Mechanics of Aeronautical Solids, Materials and Structures

Size: px
Start display at page:

Download "Mechanics of Aeronautical Solids, Materials and Structures"

Transcription

1

2

3 Mechanics of Aeronautical Solids, Materials and Structures

4

5 Mechanics of Aeronautical Solids, Materials and Structures Christophe Bouvet

6 First published 2017 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc St George s Road 111 River Street London SW19 4EU Hoboken, NJ UK USA ISTE Ltd 2017 The rights of Christophe Bouvet to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act Library of Congress Control Number: British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN

7 Contents Foreword... Preface... Introduction... ix xi xiii Chapter 1. Stress Notion of stress External forces Internal cohesive forces Normal stress, shear stress Properties of the stress vector Boundary conditions Torsor of internal forces Reciprocal actions Cauchy reciprocal theorem Stress matrix Notation Invariants of the stress tensor Relation between the stress matrix and the stress vector Principal stresses and principal directions Equilibrium equation Mohr s circle Chapter 2. Strain Notion of strain Displacement vector... 27

8 vi Mechanics of Aeronautical Solids, Materials and Structures Unit strain Angular distortion Strain matrix Definition of the strain matrix Principal strains and principal directions Volume expansion Invariants of strain tensor Compatibility condition Strain measurement: strain gage Chapter 3. Behavior Law A few definitions Tension test Brittle materials Ductile materials Particular cases Shear test Brittle materials Ductile materials General rule Linear elasticity Anisotropic materials: example of a composite Elasticity Thermoelasticity Chapter 4. Resolution Methods Assessment Displacement method Stress method Finite element method Chapter 5. Work-energy Theorem: Principle of Finite Element Method Work-energy theorem Hypotheses Strain energy Work of external forces Strain energy Energy minimization: Ritz method... 68

9 Contents vii 5.2. Finite element method General principle of finite element method Example of the three-node triangular element Application: triangle with plate finite element using Catia Chapter 6. Sizing Criteria of an Aeronautical Structure Introduction Experimental determination of a sizing criterion Normal stress or principal stress criterion: brittle material Stress or maximum shear energy criterion: ductile material Tresca criterion Von Mises criterion Rupture of a ductile material Maximum shear criterion with friction: compression of brittle materials Anisotropic criterion: example of the composite Chapter 7. Plasticity Introduction Plastic instability: necking, true stress and true strain Plastic behavior law: Ramberg Osgood law Example of an elastic plastic calculation: plate with open hole in tension Chapter 8. Physics of Aeronautical Structure Materials Introduction Aluminum Carbon/epoxy composite T300/ Polymers Chapter 9. Exercises Rosette analysis Pure shear Compression of an elastic solid Gravity dam Shear modulus Modulus of a composite Torsional cylinder Plastic compression Bi-material beam tension

10 viii Mechanics of Aeronautical Solids, Materials and Structures Beam thermal expansion Cube under shear stress Spherical reservoir under pressure Plastic bending Disc under radial tension Bending beam: resolution by the Ritz method Stress concentration in open hole Bending beam Chapter 10. Solutions to Exercises Rosette analysis Pure shear Compression of an elastic solid Gravity dam Shear modulus Modulus of a composite Torsional cylinder Plastic compression Bi-material beam tension Beam thermal expansion Cube under shear stress Spherical reservoir under pressure Plastic bending Disc under radial tension Bending beam: resolution by the Ritz method Stress concentration in open hole Bending beam Appendix Bibliography Index

11 Foreword This book follows a long-standing tradition of mechanical engineering tuition, which is already a century old and comes from the Toulouse mechanical engineering scientific community, now merged into the Institut Clément Ader ( Just as all of its illustrious predecessors, this book is very timely and illustrates the specificity and originality of the approaches that we have developed, which have both a high scientific standing and a quasi-permanent connection with the aeronautical industry. This publication provides the reader with the necessary knowledge and techniques to calculate structures and decompartmentalize disciplines and fields. The aeronautical engineer will find all of the helpful information he or she needs within these pages: the basis of continuum mechanics, the finite element method, and knowledge of materials, metals and composites, both within linear and non-linear fields. The information is presented in an extremely clear and educational manner. The reader may draw on an impressive series of exercises with detailed corrections, something which is not so commonly found. Bruno CASTANIÉ INSA Toulouse Institut Clément Adler

