ruls. If th ti-rking rul rks tis ginst th mnipultors thn th mnipultors hv to nsur tht th prfrr nit is th uniqu winnr of n ltion. If th ti-rking rul rks tis in fvor of th mnipultors thn it is suffiint for th mnipultors to gurnt tht th prfrr nit is on of th o-winnrs of th ltion to hiv th sir outom. Th proof tht th uniqu winnr UCM is polynomil is s on th rsolvility proprty [16, Stion 4.2.2]. Th rsolvility ritrion stts tht ny o-winnr n m uniqu winnr y ing singl vot. Rsolvility. If S P (, x) S P (x, ) for ll nits x C\{}, thn thr is vot v suh tht S P {v} (, x) > S P {v} (x, ) for ll nits x C\{}. Th proof of th proprty is onstrutiv. Clrly, n th uniqu winnr in P {v} only if is o-winnr in P.Thvot v is onstrut using two ruls tht w sri low. W not P = P NM n {v} = P M to simplify nottions. (1) For vry ltrntiv x C \{}, w rquir y x in th mnipultor s vot v whr y isth prssor ofx on som strongst pth from to x. (2) For ny x, y C\{} with S P (x, ) >S P (y,) w rquir x y in th mnipultor s vot v. \ () () \ Figur : () Th WMG G P n th tl of S P(x, y), x, y {,,,, } from Exmpl 7; ()/() Th WMG G P/G P {v} n th tl of S P(x, y)/s P {v} (x, y), x, y {,,, } from Exmpl. It ws shown in [16] tht th rsulting st of prfrn rltions os not ontin yls n thus n xtn to linr orr whih mks th uniqu winnr. Howvr, it ws lso shown in [16] tht th sm pproh nnot rsolv tis twn nits tht o not long to th winning st. It is nturl qustion if nit tht is not in th winning st n m winnr y ing singl vot. Clrly nssry onition is S P (, x) S P (x, ) 2 for ll x C\{}. So w n formult th following prolm. Singl vot UCM. Givn profil P n nit with S P (x, ) S P (, x) +2for ll x C\{}, os thr xist singl vot v suh tht W P {v}? Hr, w show tht th strightforwr ption of th ov ruls os not solv this prolm, vn if thr is singl vot mnipultion tht mks winnr. A mjor iffrn twn th uniqu winnr n th o-winnr UCM prolms is tht th mnipultion lwys xists in th formr prolm n it might not xist in th lttr s th following xmpl monstrts. EXAMPLE 7. Consir n ltion with fiv ltrntivs {,,,, }. Figur () shows th WMG n th orrsponing tl of mximum strngths. Th uniqu winnr is. Howvr, th iffrn S P (x, ) S P (, x) 2, x {,,, }. Hn, stisfis th trivil nssry onition for ing m winnr y ing singl vot. To s tht thr is no sussful mnipultion w noti tht S P (, ) =S P (, ) 2. Hn th mnipultion must inrs th wight of t lst on ritil --pth. As thr is only on ritil --pth this fors in th mnipultor s vot. But on th othr hn S P (, ) =S P (, ) 2 rquirs tht th wight of vry ritil --pth rss whih implis tht or, whih givs ontrition. Consir th prfrn rltions tht r output y th ruls. Following th first rul w n. Following th son rul, w {,, }. This rts yl n thus nnot omplt to linr orr. Nxt, w show tht th ruls o not fin th mnipultor vot vn if suh mnipultion xists for th o-winnr UCM prolm using Exmpls. EXAMPLE. Consir n ltion with four ltrntivs {,,, }. Figur () shows its WMG n th orrsponing ()

