LECTURE 4: SYMPLECTIC GROUP ACTIONS

Size: px
Start display at page:

Download "LECTURE 4: SYMPLECTIC GROUP ACTIONS"

Transcription

1 LECTURE 4: SYMPLECTIC GROUP ACTIONS WEIMIN CHEN, UMASS, SPRING Symplectic circle actions We set S 1 = R/2πZ throughout. Let (M, ω) be a symplectic manifold. A symplectic S 1 -action on (M, ω) is a smooth family ψ t Symp(M, ω), t S 1, such that ψ t+s = ψ t ψ s for any t, s S 1. One can easily check that the corresponding vector fields X t d dt ψ t ψt 1 is time-independent, i.e., X t = X is constant in t. We call X the associated vector field of the given symplectic S 1 -action. Note that X is a symplectic vector field, i.e., ι(x)ω is a closed 1-form. When ι(x)ω = dh is an exact 1-form, the corresponding symplectic S 1 -action is called a Hamiltonian S 1 -action, and the function H : M R is called a moment map. Note that H is uniquely determined up to a constant. We point out that a symplectic S 1 -action on (M, ω) is automatically Hamiltonian if H 1 (M; R) = 0. In general, ι(x)ω is only a closed form. In this case, one can perturb ω by adding a sufficiently small S 1 -invariant harmonic 2-form β so that ω + β is still symplectic and S 1 -invariant, and furthermore, the derham cohomology class [ω +β] lies in H 2 (M; Q). A positive integral multiple of ω+β, ω N(ω+β), is a S 1 -invariant symplectic form on M such that the derham cohomology class of ι(x)ω lies in H 1 (M; Z). Consequently, there exists a smooth function H : M R/Z such that ι(x)ω = dh. Such a circlevalued smooth function H : M R/Z is called a generalized moment map. As far as the topology of the S 1 -action is concerned, one may always assume that there is a generalized moment map. Let H be a moment map or generalized moment map of a given symplectic S 1 -action. We shall make the following two observations. (1) Each level surface H 1 (λ) is invariant under the S 1 -action, because dh(x) = ω(x, X) = 0 (where X is the associated vector field of the given symplectic S 1 -action). (2) A point p M is a fixed point of the S 1 -action if and only if p is a critical point of H, i.e., dh = 0 at p. This is because p M is a fixed point of the S 1 -action iff X = 0 at p iff dh = ι(x)ω = 0 at p. Now consider a level surface H 1 (λ) where λ is a regular value of H. Then H 1 (λ) is a hypersurface in M which does not contain any fixed points of the S 1 -action. When the S 1 -action is free on H 1 (λ), the quotient B λ H 1 (λ)/s 1 is a smooth manifold. In general, the S 1 -action may have finite isotropy on H 1 (λ), and the quotient B λ H 1 (λ)/s 1 is a smooth orbifold. In any case, one observes that dim B λ = dim M 2. 1

2 2 WEIMIN CHEN, UMASS, SPRING 07 The next proposition shows that there exists a natural symplectic structure ω λ on B λ. The symplectic manifold (or orbifold) (B λ, ω λ ) is called the symplectic quotient or the reduced space at λ. The process of going from (M, ω) to (B λ, ω λ ) is called symplectic reduction. Proposition 1.1. There exists a canonically defined symplectic structure ω λ on B λ such that π ω λ = ω H 1 (λ), where π : H 1 (λ) H 1 (λ)/s 1 B λ is the projection. Proof. For simplicity, we assume the S 1 -action on H 1 (λ) is free, and consequently B λ is a smooth manifold. To simplify the notation, we set Q = H 1 (λ). Let s recall a basic result about differentiable Lie group actions on manifolds the existence of local slice. In the present situation, the result amounts to say that for any point q Q, there exists a submanifold O q of codimension 1 containing q, such that S 1 O q embedds into Q S 1 -equivariantly. O q is called a local slice at q, and the set {O q q Q} forms an atlas of charts for the differentiable structure on the quotient Q/S 1. If q Q lies in S 1 O q, then there is a local diffeomorphism φ qq from a neighborhood U of q in the slice O q into O q and a function on U into S 1, f qq, such that U O q may be identified with the graph of f qq over the image of φ qq in S 1 O q. Note that with the differentiable structure on the quotient Q/S 1 = B λ described above, the projection π : Q B λ becomes a principal S 1 -bundle over B λ, with local trivializations of the bundle given by projections S 1 O q O q, q Q. The symplectic structure ω λ is defined by pulling-back ω to each local slice O q. This definition immediately gives the closedness of ω λ as well as the equation π ω λ = ω Q. To see that ω λ is well-defined, i.e., the pull-back of ω to each local slice can be patched up, we note that the local slices are graphs over each other locally, and that the tangent direction of S 1 in S 1 O q lies in T Q ω at each point. The nondegeneracy of ω λ follows from the fact that dim T q Q ω = dim T q M dim T q Q = 1, so that T q Q ω is actually generated by the tangent direction of S 1. Example 1.2. (Product of S 1 -actions). For j = 1, 2, let (M j, ω j ) be a symplectic manifold with a symplectic S 1 -action t ψ j t, t S1. Then for any m 1, m 2 Z such that gcd(m 1, m 2 ) = 1, there is a canonical S 1 -action on the product (M 1 M 2, ω 1 ω 2 ), t ψ t, t S 1, where ψ t = ψm 1 1 t ψm 2 2 t. Moreover, if H 1, H 2 are moment maps of the S 1 -actions ψt 1, ψt 2 respectively, then H = m 1 H 1 + m 2 H 2 is a moment map of the product ψ t. To see this, note that if X j, j = 1, 2, is the vector field on M j which generates the S 1 -action ψ j t, then X = m 1X 1, m 2 X 2 is the vector field on M 1 M 2 which generates the S 1 -action ψ t. The claim about the moment maps follows immediately from ι(x)(ω 1 ω 2 ) = m 1 ι(x 1 )ω 1 + m 2 ι(x 2 )ω 2. Example 1.3. (Holomorphic S 1 -actions on Kähler manifolds). For any holomorphic S 1 -action on a Kähler manifold, one can choose an invariant Kähler metric, so that the S 1 -action becomes a symplectic S 1 -action with respect to the invariant Kähler form. Example 1.4. Consider (R 2, ω 0 ) with symplectic S 1 -action given by the complex multiplication z e it z, t S 1. Here we identify R 2 = C. To determine the moment map, we note that the S 1 -action is generated by the vector field X = y x+x y. With this we see the moment map is given by H(z) = 1 2 z 2, because ι(x)ω 0 = ydy xdx.

3 LECTURE 4: SYMPLECTIC GROUP ACTIONS 3 Now for any m = (m 0, m 1,, m n ) where each m i Z and gcd(m 0, m 1,, m n ) = 1, consider more generally the symplectic S 1 -action on (R 2n+2, ω 0 ), which is defined by (z 0, z 1,, z n ) (e im 0t z 0, e im 1t z 1,, e imnt z n ), t S 1. By Example 1.2, the moment map of the S 1 -action is H(z 0, z 1,, z n ) = 1 2 (m 0 z m 1 z m n z n 2 ). For the special case where m = (1, 1,, 1), the level surface H 1 (λ), λ < 0, is the (2n + 1)-dimensional sphere of radius 2λ, and the S 1 -action on H 1 (λ) is given by the Hopf fibration. The reduced space (B λ, ω λ ) at λ = 1 2 is CPn with ω λ being π times the Fubini-Study form ω 0 on CP n, see Example 1.9 in Lecture 1. Example 1.5. Note that for any m = (m 0, m 1,, m n ), the corresponding symplectic S 1 -action on (R 2n+2, ω 0 ) with weights m preserves the unit sphere S 2n+1 and commutes with the Hopf fibration. Hence there is an induced S 1 -action on CP n, which must be symplectic with respect to the Fubini-Study form and has the moment map H(z 0, z 1,, z n ) = 1 2 (m 0 z m 1 z m n z n 2 ) where z z z n 2 = 1, due to the relation π ω λ = ω H 1 (λ) between the symplectic forms in the symplectic reduction given in Proposition 1.1, and the fact that the vector field on CP n which generates the induced S 1 -action is the push-down of the corresponding vector filed on S 2n+1 under the Hopf fibration π : S 2n+1 CP n. In terms of the homogeneous coordinates z 0, z 1,, z n on CP n, the S 1 -action is given by [z 0, z 1,, z n ] [e im0t z 0, e im1t z 1,, e imnt z n ], t S 1. The corresponding moment map is given by 1 H([z 0, z 1,, z n ]) = 2 n j=0 z j 2 (m 0 z m 1 z m n z n 2 ). Note that in order for the S 1 -action on CP n to be effective, one needs to impose additional conditions gcd(m 0 m j,, m n m j ) = 1, j = 0,, n. On the other hand, for any m Z, the wights m m (m 0 m, m 1 m,, m n m) defines the same S 1 -action on CP n as the weights m = (m 0, m 1,, m n ). Note that the corresponding moment maps change by a constant m 2. Consider the case where n = 1. The above construction gives rise to symplectic S 1 -actions on CP 1 = S 2, where different choices of weights m yield the same S 1 -action. If we let m = (0, 1) and identify CP 1 = C { }, the S 1 -action is simply given by the complex multiplication on C, which has moment map H(z) = z 2. The fixed points are {0, }, and the corresponding critical values of the moment map are H(0) = 1 2, H( ) = 0. The only difference between this example of a Hamiltonian