12

13 Preface This volume, on the mechanics of solids and materials, as well as aeronautical structures, aims to give an overview of the necessary notions for structure sizing within the aeronautics field. It begins by establishing all of the classic notions of mechanics: stress, strain, behavior law and sizing criteria. Also covered are notions that are specific to aeronautics, with a particular emphasis on the notion of limit loads and ultimate loads. Different problem-solving methods, particularly the finite element method, are then introduced. The methods are not classically presented and instead energy minimization is drawn on in order to minimize the number of equations, all while remaining within a framework that we may comprehend with their hands. The book then addresses the subject of plasticity, showcasing its influence on structure sizing, and especially the advantages it has for sizing criteria. Finally, the physics of the two main materials in aeronautics, namely aluminum and composite materials, is discussed, so as to shed light on the sizing criteria outlined in the previous chapters. The corrected exercises help the student to test their understanding of the different topics. What is so original about this book is that from the outset, it places itself within the field of aeronautics. Sizing criteria are indeed rather specific to this field. Nevertheless, the notions discussed remain valid for the majority of industrial fields: in Mechanical Engineering and Finite Elements these notions in fact remain the same.

14 xii Mechanics of Aeronautical Solids, Materials and Structures Another original aspect of this work is that it consolidates basic continuum mechanics with a very succinct description of finite elements, and a description of the material aspect of the main materials used in aeronautical structures, that being aluminum and composites. This publication is therefore a summary of the basic knowledge deemed necessary for the ( Airbus ) engineer working within research departments. The book is simultaneously aimed at both students who are beginning their training and also engineers already working in the field who desire a summary of the basic theories. Lastly, the publication aims to limit the amount of formulas provided as much as possible, in order to highlight the significance of the physical. Any readers who may be interested in demonstrations are advised to refer to more specific and theoretical works, such as [COI 01, DUV 98, GER 73, HEA 77, KHA 95, LEM 96, MIR 03, SAL 01, UGU 03] and [THU 97], etc. Christophe BOUVET January 2017

15 Introduction I.1. Outlining the problem Let us consider a solid S that is subjected to imposed displacements and external forces. F ext S u imp = 0 Figure I.1. Outlining the problem. For a color version of this figure, see The aim of the mechanics of deformable solids is to study the internal state of the material (notion of stress) and the way in which it becomes deformed (notion of strain) [FRA 12, SAL 01, LEM 96].

16 xiv Mechanics of Aeronautical Solids, Materials and Structures In mechanics, a mechanical piece or system may be designed: to prevent it from breaking; to prevent it from becoming permanently deformed; to prevent it from becoming too deformed, or; for any another purposes. A solid shall be deemed a continuous medium, meaning that it shall be regarded as a continuous set of material points with a mass, representing the state of matter that is surrounded by an infinitesimal volume. Mechanics of deformable solids enables the study of cohesive forces (notion of stress) at a point M, like the forces exerted on the small volume surrounding it, called a Representative Elementary Volume (REV). For metals, the REV is typically within the range of a tenth of a millimeter. The matter in this REV must be seen as continuous and homogeneous: if it is too small, the matter cannot be as seen homogeneous: atomic piling, inclusion within matter, grains, etc. (for example: for concrete, the REV is within the range of 10 cm); if it is too big, the state of the cohesive forces in its center will no longer represent the REV state.