8 tl of mximum strngths. Th st of winnrs is {,, } n S P (x, ) S P (, x) 2, x W P. Following th first rul w. Howvr, y th son rul, w whih rts yl. Not tht sussful mnipultion v xists v =( ) (Figur ()). EXAMPLE. Consir th ltion with ltrntivs from Exmpl 5. Following th first rul w to th mnipultor vot s π =(, 1, 1, 1) is strongst pth from to 1. As w show in Exmpl 5, thr os not xist n xtnsion of this prtil orr to totl orr tht mks o-winnr. Howvr, sussful mnipultion v xists (Figur 7()). Thrfor, our stuy highlights iffrn twn uniqu winnr n o-winnr UCM unr Shulz s rul with singl mnipultor n monstrts tht o-winnr UCM with singl mnipultor ws not rsolv. Morovr, w liv tht Shulz s rul is n intrsting xmpl, whr th ti-rking in fvor of mnipultor, whih orrspons to o-winnr UCM, mks th prolm non-trivil ompr to ti-rking ginst mnipultors, whih orrspons to uniqu winnr UCM. Two ruls with similr proprtis hv n onsir in th litrtur. Conitzr, Snholm n Lng [5] show tht Copln s rul is polynomil with 3 nits in uniqu winnr WCM, whil it is NP-hr with 3 nits in o-winnr WCM []. Th most rnt rsult is u to Hmspnr, Hmspnr n Roth [] who show tht th onlin mnipultion WCM is polynomil for plurlity in th owinnr mol, whil it is onp-hr in th uniqu winnr mol. Our lgorithm from Stion 5 n still us s suroutin to solv th uniqu winnr UCM prolm. COROLLARY 2. Th uniqu winnr UCM prolm n solv in polynomil tim. PROOF. Run th lgorithm from Stion 5 with M 1 mnipultors n rturn th nswr. To show th orrtnss of this prour, w n to show tht is o-winnr with M 1 mnipultors iff is uniqu winnr with M mnipultors. ( ): Suppos n m o-winnr with M 1 mnipultors. Us th Rsolvility proprty to on mor vot to mk uniqu winnr. ( ): Suppos n m uniqu winnr with M mnipultors. Thrfor, S P (, x) S P (x, ) +2for vry nit x C\{} in th profil P = P NM P M. Now, rmov n ritrry vot of mnipultor n otin th profil P.Whvtht S P (, x) S P (, x) 1 n S P (x, ) S P (x, )+1for vry nit x C\{}. Thrfor, S P (, x) S P (, x) 1 S P (x, )+1 S P (x, ) for vry nit x C\{}, showing tht is o-winnr with M 1 mnipultors. 6. CONCLUSIONS W hv invstigt th omputtionl omplxity of th olitionl wight n unwight mnipultion prolms unr Shulz s rul. W prov tht it is polynomil to mnipult Shulz s rul with ny numr of mnipultors in th wight o-winnr mol n in th unwight s in oth uniqu n o-winnr mols. This rsolvs n opn qustion rgring th omputtionl omplxity of unwight olition mnipultion for Shulz rul [14]. This vulnrility to mnipultion my of onrn to th mny supportrs of Shulz s rul. is lso fun y AOARD grnt Srg Gsprs knowlgs support from th Austrlin Rsrh Counil (grnt DE ).. REFERENCES [1] R.K. Ahuj, T.L. Mgnnti, n J.B. Orlin. Ntwork Flows: Thory, Algorithms n Applitions. Prnti Hll, 13. [2] J.J. Brtholi n J.B. Orlin. Singl trnsfrl vot rsists strtgi voting. Soil Choi n Wlfr, (4): ,. [3] J.J. Brtholi, C.A. Tovy, n M.A. Trik. Th omputtionl iffiulty of mnipulting n ltion. Soil Choi n Wlfr, 6(3): , 1. [4] N. Btzlr, R. Nirmir, n G.J. Wogingr. Unwight olitionl mnipultion unr th Bor rul is NP-hr. In Pro. of 22n Intrntionl Joint Confrn on AI. 20. [5] V. Conitzr, T. Snholm, n J. Lng. Whn r ltions with fw nits hr to mnipult? Journl of th ACM (JACM), 54(3):14, [6] J. Dvis, G. Ktsirlos, N. Nroytsk, n T. Wlsh. Complxity of n lgorithms for Bor mnipultion. In Pro. of 25th AAAI Confrn on AI. 20. [7] B. Dor. Axiomtistion proéurs grégtion préférns. PhD thsis, Univrsité Sintifiqu, Thnologiqu t Méil Grnol, 17. [] L. Hmspnr, E. Hmspnr, n J. Roth. Th Complxity of Onlin Mnipultion of Squntil Eltions In Pro. of th 5r Int. Workshop on Computtionl Soil Choi (COMSOC-12). [] P. Fliszwski, E. Hmspnr, n H. Shnoor. Copln voting: tis mttr. In Pro. of 7th Int. Joint Confrn on Autonomous Agnts n Multignt Systms, 200. [] P. Fliszwski, n A. Proi. AI s Wr on Mnipultion: Ar W Winning? AI Mgzin, 31(4):53 64, 20. [] A. Gir. Mnipultion of voting shms: gnrl rsult. Eonomtri, 41(4):57 1, 173. [12] D.C. MGrvy. A thorm on th onstrution of voting proxs. Eonomtri, 21: 6, 153. [13] N. Nroytsk, T. Wlsh, n L. Xi. Mnipultion of Nnson s n Blwin s ruls. In Pro. of 25th AAAI Confrn on AI. 20. [14] D.C. Prks n L. Xi. A omplxity-of-strtgi-hvior omprison twn Shulz s rul n rnk pirs. In Pro. of 26th AAAI Confrn on AI, [15] M.A. Sttrthwit. Strtgy-proofnss n Arrow s onitions: Existn n orrsponn thorms for voting prours n soil wlfr funtions. Journl of Eonomi Thory, :17 217, 175. [16] M. Shulz. A nw monotoni, lon-inpnnt, rvrsl symmtri, n Conort-onsistnt singl-winnr ltion mtho. Soil Choi n Wlfr, 36: , 20. [17] L. Xi, M. Zukrmn, A.D. Proi, V. Conitzr, n J.S. Rosnshin. Complxity of unwight olitionl mnipultion unr som ommon voting ruls. In Pro. of 21st Int. Joint Confrn on AI ACKNOWLEDGMENTS NICTA is fun y th Austrlin Govrnmnt s rprsnt y th Dprtmnt of Bron, Communitions n th Digitl Eonomy n th Austrlin Rsrh Counil. This rsrh