4 4 WEIMIN CHEN, UMASS, SPRING 07 S 1 -action on S 2 and the one given in Example 1.13 in Lecture 1 is that the former has area π over S 2 and the latter has area 4π. Definition 1.6. A smooth function f on a manifold M is called Morse-Bott if for any critical point p M of f, there is a chart φ : R n M centered at p such that φ f(x 1,, x n ) = a 1 x a n x 2 n + f(p), where each a j is 1, 0 or 1. The number of a j s where a j < 0 is called the index of f at p. If none of the a j s is zero for every critical point p, the function f is called a Morse function. Note that a Morse function has only isolated critical points, and for a Morse-Bott function in general, the set of critical points consists of a disjoint union of submanifolds of various co-dimensions, called the critical submanifolds. In the above standard chart, the critical submanifold is given by the equations x j = 0 for all j with a j 0. Proposition 1.7. A moment map (or generalized moment map) of a symplectic S 1 - action is Morse-Bott with the following additional properties: (1) the critical submanifolds are symplectic submanifolds, (2) the index at each critical point is always an even number. Proof. The proposition follows from an equivariant version of the Darboux theorem, which also gives a model for the moment map near a critical point. Since the problem is local, there is no difference for the case of generalized moment map. Let (M, ω) be a symplectic manifold with a symplectic S 1 -action ψ t, t S 1. The equivariant version of Darboux theorem states as follows: for any fixed point p M, there is a chart φ : R 2n M centered at p, such that φ ω = ω 0 the standard symplectic form on R 2n, and the pull-back S 1 -action φ ψ t φ 1 ψ t φ on R 2n is linear and is given under the standard identification R 2n = C n by (z 1, z 2,, z n ) (e im 1t z 1, e im 2t z 2,, e imnt z n ), t S 1, for some m 1, m 2,, m n Z with gcd(m 1, m 2,, m n ) = 1. Let H be a moment map of the symplectic S 1 -action on M. Then the equivariant Darboux theorem together with Example 1.4 implies that there exists a chart φ : R 2n M centered at p such that φ H(x 1,, x n, y 1,, y n ) = 1 2 [m 1(x y 2 1) + + m n (x 2 n + y 2 n)] + H(p) for some m 1, m 2,, m n Z with gcd(m 1, m 2,, m n ) = 1. With a further change of coordinates it follows immediately that H is a Morse-Bott function. The index at p is twice of the number of positive m j s, hence is always an even number. The critical submanifold is locally defined near p by the equations x j = y j = 0 for all j with m j 0, hence is symplectic. Next we sketch a proof of the equivariant Darboux theorem. We pick an S 1 -invariant metric on M, and by Theorem 1.15 of Lecture 2 (parametric version) it gives rise to an S 1 -invariant J J (M, ω). Note that the Hermitian metric on (M, J), g J (, ) ω(, J ), is also S 1 -invariant.

5 LECTURE 4: SYMPLECTIC GROUP ACTIONS 5 Let p M be a fixed point. Then the induced S 1 -action on T p M, which is naturally a Hermitian vector space with J and g J, has the form n n z j u j e imjt z j u j, t S 1, j=1 j=1 with respect to a unitary basis u 1, u 2,, u n, where m j Z, j = 1, 2,, n, obeys gcd(m 1, m 2,, m n ) = 1. We define a chart ψ : R 2n M centered at p by n ψ : (x 1, x 2,, x n, y 1, y 2,, y n ) exp p ( (x j + iy j )u j ), where the exponential map exp p is with respect to the metric g J. Note that with respect to the linear S 1 -action on R 2n (identified with T p M via the unitary basis u 1, u 2,, u n ), the local diffeomorphism ψ is S 1 -equivariant because the metric g J is. Now consider the pull-back symplectic form on R 2n, ψ ω. Both ψ ω and ω 0 are S 1 -invariant with respect to the linear S 1 -action on R 2n, and ψ ω = ω 0 at the origin 0 R 2n. The proof of Lemma 1.1 in Lecture 3 works perfectly in an equivariant context, from which the equivariant Darboux theorem follows. Note that with respect to the metric g J (for any J J (M, ω)) the gradient vector field for a moment map H is given by grad H = JX, where X is the vector field which generates the S 1 -action. The fact that a moment map of a symplectic S 1 -action is Morse-Bott with even index at each critical point has the following corollary by a standard argument in Morse theory. Corollary 1.8. Let H : M R be a moment map of a Hamiltonian S 1 -action on a compact, connected manifold. Then each level surface H 1 (λ) is connected. In particular, the critical submanifolds at the maximal and minimal values of H are connected. The standard model for a moment map H near a critical point as we obtained in the proof of Proposition 1.7 allows one to explicitly analyzing the change of the topology of the reduced spaces passing a critical value of the moment map in terms of the weights m j at each critical point in the pre-image of that critical value. On the other hand, for any interval I of regular values, Morse theory allows one to identify H 1 (I) diffeomorphically with the product H 1 (λ 0 ) I for any λ 0 I (e.g. using the gradient flow of H), which can be made S 1 -equivariantly. The next proposition describes the relation between the symplectic form ω on H 1 (I) and the reduced spaces (B λ, ω λ ), λ I, and the first Chern class of the S 1 -principal bunble π : H 1 (λ 0 ) B λ0. For simplicity we assume that the S 1 -action on H 1 (I) is free, so that each reduced space B λ, λ I, is a smooth manifold. Note that all H 1 (λ), B λ, λ I, are diffeomorphic; we denote the underlying manifolds by P, B respectively. (We warn that the S 1 -action on each H 1 (λ), λ I, is assumed to be on the left, so when H 1 (λ) is regarded as a S 1 -principal bundle, where the action is always assumed to be on the right, we mean j=1

6 6 WEIMIN CHEN, UMASS, SPRING 07 the conjugate S 1 -action. For example, in this way the first Chern class of the Hopf fibration S 3 CP 1 evaluates positively on the fundamental class of CP 1.) Proposition 1.9. (1) Let c H 2 (B; Z) be the first Chern class of the S 1 -principal bundle π : P B and let {ω λ λ I} be a smooth family of symplectic forms on B such that their derham cohomology classes satisfy [ω λ ] = [ω µ ] 2π(λ µ) c. There is an S 1 -invariant symplectic form ω on P I with a moment map H equal to the projection P I I and with reduced spaces (B, ω λ ), λ I. (2) Conversely, every S 1 -invariant symplectic form ω arises in the above way. Moreover, up to S 1 -equivariant symplectomorphisms such a S 1 -invariant symplectic form on P I is uniquely determined by the family of symplectic forms {ω λ λ I} on B. d Proof. (1) Since the derham cohomology class of dλ ω λ represents 2πc, there exists a smooth family of imaginary valued 1-forms A λ on P, i.e., the connection 1-forms, such that i 2π da λ = 1 2π π d dλ ω λ. Let X be the vector field which generates the S 1 -action. Then A λ (X) = i because as we remarked before P is regarded as an S 1 -principal bundle on B with the conjugate action. Set α λ = ia λ. Then α λ (X) = 1, and π d dλ ω λ + dα λ = 0. With these understood, ω = π ω λ + α λ dλ is an S 1 -invariant symplectic form on P I with a moment map H equal to the projection P I I and with reduced spaces (B, ω λ ), λ I. (2) Note that as a 2-form on P I, ω may be written as ω = β λ + α λ dλ for some α λ Ω 1 (P ) and β λ Ω 2 (P ). Let X be the vector field which generates the S 1 -action. Since the moment map of the S 1 -action is the projection P I I, we see that ι(x)β λ = 0 and α λ (X) = 1. The former implies that β λ descents to a smooth family of 2-forms ω λ on B, so that π ω λ = β λ. The nondegeneracy of ω implies that each ω λ is nondegenerate, and the closedness of ω implies d dω λ = 0, dλ β λ + dα λ = 0. Note that iα λ are connection 1-forms on P, so that the first Chern class c is represented by i 2π d( iα λ) = 1 2π dα λ. This gives the relation [ω λ ] = [ω µ ] 2π(λ µ) c. For the uniqueness, consider two different such symplectic forms ω = π ω λ + α λ dλ, ω = π ω λ + α λ dλ. One can form a smooth family of such symplectic forms ω t = π ω λ + ((1 t)α λ + tα λ ) dλ, t [0, 1]. The uniqueness follows from an equivariant version of Moser s stability theorem applied to ω t. We leave it as an exercise.