17 1 Stress 1.1. Notion of stress External forces There are three types of external forces: concentrated forces: this is a force exerted on a point (in Newton units, noted as N). In practice, this force does not actually exist. It is just a model. If we were to apply a force to a point that has zero surface, the contact pressure would be infinite and the deformation of the solid would therefore induce a non-zero contact surface. Nevertheless, it can still be imagined for studying problems with a very concentrated contact type load between balls. The results will thus yield an infinite stress and will need to be interpreted accordingly; surface forces, which will be noted as F ext for the rest of this volume (in Pascal units, it is noted Pa). This type of force includes contact forces between two solids as well as the pressure of a fluid. Practically, any concentrated force can be seen as a surface force distributed onto a small contact surface; volume forces, which will be noted as f v for the rest of this book (in N/m 3 ). Examples of volume forces are forces of gravity, electromagnetic forces, etc. Incidentally, in this book you will notice that vectors are underlined once and matrices (or tensors of rank 2), which you will come across further on, are underlined twice. Mechanics of Aeronautical Solids, Materials and Structures, First Edition. Christophe Bouvet. ISTE Ltd Published by ISTE Ltd and John Wiley & Sons, Inc.

18 2 Mechanics of Aeronautical Solids, Materials and Structures Internal cohesive forces We wish to study the cohesive forces of the solid S, at point M and which is in equilibrium under the action of external forces. The solid is cut into two parts E 1 and E 2 by a plane with a normal vector n passing through M. The part E 1 is in equilibrium under the action of the external forces on E 1 and the cohesive force of E 2 on E 1. F ext ΔF E 2 n M ΔS F 2/1 n E 1 E 1 u imp = 0 u imp = 0 Figure 1.1. Principle of internal cohesive forces. For a color version of this figure, see Let ΔS be the surface around M and ΔF be the cohesive force of 2 on 1 exerting on ΔS, then the stress vector at the point M associated with the facet with a normal vector n is called: σ ΔF df, = lim = ΔS 0 ΔS ds ( M n) [1.1] The unit is N/m 2 or Pa and we generally use MPa or N/mm 2. Physically, the stress notion is fairly close to the notion of pressure that can be found in everyday life (the unit is even the same!), but as we will see further on, pressure is but only one particular example of stress Normal stress, shear stress We define the different stresses as: normal stress, the projection of σ (M, n) onto n, noted as σ ; shear stress, the projection of σ (M, n) onto the plane with normal n, noted as τ.

19 Stress 3 df σ τ t n M ds Figure 1.2. Decomposition of a stress vector. For a color version of this figure, see Thus, σ represents the cohesive forces perpendicular to the facet, meaning the traction/compression, and τ the forces tangential to the facet, meaning the shear. In a physical sense, the pressure found in our everyday lives is simply a normal compression stress. We then definitely have: (, ) σ M n = σn+ τt [1.2] NOTE. n and t must be unit vectors. And conversely: σ = σ τ = σ ( M n) ( M n),. n,. t [1.3] 1.2. Properties of the stress vector Boundary conditions If n is an external normal, then: ( M, n ) σ ext = F ext [1.4]

20 4 Mechanics of Aeronautical Solids, Materials and Structures F ext M n ext S Figure 1.3. External force and associated normal vector. For a color version of this figure, see NOTE. F ext is in MPa, and a normal external vector is always moving from the matter towards the exterior. So, F ext can be seen as a stress vector exerted on S, particularly if the surface is a free surface: ( ) σ M, n ext = 0 [1.5] These relations are important as they translate the stress boundary conditions on the structure. In order for this to be the solution to the problem (see Chapter 3), these relations are part of a group of conditions that are needed to verify a stress field. EXAMPLE: TANK UNDER PRESSURE. σ(m,n ext ) n ext Pressure p Figure 1.4. Tank under pressure

21 Stress 5 For every point on the internal wall of the tank, we find: ( M n ) σ, ext = p. next [1.6] With the external normal vector moving towards the center of the circle, from where the normal and shear stresses are: ( ext ) ( M n ) σ = σ M, n. next = p τ = σ, ext. t = 0 [1.7] Given that the normal stress is negative and the shear stress is zero, the material is subjected to pure compression. The first relation shows that the physical notion of pressure is simply a normal stress of compression: hence the minus sign before the pressure! Torsor of internal forces F ext Section S E 2 G n E 1 u imp = 0 Figure 1.5. Set of internal forces. For a color version of this figure, see The torsor of internal forces of 2 on 1 at G, the center of gravity of S, is: coh R2/1 { T } = 2/1 G M 2/1( G) [1.8]