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Computational Biology, Phylogenetic Trees. Consensus methods

Computational Biology, Phylogenetic Trees. Consensus methods Computtionl Biology, Phylognti Trs Consnsus mthos Asgr Bruun & Bo Simonsn Th 16th of Jnury 2008 Dprtmnt of Computr Sin Th univrsity of Copnhgn 0 Motivtion Givn olltion of Trs Τ = { T 0,..., T n } W wnt

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW Smll Pth Quiz ML n Dtss Cn you giv n xprssion tht rturns th lst / irst ourrn o h istint pri lmnt? Ltur 8 Strming Evlution: how muh mmory o you n? Sstin Mnth NICTA n UNSW

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

A comparison of routing sets for robust network design

A comparison of routing sets for robust network design A omprison of routing sts for roust ntwork sign Mihl Poss Astrt Dsigning ntwork l to rout st of non-simultnous mn vtors is n importnt prolm rising in tlommunitions. Th prolm n sn two-stg roust progrm whr

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms Grphs & Grph Algorithms Ltur CS Fll 5 Announmnts Upoming tlk h Mny Crrs o Computr Sintist Or how Computr Sin gr mpowrs you to o muh mor thn o Dn Huttnlohr, Prossor in th Dprtmnt o Computr Sin n Johnson

More information

arxiv: v1 [cs.ds] 20 Feb 2008

arxiv: v1 [cs.ds] 20 Feb 2008 Symposium on Thortil Aspts of Computr Sin 2008 (Borux), pp. 361-372 www.sts-onf.org rxiv:0802.2867v1 [s.ds] 20 F 2008 FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Can transitive orientation make sandwich problems easier?

Can transitive orientation make sandwich problems easier? Disrt Mthmtis 07 (007) 00 04 www.lsvir.om/lot/is Cn trnsitiv orinttion mk snwih prolms sir? Mihl Hi, Dvi Klly, Emmnull Lhr,, Christoph Pul,, CNRS, LIRMM, Univrsité Montpllir II, 6 ru A, 4 9 Montpllir C,

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Module 2 Motion Instructions

Module 2 Motion Instructions Moul 2 Motion Instrutions CAUTION: Bor you strt this xprimnt, unrstn tht you r xpt to ollow irtions EXPLICITLY! Tk your tim n r th irtions or h stp n or h prt o th xprimnt. You will rquir to ntr t in prtiulr

More information

Discovering Frequent Graph Patterns Using Disjoint Paths

Discovering Frequent Graph Patterns Using Disjoint Paths Disovring Frqunt Grph Pttrns Using Disjoint Pths E. Gus, S. E. Shimony, N. Vntik {hu,shimony,orlovn}@s.gu..il Dpt. of Computr Sin, Bn-Gurion Univrsity of th Ngv, Br-Shv, Isrl Astrt Whrs t-mining in strutur

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces IEEE TRNSTIONS ON OMPUTTIONL IOLOGY ND IOINFORMTIS, VOL. TK, NO. TK, MONTHTK YERTK Hmiltonin Wlks of Phylognti Trsps Kvughn Goron, Eri For, n Kthrin St. John strt W nswr rynt s omintoril hllng on miniml

More information