7 LECTURE 4: SYMPLECTIC GROUP ACTIONS 7 Example (1) Consider the S 1 -action on CP 1 = C { } at the end of Example 1.5, which is given by the complex multiplication of e it and has moment map H(z) = 1/2(1 + z 2 ). Since in this case the reduced spaces are a single point, ω λ = 0, and therefore the symplectic form ω = α λ dλ. In the polar coordinates (r, θ) on C, α λ = dθ, so that Direct calculation shows 1 rdr dθ ω = dθ d( 2(1 + r 2 ) = ) (1 + r 2 ) 2 = dx dy (1 + x 2 + y 2 ) 2. CP 1 ω = dxdy (1 + x 2 + y 2 ) 2 = π as we claimed. (2) Consider the S 1 -action on (R 2n+2, ω 0 ) in Example 1.4 with weights m = (1, 1,, 1). The moment map is H(z 0, z 1,, z n ) = 1 2 ( z z z n 2 ). For any λ < 0 the level surface H 1 (λ) is the sphere of radius 2λ, and the S 1 -action on H 1 (λ) is given by the Hopf fibration, with the quotient being CP n. We have claimed in Example 1.4 that the symplectic form ω λ at λ = 1 2 is π times the Fubini- Study form on CP n, which is normalized so that the integral of its n-th power over CP n equals 1. Note that this implies that CP ω n n 1/2 = πn. We shall next give an independent verification of this fact using Proposition 1.9. First note that as λ 0 the form ω λ converges to 0. This gives, by Proposition 1.9, [ω 1 ] = 0 2π( 1 0) c = π c, 2 2 where c is the first Chern class of the Hopf fibration. It is known that c H 2 (CP n ; Z) = Z is the positive generator, so that c n [CP n ] = 1. This implies that = π n CP n ω n 1 2 as we claimed. (3) Consider the S 1 -action on CP 2 in Example 1.5 with weights m = (0, 1, 2). There are three fixed points [1, 0, 0], [0, 1, 0] and [0, 0, 1], where the moment map has values 0, 1 2 and 1 respectively. Using the standard model for the moment map near a critical point as in the proof of Proposition 1.7, it is easy to check that for any regular value λ, the reduced space B λ is the weighted projective space CP 1 (1, 2), which is the quotient space (C 2 \ {(0, 0)})/, where (z 1, z 2 ) (zz 1, z 2 z 2 ). (Note that CP 1 (1, 2) is a 2-dimensional orbiford, with one singular point of order 2.) However, for λ (0, 1 2 ), the first Chern class of the (orbifold) S1 -pricipal bundle H 1 (λ) B λ equals 1 2 H2 (CP 1 (1, 2); Q) and for λ ( 1 2, 1), it equals 1 2 H2 (CP 1 (1, 2); Q). Note that the first Chern class changes by 1 when passing the critical value λ = 1 2.

8 8 WEIMIN CHEN, UMASS, SPRING 07 For a Hamiltonian S 1 -action with at most isolated fixed points, the moment map is a Morse function. Propositions 1.7 and 1.9 show that the weights of the induced action on the tangent space of each fixed point contain vital information about the equivariant symplectic geometry of the manifold. There are certain constraints amongst the weights of the fixed points, as shown in the following beautiful theorem of Duistermaat and Heckman. Theorem (Duistermaat-Heckman). Assume a Hamiltonian S 1 -action on a compact 2n-dimensional symplectic manifold (M, ω) has only isolated fixed points. Let H : M R be a moment map, and let e(p) denote the product of the weights at a fixed point p. Then 2π H ωn e M n! = e 2π H(p) n e(p) p for every C, where the sum on the right-hand side runs over all fixed points of the S 1 -action. Example If one expands both sides of the Duistermaat-Heckman formula as power series in and then compares the coefficients, the following set of constraints are obtained: H(p) k = 0, for k = 0, 1,, n 1, e(p) and p M ω n = ( 2π) n p H(p) n e(p). We shall check this out on an example of S 1 -action on CP 2 as discussed in Example 1.5, with weights m = (0, 2, 5). It is easy to check that there are three isolated fixed points p 1 = [1, 0, 0], p 2 = [0, 1, 0], p 3 = [0, 0, 1], which have weights ( 2, 5), (2, 3), and (5, 3) respectively. Let H be the standard moment map as given in Example 1.5. Then H(p 1 ) = 0, H(p 2 ) = 1, and H(p 3 ) = 5 2. We also know (see Example 1.10 (2)) that CP ω 2 = π 2. With the preceding understood, the set of constraints obtained 2 from the Duistermaat-Heckman formula are the following for this example: and 1 ( 2) ( 5) ( 3) = 0, 0 ( 2) ( 5) ( 3) = ( 2π) 2 ( ( 2) ( 5) ( 3) + ( 5 2 )2 5 3 ) = π2. We end with a discussion on the question as to which symplectic S 1 -actions on a compact closed manifold are Hamiltonian. Note that a necessary condition is that the S 1 -action must have a fixed point, because the fixed points correspond to the critical points of a moment map, and a smooth (R-valued) function on a compact manifold must have a critical point. We will give a sufficient condition utilizing the following lemma.

9 LECTURE 4: SYMPLECTIC GROUP ACTIONS 9 Lemma Let (M, ω) be a compact closed symplectic manifold equipped with a symplectic S 1 -action. We assume without loss of generality that M ωn = 1. Denote by α the homology class of an orbit of the S 1 -action in H 1 (M; R). Then α is Poincaré dual to 2π [ι(x)ω n ] H 2n 1 (M; R), where X is the vector field generating the S 1 - action. Proof. Let ψ t, t S 1, be the S 1 -action and let γ(t) = ψ t (q), q M, be a non-constant orbit in M. We choose a volume form σ Ω 2n (M) which is supported in a small neighborhood of γ and satisfies M σ = 1. By averaging over S1 we may assume that ψ t σ = σ. Since by assumption M ωn = 1, we see that σ and ω n are cohomologous, and σ ω n = dβ for some β Ω 2n 1 (M), which, by averaging over S 1, may be assumed to satisfy ψ t β = β also. Now we have ι(x)σ ι(x)ω n = ι(x)dβ = L X β d(ι(x)β) = d( ι(x)β), so that ι(x)σ and ι(x)ω n are cohomologous. (Note that L X β = 0 because ψt β = β.) On the other hand, ι(x)σ is Poincaré dual to α, because if we let D be a fiber of the normal bundle of γ in M, then D 2π ι(x)σ = 1 2π The lemma follows immediately. γ D 2π σ = M σ = 1. A compact, closed symplectic manifold (M, ω) of dimension 2n is said of Lefschetz type if ω n 1 : H 1 (M; R) H 2n 1 (M; R) : α α [ω] n 1, α H 1 (M; R) is an isomorphism. It is known that compact Kähler manifolds are of Lefschetz type. Proposition Suppose (M, ω) is a compact, closed symplectic manifold of Lefschetz type. Then a symplectic S 1 -action on (M, ω) is Hamiltonian if and only if there is a fixed point. Proof. It suffices to show that the S 1 -action is Hamiltonian if it has a fixed point. Suppose the action has a fixed point. Then the homology class of an orbit must be zero because it shrinks to a fixed point. This implies by Lemma 1.13 that its Poincaré dual 2π [ι(x)ω n ], which is the image of 2π [ι(x)ω] under ω n 1 : H 1 (M; R) H 2n 1 (M; R), is also zero. But (M, ω) is of Lefschetz type so that ω n 1 is isomorphic. This shows that ι(x)ω is exact, and the S 1 -action is Hamiltonian. Let (M, ω) be a compact, closed symplectic manifold. If dim M 4, then every symplectic S 1 -action which has a fixed point is Hamiltonian. McDuff found the first example of symplectic S 1 -actions on a 6-dimensional manifold which has a fixed point but is not Hamiltonian. In her example the fixed points are not isolated. One has not been able to find an example which has only isolated fixed points but is not Hamiltonian.

10 10 WEIMIN CHEN, UMASS, SPRING 07 Conjecture Let (M, ω) be a 6-dimensional compact, closed symplectic manifold. Then a symplectic S 1 -action on (M, ω) is Hamiltonian if there is a fixed point and all fixed points are isolated. 2. Hamiltonian torus actions We denote by T n = (S 1 ) n the n-torus. The corresponding Lie algebra and its dual are denoted by t n and (t n ) respectively. Since T n is abelian, the Lie bracket is trivial, and t n and (t n ) can be canonically identified with R n, with the pairing between t n and (t n ) given by the inner product on R n. Let (M, ω) be a symplectic manifold, and let T n act (effectively) on M via symplectomorphisms. Then for any ξ t n, one has a 1-parameter group of symplectomorphisms exp(tξ). We denote by X ξ the vector field on M which generates the flow exp(tξ). Note that for any ξ, η t n, [X ξ, X η ] = X [ξ,η] = 0 since T n is abelian. On the other hand, each X ξ is a symplectic vector field, i.e., ι(x ξ )ω is closed. We say that a symplectic T n -action on (M, ω) is weakly Hamiltonian if for any ξ t n, ι(x ξ )ω = dh ξ for some smooth function H ξ on M (note that H ξ is uniquely determined up to a constant). In order to define Hamiltonian actions, we recall the concept of Poisson bracket. Let F, H be smooth functions on M. We denote by X F, X H the corresponding Hamiltonian vector fields, i.e., ι(x F )ω = df, ι(x H )ω = dh. Then the Poisson bracket of F, H is defined and denoted by {F, H} ω(x F, X H ) = df (X H ) = dh(x F ). In particular, {F, H} = 0 means that the Hamiltonian function F is constant under the flow generated by X H (and vice versa). The set of smooth functions on (M, ω) becomes a Lie algebra under the Poisson bracket. With the above understood, a weakly Hamiltonian T n -action is called Hamiltonian if for any ξ, η t n, the Poisson bracket {H ξ, H η } = 0. (In general, a weakly Hamiltonian Lie group action is called Hamiltonian if ξ H ξ can be chosen to be a Lie algebra homomorphism.) The next lemma shows that in many cases a weakly Hamiltonian T n -action is automatically Hamiltonian. Lemma 2.1. For any weakly Hamiltonian T n -action on (M, ω), the Poisson bracket {H ξ, H η } is a constant function on M for any ξ, η t n. In particular, a weakly Hamiltonian T n -action is Hamiltonian if exp(tξ) has a fixed point for any ξ t n (e.g., when M is compact, closed). Proof. It follows from the following straightforward calculation.