22 6 Mechanics of Aeronautical Solids, Materials and Structures At first sight, the torsor notion may seem primitive but it enables us to simply consolidate the force with the moment. Should the notion of torsor bother you, you may settle for referring to it in plainer language as force and moment. However, you should not forget that when speaking about internal forces between 2 parts of a solid, it needs to be remembered that there is a force (in N) and a moment (in N.mm). The ambiguity comes from the term force, which is used for a force (in the common everyday sense of the word), and as a whole, force + moment! Let us now seek to link this set of internal forces to the previously discussed stress vector. We then have: therefore: ( ) σ ( ) df2/1 M = M, n. ds [1.9] ( ) R2/1 = df2/1( M) = S σ M, n. ds M S ( M ) M 2/1( G) = dm ( G) = GM df2/1( M) M S 2/1 M S = S GM σ ( M, n). ds [1.10] These relations are somewhat (or very) complex, but physically, they simply translate the fact that if we add up all of the stress vectors on section S, then we will obtain the force of part E 2 on part E 1. Lastly, we should not forget that when we add up the stress vectors, we will obtain not only a force, but also a moment (which obviously depends on the point at which it is calculated). These relations can also be written on an external surface as: ( ) Sext ( ) Rext/1 = σ M, next. ds = Fext. ds Sext Mext/1( G) = σ = GM M, next. ds GM F ext. ds Sext Sext [1.11] These relations are important because in practice, although we know the resultant R ext/1 or M ext/1, we do not generally know F ext. In fact, an external force is practically applied via the intermediary of a beam, a screed, a jack, etc., and the applied resulting force (or the moment) is known, but the way in which it is divided is unknown.

23 Stress 7 EXAMPLE: TRACTION. S y y F y σ 0 x Uniform stress x F σ 0 Figure 1.6. Tensile test. For a color version of this figure, see In a tensile test, we know that the resultant of the forces applied to S y is worth F: ( ) S σ M, y. ds = F y S GM σ ( M, y). ds = 0 y [1.12] However, in order to deduce that: σ ( M y) F, = = σ0. y [1.13] S y we must add a homogeneity hypothesis of the force applied which remains to be verified. Incidentally, we can demonstrate that the two previous integrals are verified with this stress vector. EXAMPLE: BENDING. y y M M x Stress distribution σ σ x S x Figure 1.7. Bending test. For a color version of this figure, see

24 8 Mechanics of Aeronautical Solids, Materials and Structures In a pure bending test, we know that the resultant of the forces applied to S x is worth M.z: ( Mx) σ = S,. ds 0 x σ ( ) = S GM M, x. ds M. z x [1.14] However, by deducing that on S x : σ M, =. y. x [1.15] I z ( M x) This formula is a classic example of the mechanics of material which we will discuss (and demonstrate) again when doing the exercises. Should you need to, you can read a more detailed publication, such as [AGA 08, BAM 08, CHE 08, DEL 08, DUP 09], etc. Obviously, with the moment of inertia: I 2 z = S y. ds [1.16] x we must add a linear distribution hypothesis of the stress applied which remains to be verified. Incidentally, we can demonstrate that the two previous integrals are verified with this stress vector Reciprocal actions F ext E 2 ds M n E 1 u imp = 0 Figure 1.8. Reciprocal actions. For a color version of this figure, see

25 Stress 9 According to the Law of Reciprocal Action, we have: Yet: df2/1 = df 1/2 [1.17] ( ) = σ (, ). ( ) = σ ( ) df2/1 M M n ds df1/2 M M, n. ds [1.18] Hence: (, ) = σ(, ) σ M n M n [1.19] This can be translated by the fact that a fine slice of matter of surface ds, which has a normal vector +n on one side and n on the other, is at equilibrium under the action of the two opposing forces σ(m, n). ds and σ(m, n). ds. Evidently, it is very much at equilibrium Cauchy reciprocal theorem Figure 1.9. Stress vectors on the faces of a square. For a color version of this figure, see Let us put this in 2D, in order to make the demonstration easier.

26 10 Mechanics of Aeronautical Solids, Materials and Structures A square is assumed to be infinitely small, therefore the stresses are assumed to be constant everywhere in the cube, hence we have: ( 1 ) ( ) ( 2 ) ( ) ( 1 ) ( ) ( ) ( ) σ M, x = σ M, x = σxx. x+ τ. y xy σ M, y = σ M, y = σyy. y+ τyx. x σ M ', x = σ M, x = σxx. x τxy. y σ M ', y = σ M, y = σ. y. x 2 yy τ yx [1.20] In the notation of, the first x corresponds to the direction of the facet, meaning the normal vector on the cutting plane in question, and the second index y represents the direction of the stress. The equilibrium equation on the square is written as: { } T coh / {} ext cube = 0 [1.21] which, for the force equation, induces the following: ( ) ( ) ( ) ( ) σ M, x. dy. dz + σ M, y. dx. dz + σ M ', x. dy. dz + σ M ', y. dx. dz = 0 [1.22] This is an automatically verified equation. For the moment equation in M at the center of the square, the below is induced: ( 1, ).. σ( 2, ).. 1 σ( ) 2 σ( ) MM1 σ M x dy dz + MM 2 M y dx dz [1.23] + MM ' M1', x. dy. dz + MM ' M2', y. dx. dz = 0 where the Cauchy reciprocity theorem is: τxy = τyx [1.24] It can be shown in the same way in 3D: τxy = τyx τxz = τzx τyz = τzy [1.25]

27 Stress 11 EXAMPLE: TORSION OF A WELDED TUBE. τ τ τ τ C C Longitudinal welding τ τ τ x y Figure Torsion of a welded tube. For a color version of this figure, see A torsion moment is applied to a tube comprised of a rolled and welded sheet. It can be shown (see exercises) that it has been subjected to a homogeneous circumferential shear stress. The Cauchy reciprocity theorem then induces the welding to be stressed by a longitudinal shear τ equal to the circumferential shear stress. All that remains then is the sizing of the welding so that it can withstand this shearing applied force Stress matrix Notation There is a stress vector on the facet with the normal vector x: ( ) σ M, x = σ + τ = σ. x+ τ. t [1.26] z σ (M, z) σ (M, y) M σ (M, x) y x Figure Stress vectors on the faces of a unit cube. For a color version of this figure, see

28 12 Mechanics of Aeronautical Solids, Materials and Structures and t can be broken down in accordance with y and z, hence: ( ) σ M, x = σxx. x+ τxy. y+ τxz. z [1.27] Once again, in the notation of, the first index x corresponds to the direction of the facet and the second index y represents the direction of the stress. In the same way for the faces of the cube with normal vectors y and z, we have: ( ) σ Mx, = σxx. x+ τxy. y+ τxz. z σ( M, y) = τyx. x+ σyy. y+ τyz. z σ( Mz, ) = τzx. x+ τzy. y+ σzz. z [1.28] σ(m) is what is referred to as the stress matrix: σxx τ yx τ zx σ ( M ) = τxy σ yy τzy τxz τ yz σ zz ( x, yz, ) [1.29] Evidently, the expression of this matrix depends on the coordinate. Moreover, it is symmetrical in accordance with the reciprocity of the stresses: σ τ τ xx xy xz σ( M ) = τxy σ yy τ yz [1.30] τ τ σ xz yz zz ( xyz,, ) The very notion itself of the stress matrix is important, as it assumes that at one point, and in the small volume (REV) surrounding it, the state of the internal forces of matter is entirely represented by this matrix. This is in contrast to the stress vector, which only gives the internal force for one single facet. EXAMPLE: DRAWING THE STRESSES IN 2D. A small square is subjected to a 2D-stress tensor: σxx τxy σ ( M ) = τ σ [1.31] xy yy ( xy, )

29 Stress 13 These faces are therefore subjected to the following forces: y σ yy σ (M,y) σ xx σ (M,-x) M σ yy σ xx σ (M,x) x σ (M,-y) Figure Stress vectors on the faces of a square. For a color version of this figure, see This drawing may be simple, but it is paramount for interpreting the stress tensor. You obviously would have noticed that the projection of σ(m, x) on y is equal to that of σ(m, y) on x, which is evidently due to the symmetry of the stress tensor. I will leave it up to you to do the same drawing in 3D Invariants of the stress tensor The stress tensor possesses three elementary invariants. We classically use: The hydrostatic pressure: 1 σx + σ y + σz p = trace( σ ) = [1.32] 3 3 It is named thus because when we apply a uniform pressure to a cube in all directions, we obtain: p 0 0 σ = 0 p p [1.33]