11 LECTURE 4: SYMPLECTIC GROUP ACTIONS 11 d(ω(x ξ, X η )) = d(ι(x η )ι(x ξ )ω) = (d ι(x η ) + ι(x η ) d)(ι(x ξ )ω) = L Xη (ι(x ξ )ω) = ι(l Xη X ξ )ω = ι([x η, X ξ ])ω = 0. Here we use the fact that ι(x ξ )ω, ι(x η )ω are closed, and the assumption that T n is abelian so that [X η, X ξ ] = 0. The moment map of a Hamiltonian T n -action on (M, ω) is a smooth map such that for any ξ t n = R n, µ : M (t n ) = R n, H ξ (p) = µ(p), ξ, p M, is a Hamiltonian function for exp(tξ), i.e., ι(x ξ )ω = dh ξ. Note that the assignment ξ H ξ is linear. Remark 2.2. (1) The moment map always exists. For example, let ξ 1,, ξ n t n be a basis, and let ξ 1,, ξ n (t n ) be the corresponding dual basis. Then µ(p) = H ξ1 (p)ξ H ξn (p)ξ n, p M, is a moment map. (2) The moment map is uniquely defined up to a constant vector in (t n ). (3) Because of the condition {H ξ, H η } = 0 for any ξ, η t n and the fact that T n is connected, the moment map µ : M R n is T n -invariant, i.e., µ(g p) = µ(p) for any g T n. Let p be a point in M. We next give a description of the image of dµ p : T p M (t n ) = R n. Let us consider the subspace of t n = R n which annihilates the image, i.e., the set of ξ t n = R n such that dµ p (Y ), ξ = 0 for all Y T p M. Observe the identity dµ p (Y ), ξ = (dh ξ ) p (Y ) = ω p (X ξ, Y ). Since ω is nondegenerate, we see immediately that the set of ξ which annihilates the image of dµ p : T p M (t n ) = R n is the subspace {ξ t n X ξ = 0 at p}, or equivalently, the subspace {ξ t n p is a fixed point of the subgroup exp(tξ)}. In particular, since the principal orbit, i.e., the set of points in M which has trivial isotropy, is open and dense for an effective action, we see that the set of regular values of the moment map µ : M (t n ) = R n is open and dense in the image µ(m). Let λ (t n ) = R n be a regular value of µ. Since µ is T n -invariant, we see that the level surface µ 1 (λ) is T n -invariant. The quotient space B λ µ 1 (λ)/t n, which is an orbifold in general of dimension dim M 2n, has a natual symplectic structure ω λ. The space (B λ, ω λ ) is called the reduced space at λ (its proof is similar to the case of

12 12 WEIMIN CHEN, UMASS, SPRING 07 S 1 -action, cf. Proposition. 1.1). Note that dim M 2n 0, namely, the dimension of the torus is at most half of the dimension of the symplectic manifold which the torus acts on. When the dimension of the torus equals half of the dimension of the symplectic manifold, the reduced spaces consist of single points, and the preimages µ 1 (λ) are orbits of the torus action, which are easily seen to be embedded Lagrangian tori (they are Lagrangian because of the conditon {H ξ, H η } = ω(x ξ, X η ) = 0 for any ξ, η t n ). The fundamental result concerning Hamiltonian torus actions is the following convexity theorem, due to Atiyah and Guillemin-Sternberg independently. Theorem 2.3. (Atiyah-Guillemin-Sternberg). Let (M, ω) be a compact, connected symplectic manifold which is equipped with a Hamiltonian T n -action of moment map µ : M R n. Then the fixed points of the T n -action form a finite union of connected symplectic submanifolds Q 1,, Q N, such that on each Q j, the moment map µ has a constant value λ j R n, and the image of µ is the convex hull of λ j, i.e., N N µ(m) = { x j λ j x j = 1, x j 0} R n. j=1 j=1 Example 2.4. (1) T n -action on CP n. Consider the following Hamiltonian T n -action on CP n (t 1, t 2,, t n ) [z 0, z 1, z 2,, z n ] = [z 0, e it 1 z 1, e it 2 z 2,, e itn z n ], which has moment map µ([z 0, z 1,, z n ]) = 1 2 ( z 1 2 z z n 2,, z n 2 z z n 2 ). Clearly µ(cp n ) = {(x 1, x 2,, x n ) R n n i=1 x i 1 2, x i 0}. The fixed points are p 0 = [1, 0,, 0], p 1 = [0, 1,, 0],, p n = [0, 0,, 1], which are mapped under µ to λ 0 = (0, 0,, 0), λ 1 = ( 1 2, 0,, 0),, λ n = (0, 0,, 1 2 ) respectively. µ(cpn ) is the n-simplex with vertices λ 0, λ 1,, λ n. (2) A non-effective T 2 -action on CP 2. Consider the following non-effective action which has moment map (t 1, t 2 ) [z 0, z 1, z 2 ] = [z 0, e it 1 z 1, e 2it 2 z 2 ], µ([z 0, z 1, z 2 ]) = 1 2 ( z 1 2 z z z 2 2, 2 z 2 2 z z z 2 2 ). The image µ(cp 2 ) is the triangle with vertices (0, 0), ( 1 2, 0) and (0, 1). (3) T 2 -actions on CP 1 CP 1. Consider the following action The moment map is (t 1, t 2 ) ([z 0, z 1 ], [w 0, w 1 ]) = ([z 0, e it 1 z 1 ], [w 0, e it 2 w 1 ]). µ([z 0, z 1 ], [w 0, w 1 ]) = 1 2 ( z 1 2 z z 1 2, w 0 2 w w 1 2 ),

13 LECTURE 4: SYMPLECTIC GROUP ACTIONS 13 and the fixed points are ([1, 0], [1, 0]), ([1, 0], [0, 1]), ([0, 1], [1, 0]) and ([0, 1], [0, 1]), with values under µ being (0, 0), (0, 1 2 ), ( 1 2, 0) and ( 1 2, 1 2 ) respectively. The image of the moment map is µ(cp 1 CP 1 ) = {(x 1, x 2 ) R 2 0 x 1, x }. Consider the following (effective) T 2 -action on CP 1 CP 1 The moment map is (t 1, t 2 ) ([z 0, z 1 ], [w 0, w 1 ]) = ([z 0, e it 1 z 1 ], [w 0, e it 1 it 2 w 1 ]). µ([z 0, z 1 ], [w 0, w 1 ]) = 1 2 ( z 1 2 z z w 0 2 w w 1 2, w 0 2 w w 1 2 ), and the fixed points are ([1, 0], [1, 0]), ([1, 0], [0, 1]), ([0, 1], [1, 0]) and ([0, 1], [0, 1]), with values under µ being (0, 0), ( 1 2, 1 2 ), ( 1 2, 0) and (1, 1 2 ) respectively. The image of µ is the parallelagram with vertices (0, 0), ( 1 2, 1 ), ( 1 2, 0) and (1, 1 2 ). Consider the following (effective) T 2 -action on CP 1 CP 1 The moment map is (t 1, t 2 ) ([z 0, z 1 ], [w 0, w 1 ]) = ([z 0, e it 1 z 1 ], [w 0, e 2it 1 it 2 w 1 ]). µ([z 0, z 1 ], [w 0, w 1 ]) = 1 2 ( z 1 2 z z w 0 2 w w 1 2, w 0 2 w w 1 2 ), and the fixed points are ([1, 0], [1, 0]), ([1, 0], [0, 1]), ([0, 1], [1, 0]) and ([0, 1], [0, 1]), with values under µ being (0, 0), (1, 1 2 ), ( 1 2, 0) and ( 3 2, 1 2 ) respectively. The image of µ is the parallelagram with vertices (0, 0), (1, 1 2 ), ( 1 2, 0) and ( 3 2, 1 2 ). (4) A T 2 -action on Hirzebruch surface CP 2 #CP 2. Here the Hirzebruch surface is given as the complex surface M {([a, b], [x, y, z]) CP 1 CP 2 ay = bx}. The T 2 -action on M is the restriction of the following T 2 -action on CP 1 CP 2 which leaves M invariant. The moment map is (t 1, t 2 ) ([a, b], [x, y, z]) = ([e it 1 a, b], [e it 1 x, y, e it 2 z]), µ([a, b], [x, y, z]) = 1 2 ( a 2 a 2 + b 2 + x 2 x 2 + y 2 + z 2, z 2 x 2 + y 2 + z 2 ), and there are four fixed points on M, which are ([1, 0], [1, 0, 0]), ([1, 0], [0, 0, 1]), ([0, 1], [0, 1, 0]), ([0, 1], [0, 0, 1]). The corresponding values under the moment map are (1, 0), ( 1 2, 1 2 ), (0, 0) and (0, 1 2 ). So the image of µ is {(x 1, x 2 ) R 2 x 1 + x 2 1, x 1 0, 0 x }. Let (M, ω) be a symplectic manifold with a Hamiltonian T n -action and let µ : M (t n ) be the corresponding moment map. For any k < n let T k T n be a sub-torus. Then there is naturally an induced Hamiltonian T k -action on M. The moment map of the induced action is µ : M (t n ) composed with the projection (t n ) (t k ).