30 14 Mechanics of Aeronautical Solids, Materials and Structures x III σ III = -p σ I = -p σ II = -p σ II = -p σ I = -p x II x I σ III = -p Figure Hydrostatic pressure. For a color version of this figure, see In this case, the hydrostatic pressure is evidently equal to the pressure p, in its absolute value. The Von Mises equivalent stress: ( ) dev( ) ( I II II III III I ) 3 1 σ =. dev σ : σ =. ( σ σ ) + ( σ σ ) + ( σ σ ) [1.34] 2 2 With the stress deviator, which is written as: ( σ) σ ( σ) 1 dev =. trace. I [1.35] 3 This stress is very important for estimating the beginning of a ductile material s plasticity (see Chapters 3 and 4). The determinant: ( σ ) I3 = det [1.36] These invariants are very important for writing the fracture, yield or damage criteria. Given that a criterion of this type is indeed representative of the state of matter, it must not depend on the coordinate at which we write the stress matrix, and therefore it can be written based on these invariants.

NUMERICAL METHODS IN ENGINEERING SERIES. Thermo-hydrodynamic Lubrication in Hydrodynamic Bearings. Dominique Bonneau Aurelian Fatu Dominique Souchet

NUMERICAL METHODS IN ENGINEERING SERIES. Thermo-hydrodynamic Lubrication in Hydrodynamic Bearings. Dominique Bonneau Aurelian Fatu Dominique Souchet NUMERICAL METHODS IN ENGINEERING SERIES Thermo-hydrodynamic Lubrication in Hydrodynamic Bearings Dominique Bonneau Aurelian Fatu Dominique Souchet Thermo-hydrodynamic Lubrication in Hydrodynamic Bearings

More information

Bone Tissue Mechanics

Bone Tissue Mechanics Bone Tissue Mechanics João Folgado Paulo R. Fernandes Instituto Superior Técnico, 2016 PART 1 and 2 Introduction The objective of this course is to study basic concepts on hard tissue mechanics. Hard tissue

More information

Convective Heat Transfer

Convective Heat Transfer Convective Heat Transfer Solved Problems Michel Favre-Marinet Sedat Tardu This page intentionally left blank Convective Heat Transfer This page intentionally left blank Convective Heat Transfer Solved

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stress-strain relations Elasticity Surface and body

More information

Lecture 8. Stress Strain in Multi-dimension

Lecture 8. Stress Strain in Multi-dimension Lecture 8. Stress Strain in Multi-dimension Module. General Field Equations General Field Equations [] Equilibrium Equations in Elastic bodies xx x y z yx zx f x 0, etc [2] Kinematics xx u x x,etc. [3]

More information

Table of Contents. Preface...xvii. Part 1. Level

Table of Contents. Preface...xvii. Part 1. Level Preface...xvii Part 1. Level 1... 1 Chapter 1. The Basics of Linear Elastic Behavior... 3 1.1. Cohesion forces... 4 1.2. The notion of stress... 6 1.2.1. Definition... 6 1.2.2. Graphical representation...

More information

Experimental Mechanics of Solids and Structures

Experimental Mechanics of Solids and Structures Experimental Mechanics of Solids and Structures FOCUS SERIES Series Editor Bruno Salgues Experimental Mechanics of Solids and Structures Jérôme Molimard First published 2016 in Great Britain and the United

More information

GIS AND TERRITORIAL INTELLIGENCE. Using Microdata. Jean Dubé and Diègo Legros

GIS AND TERRITORIAL INTELLIGENCE. Using Microdata. Jean Dubé and Diègo Legros GIS AND TERRITORIAL INTELLIGENCE Spatial Econometrics Using Microdata Jean Dubé and Diègo Legros Spatial Econometrics Using Microdata To the memory of Gilles Dubé. For Mélanie, Karine, Philippe, Vincent