14 14 WEIMIN CHEN, UMASS, SPRING 07 Example 2.5. Consider the S 1 -action on CP 2 which is induced from the standard T 2 -action on CP 2 considered in Example 2.4 (1) by the embedding S 1 T 2 given by t (t, 2t). This is the same S 1 -action we considered in Example 1.10 (3). Note that the image of the moment map of the T 2 -action on CP 2 is the triangle with vertices (0, 0), ( 1 2, 0) and (0, 1 2 ). Its projection onto the line R 1, 2 R2 is the line segment between the points (0, 0) and ( 1 5, 2 5 ), which are the images of the vertices (0, 0) and (0, 1 2 ) under the projection. Note that the image of the vertex ( 1 2, 0) is the middle point ( 1 10, 1 5 ) of the line segment. Compare with the moment map in Example 1.10 (3) and notice that the length of the vector 1, 2 is 5. In general the set of regular values of the moment map is divided into several chambers. We illustrate this with the following example of a T 2 -action on CP 3. Example 2.6. Consider the Hamiltonian T 2 -action on CP 3 which has moment map (t 1, t 2 ) [z 0, z 1, z 2, z 3 ] = [z 0, e it 1 z 1, e 2it 1 z 2, e it 2 z 3 ], µ([z 0, z 1, z 2, z 3 ]) = 1 2 ( z z j=0 z j 2, z j=0 z j 2 ). The image of µ is the triangle with vertices (0, 0), (1, 0) and (0, 1 2 ). The set of regular values of µ is the interior of the triangle with the line segment between the points ( 1 2, 0), (0, 1 2 ) removed. So it is divided into two chambers by the line segment. Notice that the wall that divides the two chambers is the image of {[0, z, 0, w] CP 3 } under µ, which is fixed by the diagonal sub-torus {(t, t)} T 2. A compact, connected symplectic manifold of dimension 2n is called toric if it admits an effective Hamiltonian T n -action. Delzant showed that such a space together with the T n -action is uniquely determined by the image of the moment map, and moreover, there exists a T n -invariant complex structure with respect to which the symplectic form is Kähler. Compact, connected symplectic 4-manifolds with a Hamiltonian S 1 -action have been classified, from which it is known that such spaces are all Kähler and the S 1 -actions are holomorphic. However, S. Tolman constructed an example of a Hamiltonian T 2 - action on a compact, connected 6-dimensional manifold which does not admit any S 1 -invariant holomorphic Kähler structure. References [1] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Oxford Mathematical Monographs, 2nd edition, Oxford Univ. Press, 1998.

LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY

LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY WEIMIN CHEN, UMASS, SPRING 07 1. Blowing up and symplectic cutting In complex geometry the blowing-up operation amounts to replace a point in

More information

SYMPLECTIC GEOMETRY: LECTURE 5

SYMPLECTIC GEOMETRY: LECTURE 5 SYMPLECTIC GEOMETRY: LECTURE 5 LIAT KESSLER Let (M, ω) be a connected compact symplectic manifold, T a torus, T M M a Hamiltonian action of T on M, and Φ: M t the assoaciated moment map. Theorem 0.1 (The

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS CRAIG JACKSON 1. Introduction Generally speaking, geometric quantization is a scheme for associating Hilbert spaces

More information

LECTURE 11: SYMPLECTIC TORIC MANIFOLDS. Contents 1. Symplectic toric manifolds 1 2. Delzant s theorem 4 3. Symplectic cut 8

LECTURE 11: SYMPLECTIC TORIC MANIFOLDS. Contents 1. Symplectic toric manifolds 1 2. Delzant s theorem 4 3. Symplectic cut 8 LECTURE 11: SYMPLECTIC TORIC MANIFOLDS Contents 1. Symplectic toric manifolds 1 2. Delzant s theorem 4 3. Symplectic cut 8 1. Symplectic toric manifolds Orbit of torus actions. Recall that in lecture 9

More information

LECTURE 2: SYMPLECTIC VECTOR BUNDLES

LECTURE 2: SYMPLECTIC VECTOR BUNDLES LECTURE 2: SYMPLECTIC VECTOR BUNDLES WEIMIN CHEN, UMASS, SPRING 07 1. Symplectic Vector Spaces Definition 1.1. A symplectic vector space is a pair (V, ω) where V is a finite dimensional vector space (over

More information

Geometry and Dynamics of singular symplectic manifolds. Session 9: Some applications of the path method in b-symplectic geometry

Geometry and Dynamics of singular symplectic manifolds. Session 9: Some applications of the path method in b-symplectic geometry Geometry and Dynamics of singular symplectic manifolds Session 9: Some applications of the path method in b-symplectic geometry Eva Miranda (UPC-CEREMADE-IMCCE-IMJ) Fondation Sciences Mathématiques de

More information

LECTURE 6: J-HOLOMORPHIC CURVES AND APPLICATIONS

LECTURE 6: J-HOLOMORPHIC CURVES AND APPLICATIONS LECTURE 6: J-HOLOMORPHIC CURVES AND APPLICATIONS WEIMIN CHEN, UMASS, SPRING 07 1. Basic elements of J-holomorphic curve theory Let (M, ω) be a symplectic manifold of dimension 2n, and let J J (M, ω) be

More information

arxiv: v1 [math.sg] 6 Nov 2015

arxiv: v1 [math.sg] 6 Nov 2015 A CHIANG-TYPE LAGRANGIAN IN CP ANA CANNAS DA SILVA Abstract. We analyse a simple Chiang-type lagrangian in CP which is topologically an RP but exhibits a distinguishing behaviour under reduction by one

More information

arxiv: v1 [math.sg] 26 Jan 2015

arxiv: v1 [math.sg] 26 Jan 2015 SYMPLECTIC ACTIONS OF NON-HAMILTONIAN TYPE ÁLVARO PELAYO arxiv:1501.06480v1 [math.sg] 26 Jan 2015 In memory of Professor Johannes (Hans) J. Duistermaat (1942 2010) Abstract. Hamiltonian symplectic actions

More information

Delzant s Garden. A one-hour tour to symplectic toric geometry

Delzant s Garden. A one-hour tour to symplectic toric geometry Delzant s Garden A one-hour tour to symplectic toric geometry Tour Guide: Zuoqin Wang Travel Plan: The earth America MIT Main building Math. dept. The moon Toric world Symplectic toric Delzant s theorem

More information

GEOMETRIC QUANTIZATION

GEOMETRIC QUANTIZATION GEOMETRIC QUANTIZATION 1. The basic idea The setting of the Hamiltonian version of classical (Newtonian) mechanics is the phase space (position and momentum), which is a symplectic manifold. The typical

More information

ON NEARLY SEMIFREE CIRCLE ACTIONS

ON NEARLY SEMIFREE CIRCLE ACTIONS ON NEARLY SEMIFREE CIRCLE ACTIONS DUSA MCDUFF AND SUSAN TOLMAN Abstract. Recall that an effective circle action is semifree if the stabilizer subgroup of each point is connected. We show that if (M, ω)

More information

Poisson geometry of b-manifolds. Eva Miranda

Poisson geometry of b-manifolds. Eva Miranda Poisson geometry of b-manifolds Eva Miranda UPC-Barcelona Rio de Janeiro, July 26, 2010 Eva Miranda (UPC) Poisson 2010 July 26, 2010 1 / 45 Outline 1 Motivation 2 Classification of b-poisson manifolds

More information

A. CANNAS DA SILVA, V. GUILLEMIN, AND A. R. PIRES

A. CANNAS DA SILVA, V. GUILLEMIN, AND A. R. PIRES SYMPLECTIC ORIGAMI arxiv:0909.4065v1 [math.sg] 22 Sep 2009 A. CANNAS DA SILVA, V. GUILLEMIN, AND A. R. PIRES Abstract. An origami manifold is a manifold equipped with a closed 2-form which is symplectic

More information

A little taste of symplectic geometry

A little taste of symplectic geometry A little taste of symplectic geometry Timothy Goldberg Thursday, October 4, 2007 Olivetti Club Talk Cornell University 1 2 What is symplectic geometry? Symplectic geometry is the study of the geometry

More information

Lecture III: Neighbourhoods

Lecture III: Neighbourhoods Lecture III: Neighbourhoods Jonathan Evans 7th October 2010 Jonathan Evans () Lecture III: Neighbourhoods 7th October 2010 1 / 18 Jonathan Evans () Lecture III: Neighbourhoods 7th October 2010 2 / 18 In

More information

Hamiltonian Toric Manifolds

Hamiltonian Toric Manifolds Hamiltonian Toric Manifolds JWR (following Guillemin) August 26, 2001 1 Notation Throughout T is a torus, T C is its complexification, V = L(T ) is its Lie algebra, and Λ V is the kernel of the exponential

More information

An Invitation to Geometric Quantization

An Invitation to Geometric Quantization An Invitation to Geometric Quantization Alex Fok Department of Mathematics, Cornell University April 2012 What is quantization? Quantization is a process of associating a classical mechanical system to

More information

V = 1 2 (g ijχ i h j ) (2.4)

V = 1 2 (g ijχ i h j ) (2.4) 4 VASILY PESTUN 2. Lecture: Localization 2.. Euler class of vector bundle, Mathai-Quillen form and Poincare-Hopf theorem. We will present the Euler class of a vector bundle can be presented in the form

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

Nicholas Proudfoot Department of Mathematics, University of Oregon, Eugene, OR 97403

Nicholas Proudfoot Department of Mathematics, University of Oregon, Eugene, OR 97403 Symplectic Geometry Nicholas Proudfoot Department of Mathematics, University of Oregon, Eugene, OR 97403 These notes are written for a ten week graduate class on symplectic geometry. Most of the material

More information

A MARSDEN WEINSTEIN REDUCTION THEOREM FOR PRESYMPLECTIC MANIFOLDS

A MARSDEN WEINSTEIN REDUCTION THEOREM FOR PRESYMPLECTIC MANIFOLDS A MARSDEN WEINSTEIN REDUCTION THEOREM FOR PRESYMPLECTIC MANIFOLDS FRANCESCO BOTTACIN Abstract. In this paper we prove an analogue of the Marsden Weinstein reduction theorem for presymplectic actions of

More information

Lecture XI: The non-kähler world

Lecture XI: The non-kähler world Lecture XI: The non-kähler world Jonathan Evans 2nd December 2010 Jonathan Evans () Lecture XI: The non-kähler world 2nd December 2010 1 / 21 We ve spent most of the course so far discussing examples of

More information

Twisted Poisson manifolds and their almost symplectically complete isotropic realizations

Twisted Poisson manifolds and their almost symplectically complete isotropic realizations Twisted Poisson manifolds and their almost symplectically complete isotropic realizations Chi-Kwong Fok National Center for Theoretical Sciences Math Division National Tsing Hua University (Joint work

More information

Reduced phase space and toric variety coordinatizations of Delzant spaces

Reduced phase space and toric variety coordinatizations of Delzant spaces Under consideration for publication in Math. Proc. Camb. Phil. Soc. 147 Reduced phase space and toric variety coordinatizations of Delzant spaces By JOHANNES J. DUISTERMAAT AND ALVARO PELAYO Mathematisch

More information

COTANGENT MODELS FOR INTEGRABLE SYSTEMS

COTANGENT MODELS FOR INTEGRABLE SYSTEMS COTANGENT MODELS FOR INTEGRABLE SYSTEMS ANNA KIESENHOFER AND EVA MIRANDA Abstract. We associate cotangent models to a neighbourhood of a Liouville torus in symplectic and Poisson manifolds focusing on

More information

Hamiltonian flows, cotangent lifts, and momentum maps

Hamiltonian flows, cotangent lifts, and momentum maps Hamiltonian flows, cotangent lifts, and momentum maps Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto April 3, 2014 1 Symplectic manifolds Let (M, ω) and (N, η) be symplectic

More information

Eva Miranda. UPC-Barcelona. (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February

Eva Miranda. UPC-Barcelona. (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February From b-poisson manifolds to symplectic mapping torus and back Eva Miranda UPC-Barcelona (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February 8 2011 Eva Miranda (UPC) Poisson Day February

More information

Lecture VI: Projective varieties

Lecture VI: Projective varieties Lecture VI: Projective varieties Jonathan Evans 28th October 2010 Jonathan Evans () Lecture VI: Projective varieties 28th October 2010 1 / 24 I will begin by proving the adjunction formula which we still

More information

DIFFERENTIAL FORMS AND COHOMOLOGY

DIFFERENTIAL FORMS AND COHOMOLOGY DIFFERENIAL FORMS AND COHOMOLOGY ONY PERKINS Goals 1. Differential forms We want to be able to integrate (holomorphic functions) on manifolds. Obtain a version of Stokes heorem - a generalization of the

More information

The Strominger Yau Zaslow conjecture

The Strominger Yau Zaslow conjecture The Strominger Yau Zaslow conjecture Paul Hacking 10/16/09 1 Background 1.1 Kähler metrics Let X be a complex manifold of dimension n, and M the underlying smooth manifold with (integrable) almost complex

More information

J-holomorphic curves in symplectic geometry

J-holomorphic curves in symplectic geometry J-holomorphic curves in symplectic geometry Janko Latschev Pleinfeld, September 25 28, 2006 Since their introduction by Gromov [4] in the mid-1980 s J-holomorphic curves have been one of the most widely

More information

CHARACTERISTIC CLASSES

CHARACTERISTIC CLASSES 1 CHARACTERISTIC CLASSES Andrew Ranicki Index theory seminar 14th February, 2011 2 The Index Theorem identifies Introduction analytic index = topological index for a differential operator on a compact

More information

LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS

LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS LECTURE 5: COMPLEX AND KÄHLER MANIFOLDS Contents 1. Almost complex manifolds 1. Complex manifolds 5 3. Kähler manifolds 9 4. Dolbeault cohomology 11 1. Almost complex manifolds Almost complex structures.

More information

LECTURE 8: THE MOMENT MAP

LECTURE 8: THE MOMENT MAP LECTURE 8: THE MOMENT MAP Contents 1. Properties of the moment map 1 2. Existence and Uniqueness of the moment map 4 3. Examples/Exercises of moment maps 7 4. Moment map in gauge theory 9 1. Properties

More information

Patrick Iglesias-Zemmour

Patrick Iglesias-Zemmour Mathematical Surveys and Monographs Volume 185 Diffeology Patrick Iglesias-Zemmour American Mathematical Society Contents Preface xvii Chapter 1. Diffeology and Diffeological Spaces 1 Linguistic Preliminaries

More information

Bredon, Introduction to compact transformation groups, Academic Press

Bredon, Introduction to compact transformation groups, Academic Press 1 Introduction Outline Section 3: Topology of 2-orbifolds: Compact group actions Compact group actions Orbit spaces. Tubes and slices. Path-lifting, covering homotopy Locally smooth actions Smooth actions

More information

BRST 2006 (jmf) 7. g X (M) X ξ X. X η = [ξ X,η]. (X θ)(η) := X θ(η) θ(x η) = ξ X θ(η) θ([ξ X,η]).

BRST 2006 (jmf) 7. g X (M) X ξ X. X η = [ξ X,η]. (X θ)(η) := X θ(η) θ(x η) = ξ X θ(η) θ([ξ X,η]). BRST 2006 (jmf) 7 Lecture 2: Symplectic reduction In this lecture we discuss group actions on symplectic manifolds and symplectic reduction. We start with some generalities about group actions on manifolds.

More information

Cohomology of the Mumford Quotient

Cohomology of the Mumford Quotient Cohomology of the Mumford Quotient Maxim Braverman Abstract. Let X be a smooth projective variety acted on by a reductive group G. Let L be a positive G-equivariant line bundle over X. We use a Witten

More information

Complex structures on 4-manifolds with symplectic 2-torus actions

Complex structures on 4-manifolds with symplectic 2-torus actions Complex structures on 4-manifolds with symplectic 2-torus actions J.J. Duistermaat and A. Pelayo Abstract We apply the general theory for symplectic torus actions with symplectic or coisotropic orbits

More information

Monomial equivariant embeddings of quasitoric manifolds and the problem of existence of invariant almost complex structures.

Monomial equivariant embeddings of quasitoric manifolds and the problem of existence of invariant almost complex structures. Monomial equivariant embeddings of quasitoric manifolds and the problem of existence of invariant almost complex structures. Andrey Kustarev joint work with V. M. Buchstaber, Steklov Mathematical Institute

More information

Eva Miranda. UPC-Barcelona and BGSMath. XXV International Fall Workshop on Geometry and Physics Madrid

Eva Miranda. UPC-Barcelona and BGSMath. XXV International Fall Workshop on Geometry and Physics Madrid b-symplectic manifolds: going to infinity and coming back Eva Miranda UPC-Barcelona and BGSMath XXV International Fall Workshop on Geometry and Physics Madrid Eva Miranda (UPC) b-symplectic manifolds Semptember,

More information

SYMPLECTIC LEFSCHETZ FIBRATIONS ALEXANDER CAVIEDES CASTRO

SYMPLECTIC LEFSCHETZ FIBRATIONS ALEXANDER CAVIEDES CASTRO SYMPLECTIC LEFSCHETZ FIBRATIONS ALEXANDER CAVIEDES CASTRO. Introduction A Lefschetz pencil is a construction that comes from algebraic geometry, but it is closely related with symplectic geometry. Indeed,

More information

Stratified Symplectic Spaces and Reduction

Stratified Symplectic Spaces and Reduction Stratified Symplectic Spaces and Reduction Reyer Sjamaar Eugene Lerman Mathematisch Instituut der Rijksuniversiteit te Utrecht Current addresses: R. Sjamaar, Dept. of Mathematics, MIT, Cambridge, MA 02139

More information

A LITTLE TASTE OF SYMPLECTIC GEOMETRY: THE SCHUR-HORN THEOREM CONTENTS

A LITTLE TASTE OF SYMPLECTIC GEOMETRY: THE SCHUR-HORN THEOREM CONTENTS A LITTLE TASTE OF SYMPLECTIC GEOMETRY: THE SCHUR-HORN THEOREM TIMOTHY E. GOLDBERG ABSTRACT. This is a handout for a talk given at Bard College on Tuesday, 1 May 2007 by the author. It gives careful versions

More information

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X. Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions 1. For each of the following topological spaces X i, determine whether X i and X i X i are homeomorphic. (a) X 1 = [0, 1] (b) X 2

More information

Complex manifolds, Kahler metrics, differential and harmonic forms

Complex manifolds, Kahler metrics, differential and harmonic forms Complex manifolds, Kahler metrics, differential and harmonic forms Cattani June 16, 2010 1 Lecture 1 Definition 1.1 (Complex Manifold). A complex manifold is a manifold with coordinates holomorphic on

More information

Many of the exercises are taken from the books referred at the end of the document.

Many of the exercises are taken from the books referred at the end of the document. Exercises in Geometry I University of Bonn, Winter semester 2014/15 Prof. Christian Blohmann Assistant: Néstor León Delgado The collection of exercises here presented corresponds to the exercises for the

More information

Holomorphic line bundles

Holomorphic line bundles Chapter 2 Holomorphic line bundles In the absence of non-constant holomorphic functions X! C on a compact complex manifold, we turn to the next best thing, holomorphic sections of line bundles (i.e., rank

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

Lecture on Equivariant Cohomology

Lecture on Equivariant Cohomology Lecture on Equivariant Cohomology Sébastien Racanière February 20, 2004 I wrote these notes for a hours lecture at Imperial College during January and February. Of course, I tried to track down and remove

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Complex line bundles. Chapter Connections of line bundle. Consider a complex line bundle L M. For any integer k N, let

Complex line bundles. Chapter Connections of line bundle. Consider a complex line bundle L M. For any integer k N, let Chapter 1 Complex line bundles 1.1 Connections of line bundle Consider a complex line bundle L M. For any integer k N, let be the space of k-forms with values in L. Ω k (M, L) = C (M, L k (T M)) Definition

More information

LECTURE 1: LINEAR SYMPLECTIC GEOMETRY

LECTURE 1: LINEAR SYMPLECTIC GEOMETRY LECTURE 1: LINEAR SYMPLECTIC GEOMETRY Contents 1. Linear symplectic structure 3 2. Distinguished subspaces 5 3. Linear complex structure 7 4. The symplectic group 10 *********************************************************************************

More information

Log-Concavity and Symplectic Flows

Log-Concavity and Symplectic Flows Georgia Southern University From the SelectedWorks of Yi Lin 2012 Log-Concavity and Symplectic Flows Yi Lin, Georgia Southern University Alvaro Pelayo, University of California Available at: https://works.bepress.com/yi_lin/6/

More information

BACKGROUND IN SYMPLECTIC GEOMETRY

BACKGROUND IN SYMPLECTIC GEOMETRY BACKGROUND IN SYMPLECTIC GEOMETRY NILAY KUMAR Today I want to introduce some of the symplectic structure underlying classical mechanics. The key idea is actually quite old and in its various formulations

More information

M4P52 Manifolds, 2016 Problem Sheet 1

M4P52 Manifolds, 2016 Problem Sheet 1 Problem Sheet. Let X and Y be n-dimensional topological manifolds. Prove that the disjoint union X Y is an n-dimensional topological manifold. Is S S 2 a topological manifold? 2. Recall that that the discrete

More information

HARMONIC COHOMOLOGY OF SYMPLECTIC FIBER BUNDLES

HARMONIC COHOMOLOGY OF SYMPLECTIC FIBER BUNDLES HARMONIC COHOMOLOGY OF SYMPLECTIC FIBER BUNDLES OLIVER EBNER AND STEFAN HALLER Abstract. We show that every de Rham cohomology class on the total space of a symplectic fiber bundle with closed Lefschetz

More information

IGA Lecture I: Introduction to G-valued moment maps

IGA Lecture I: Introduction to G-valued moment maps IGA Lecture I: Introduction to G-valued moment maps Adelaide, September 5, 2011 Review: Hamiltonian G-spaces Let G a Lie group, g = Lie(G), g with co-adjoint G-action denoted Ad. Definition A Hamiltonian

More information

Symplectic Reduction and Convexity of Moment Maps. Theo van den Hurk

Symplectic Reduction and Convexity of Moment Maps. Theo van den Hurk Symplectic Reduction and Convexity of Moment Maps by Theo van den Hurk A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Mathematics University

More information

arxiv: v4 [math.sg] 22 Jul 2015

arxiv: v4 [math.sg] 22 Jul 2015 Symmetry, Integrability and Geometry: Methods and Applications SIGMA 11 (2015), 055, 37 pages Non-Compact Symplectic Toric Manifolds Yael KARSHON and Eugene LERMAN arxiv:0907.2891v4 [math.sg] 22 Jul 2015

More information

Intersection of stable and unstable manifolds for invariant Morse functions

Intersection of stable and unstable manifolds for invariant Morse functions Intersection of stable and unstable manifolds for invariant Morse functions Hitoshi Yamanaka (Osaka City University) March 14, 2011 Hitoshi Yamanaka (Osaka City University) ()Intersection of stable and

More information

Math 550 / David Dumas / Fall Problems

Math 550 / David Dumas / Fall Problems Math 550 / David Dumas / Fall 2014 Problems Please note: This list was last updated on November 30, 2014. Problems marked with * are challenge problems. Some problems are adapted from the course texts;

More information

Topology of symplectic torus actions with symplectic orbits

Topology of symplectic torus actions with symplectic orbits Topology of symplectic torus actions with symplectic orbits J.J. Duistermaat and A. Pelayo Abstract We give a concise overview of the classification theory of symplectic manifolds equipped with torus actions

More information

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim SOLUTIONS Dec 13, 218 Math 868 Final Exam In this exam, all manifolds, maps, vector fields, etc. are smooth. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).

More information

Res + X F F + is defined below in (1.3). According to [Je-Ki2, Definition 3.3 and Proposition 3.4], the value of Res + X

Res + X F F + is defined below in (1.3). According to [Je-Ki2, Definition 3.3 and Proposition 3.4], the value of Res + X Theorem 1.2. For any η HH (N) we have1 (1.1) κ S (η)[n red ] = c η F. Here HH (F) denotes the H-equivariant Euler class of the normal bundle ν(f), c is a non-zero constant 2, and is defined below in (1.3).

More information

10. The subgroup subalgebra correspondence. Homogeneous spaces.

10. The subgroup subalgebra correspondence. Homogeneous spaces. 10. The subgroup subalgebra correspondence. Homogeneous spaces. 10.1. The concept of a Lie subgroup of a Lie group. We have seen that if G is a Lie group and H G a subgroup which is at the same time a

More information

RIEMANN SURFACES. ω = ( f i (γ(t))γ i (t))dt.

RIEMANN SURFACES. ω = ( f i (γ(t))γ i (t))dt. RIEMANN SURFACES 6. Week 7: Differential forms. De Rham complex 6.1. Introduction. The notion of differential form is important for us for various reasons. First of all, one can integrate a k-form along

More information

A PERSONAL TOUR THROUGH SYMPLECTIC TOPOLOGY AND GEOMETRY

A PERSONAL TOUR THROUGH SYMPLECTIC TOPOLOGY AND GEOMETRY A PERSONAL TOUR THROUGH SYMPLECTIC TOPOLOGY AND GEOMETRY MIGUEL ABREU 1. Introduction In this survey I will present a very personal tour through symplectic topology and geometry, describing the following

More information

k=0 /D : S + S /D = K 1 2 (3.5) consistently with the relation (1.75) and the Riemann-Roch-Hirzebruch-Atiyah-Singer index formula

k=0 /D : S + S /D = K 1 2 (3.5) consistently with the relation (1.75) and the Riemann-Roch-Hirzebruch-Atiyah-Singer index formula 20 VASILY PESTUN 3. Lecture: Grothendieck-Riemann-Roch-Hirzebruch-Atiyah-Singer Index theorems 3.. Index for a holomorphic vector bundle. For a holomorphic vector bundle E over a complex variety of dim

More information

Tesi di Laurea Magistrale in Matematica presentata da. Claudia Dennetta. Symplectic Geometry. Il Relatore. Prof. Massimiliano Pontecorvo

Tesi di Laurea Magistrale in Matematica presentata da. Claudia Dennetta. Symplectic Geometry. Il Relatore. Prof. Massimiliano Pontecorvo UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI SCIENZE M.F.N. Tesi di Laurea Magistrale in Matematica presentata da Claudia Dennetta Symplectic Geometry Relatore Prof. Massimiliano Pontecorvo Il Candidato

More information

1.2. Examples of symplectic manifolds 1. (R 2n, ω 0 = n

1.2. Examples of symplectic manifolds 1. (R 2n, ω 0 = n Introduction to the geometry of hamiltonian diffeomorphisms Augustin Banyaga The Pennsylvania State University, University Park, PA 16803, USA Lecture Notes of a mini-course delivered at the Seminaire

More information

THE EXISTENCE PROBLEM

THE EXISTENCE PROBLEM THE EXISTENCE PROBLEM Contact Geometry in High Dimensions Emmanuel Giroux CNRS ENS Lyon AIM May 21, 2012 Contact forms A contact form on a manifold V is a non-vanishing 1-form α whose differential dα at

More information

Symplectic and Poisson Manifolds

Symplectic and Poisson Manifolds Symplectic and Poisson Manifolds Harry Smith In this survey we look at the basic definitions relating to symplectic manifolds and Poisson manifolds and consider different examples of these. We go on to

More information

NOTES ON DIFFERENTIAL FORMS. PART 5: DE RHAM COHOMOLOGY

NOTES ON DIFFERENTIAL FORMS. PART 5: DE RHAM COHOMOLOGY NOTES ON DIFFERENTIAL FORMS. PART 5: DE RHAM COHOMOLOGY 1. Closed and exact forms Let X be a n-manifold (not necessarily oriented), and let α be a k-form on X. We say that α is closed if dα = 0 and say

More information

CALIBRATED FIBRATIONS ON NONCOMPACT MANIFOLDS VIA GROUP ACTIONS

CALIBRATED FIBRATIONS ON NONCOMPACT MANIFOLDS VIA GROUP ACTIONS DUKE MATHEMATICAL JOURNAL Vol. 110, No. 2, c 2001 CALIBRATED FIBRATIONS ON NONCOMPACT MANIFOLDS VIA GROUP ACTIONS EDWARD GOLDSTEIN Abstract In this paper we use Lie group actions on noncompact Riemannian

More information

Vortex equations in abelian gauged σ-models

Vortex equations in abelian gauged σ-models DATP-2004-64 arxiv:math/0411517v2 [math.dg] 10 Nov 2005 Vortex equations in abelian gauged σ-models J.. Baptista Department of Applied athematics and Theoretical Physics University of Cambridge June 2004

More information

On some smooth circle actions on symplectic manifolds

On some smooth circle actions on symplectic manifolds Jagiellonian University Faculty of Mathematics and Computer Science On some smooth circle actions on symplectic manifolds Łukasz Bąk Advisor: Robert Wolak Kraków 2013 Contents 1 Introduction..............................

More information

1 Smooth manifolds and Lie groups

1 Smooth manifolds and Lie groups An undergraduate approach to Lie theory Slide 1 Andrew Baker, Glasgow Glasgow, 12/11/1999 1 Smooth manifolds and Lie groups A continuous g : V 1 V 2 with V k R m k open is called smooth if it is infinitely

More information

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, )

Eilenberg-Steenrod properties. (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, ) II.3 : Eilenberg-Steenrod properties (Hatcher, 2.1, 2.3, 3.1; Conlon, 2.6, 8.1, 8.3 8.5 Definition. Let U be an open subset of R n for some n. The de Rham cohomology groups (U are the cohomology groups

More information

12 Geometric quantization

12 Geometric quantization 12 Geometric quantization 12.1 Remarks on quantization and representation theory Definition 12.1 Let M be a symplectic manifold. A prequantum line bundle with connection on M is a line bundle L M equipped

More information

Bordism and the Pontryagin-Thom Theorem

Bordism and the Pontryagin-Thom Theorem Bordism and the Pontryagin-Thom Theorem Richard Wong Differential Topology Term Paper December 2, 2016 1 Introduction Given the classification of low dimensional manifolds up to equivalence relations such

More information

Vortex Equations on Riemannian Surfaces

Vortex Equations on Riemannian Surfaces Vortex Equations on Riemannian Surfaces Amanda Hood, Khoa Nguyen, Joseph Shao Advisor: Chris Woodward Vortex Equations on Riemannian Surfaces p.1/36 Introduction Yang Mills equations: originated from electromagnetism

More information

Morse Theory and Applications to Equivariant Topology

Morse Theory and Applications to Equivariant Topology Morse Theory and Applications to Equivariant Topology Morse Theory: the classical approach Briefly, Morse theory is ubiquitous and indomitable (Bott). It embodies a far reaching idea: the geometry and

More information

Examples of Singular Reduction

Examples of Singular Reduction Examples of Singular Reduction Eugene Lerman Richard Montgomery Reyer Sjamaar January 1991 Introduction The construction of the reduced space for a symplectic manifold with symmetry, as formalized by Marsden

More information

THE AFFINE INVARIANT OF GENERALIZED SEMITORIC SYSTEMS

THE AFFINE INVARIANT OF GENERALIZED SEMITORIC SYSTEMS THE AFFINE INVARIANT OF GENERALIZED SEMITORIC SYSTEMS ÁLVARO PELAYO TUDOR S. RATIU SAN VŨ NGỌC Abstract. A generalized semitoric system F := (J, H): M R 2 on a symplectic 4-manifold is an integrable system

More information

HYPERKÄHLER MANIFOLDS

HYPERKÄHLER MANIFOLDS HYPERKÄHLER MANIFOLDS PAVEL SAFRONOV, TALK AT 2011 TALBOT WORKSHOP 1.1. Basic definitions. 1. Hyperkähler manifolds Definition. A hyperkähler manifold is a C Riemannian manifold together with three covariantly

More information

7.3 Singular Homology Groups

7.3 Singular Homology Groups 184 CHAPTER 7. HOMOLOGY THEORY 7.3 Singular Homology Groups 7.3.1 Cycles, Boundaries and Homology Groups We can define the singular p-chains with coefficients in a field K. Furthermore, we can define the

More information

Stable bundles on CP 3 and special holonomies

Stable bundles on CP 3 and special holonomies Stable bundles on CP 3 and special holonomies Misha Verbitsky Géométrie des variétés complexes IV CIRM, Luminy, Oct 26, 2010 1 Hyperkähler manifolds DEFINITION: A hyperkähler structure on a manifold M

More information

Hyperkähler geometry lecture 3

Hyperkähler geometry lecture 3 Hyperkähler geometry lecture 3 Misha Verbitsky Cohomology in Mathematics and Physics Euler Institute, September 25, 2013, St. Petersburg 1 Broom Bridge Here as he walked by on the 16th of October 1843

More information

COMPUTABILITY AND THE GROWTH RATE OF SYMPLECTIC HOMOLOGY

COMPUTABILITY AND THE GROWTH RATE OF SYMPLECTIC HOMOLOGY COMPUTABILITY AND THE GROWTH RATE OF SYMPLECTIC HOMOLOGY MARK MCLEAN arxiv:1109.4466v1 [math.sg] 21 Sep 2011 Abstract. For each n greater than 7 we explicitly construct a sequence of Stein manifolds diffeomorphic

More information

AN INTRODUCTION TO THE MASLOV INDEX IN SYMPLECTIC TOPOLOGY

AN INTRODUCTION TO THE MASLOV INDEX IN SYMPLECTIC TOPOLOGY 1 AN INTRODUCTION TO THE MASLOV INDEX IN SYMPLECTIC TOPOLOGY Andrew Ranicki and Daniele Sepe (Edinburgh) http://www.maths.ed.ac.uk/ aar Maslov index seminar, 9 November 2009 The 1-dimensional Lagrangians

More information

A DANILOV-TYPE FORMULA FOR TORIC ORIGAMI MANIFOLDS VIA LOCALIZATION OF INDEX

A DANILOV-TYPE FORMULA FOR TORIC ORIGAMI MANIFOLDS VIA LOCALIZATION OF INDEX A DANILOV-TYPE FORMULA FOR TORIC ORIGAMI MANIFOLDS VIA LOCALIZATION OF INDEX HAJIME FUJITA Abstract. We give a direct geometric proof of a Danilov-type formula for toric origami manifolds by using the

More information

1 Hermitian symmetric spaces: examples and basic properties

1 Hermitian symmetric spaces: examples and basic properties Contents 1 Hermitian symmetric spaces: examples and basic properties 1 1.1 Almost complex manifolds............................................ 1 1.2 Hermitian manifolds................................................

More information

The Hopf Bracket. Claude LeBrun SUNY Stony Brook and Michael Taylor UNC Chapel Hill. August 11, 2013

The Hopf Bracket. Claude LeBrun SUNY Stony Brook and Michael Taylor UNC Chapel Hill. August 11, 2013 The Hopf Bracket Claude LeBrun SUY Stony Brook and ichael Taylor UC Chapel Hill August 11, 2013 Abstract Given a smooth map f : between smooth manifolds, we construct a hierarchy of bilinear forms on suitable

More information

The topology of symplectic four-manifolds

The topology of symplectic four-manifolds The topology of symplectic four-manifolds Michael Usher January 12, 2007 Definition A symplectic manifold is a pair (M, ω) where 1 M is a smooth manifold of some even dimension 2n. 2 ω Ω 2 (M) is a two-form

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD () Instanton (definition) (2) ADHM construction (3) Compactification. Instantons.. Notation. Throughout this talk, we will use the following notation:

More information

Morse theory and stable pairs

Morse theory and stable pairs Richard A. SCGAS 2010 Joint with Introduction Georgios Daskalopoulos (Brown University) Jonathan Weitsman (Northeastern University) Graeme Wilkin (University of Colorado) Outline Introduction 1 Introduction

More information