More information

Mechanics of Materials Lab

Mechanics of Materials Lab Mechanics of Materials Lab Lecture 5 Stress Mechanical Behavior of Materials Sec. 6.1-6.5 Jiangyu Li Jiangyu Li, orce Vectors A force,, is a vector (also called a "1 st -order tensor") The description

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

1 Stress and Strain. Introduction

1 Stress and Strain. Introduction 1 Stress and Strain Introduction This book is concerned with the mechanical behavior of materials. The term mechanical behavior refers to the response of materials to forces. Under load, a material may

More information

ENGINEERING MECHANICS

ENGINEERING MECHANICS ENGINEERING MECHANICS Engineering Mechanics Volume 2: Stresses, Strains, Displacements by C. HARTSUIJKER Delft University of Technology, Delft, The Netherlands and J.W. WELLEMAN Delft University of Technology,

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

Use Hooke s Law (as it applies in the uniaxial direction),

Use Hooke s Law (as it applies in the uniaxial direction), 0.6 STRSS-STRAIN RLATIONSHIP Use the principle of superposition Use Poisson s ratio, v lateral longitudinal Use Hooke s Law (as it applies in the uniaxial direction), x x v y z, y y vx z, z z vx y Copyright

More information

UNIT-I Introduction & Plane Stress and Plane Strain Analysis

UNIT-I Introduction & Plane Stress and Plane Strain Analysis SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Advanced Solid Mechanics (18CE1002) Year

More information

ERM - Elasticity and Strength of Materials

ERM - Elasticity and Strength of Materials Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering 712 - EM - Department of Mechanical Engineering

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST

More information

EML4507 Finite Element Analysis and Design EXAM 1

EML4507 Finite Element Analysis and Design EXAM 1 2-17-15 Name (underline last name): EML4507 Finite Element Analysis and Design EXAM 1 In this exam you may not use any materials except a pencil or a pen, an 8.5x11 formula sheet, and a calculator. Whenever

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

CH.4. STRESS. Continuum Mechanics Course (MMC)

CH.4. STRESS. Continuum Mechanics Course (MMC) CH.4. STRESS Continuum Mechanics Course (MMC) Overview Forces Acting on a Continuum Body Cauchy s Postulates Stress Tensor Stress Tensor Components Scientific Notation Engineering Notation Sign Criterion

More information

GATE SOLUTIONS E N G I N E E R I N G

GATE SOLUTIONS E N G I N E E R I N G GATE SOLUTIONS C I V I L E N G I N E E R I N G From (1987-018) Office : F-16, (Lower Basement), Katwaria Sarai, New Delhi-110016 Phone : 011-65064 Mobile : 81309090, 9711853908 E-mail: info@iesmasterpublications.com,

More information

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a two-dimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

2.1 Background of Piping Stresses

2.1 Background of Piping Stresses 2 Research Review One of the major additions to Tmin was the inclusion of analysis of a 2-Dimensional vertical piping span. The original plan from Dupont was to include several types of 2-D and 3-D vertical

More information

* Many components have multiaxial loads, and some of those have multiaxial loading in critical locations

* Many components have multiaxial loads, and some of those have multiaxial loading in critical locations Why do Multiaxial Fatigue Calculations? * Fatigue analysis is an increasingly important part of the design and development process * Many components have multiaxial loads, and some of those have multiaxial

More information

Chapter 12. Static Equilibrium and Elasticity

Chapter 12. Static Equilibrium and Elasticity Chapter 12 Static Equilibrium and Elasticity Static Equilibrium Equilibrium implies that the object moves with both constant velocity and constant angular velocity relative to an observer in an inertial

More information

Donald P. Shiley School of Engineering ME 328 Machine Design, Spring 2019 Assignment 1 Review Questions

Donald P. Shiley School of Engineering ME 328 Machine Design, Spring 2019 Assignment 1 Review Questions Donald P. Shiley School of Engineering ME 328 Machine Design, Spring 2019 Assignment 1 Review Questions Name: This is assignment is in workbook format, meaning you may fill in the blanks (you do not need

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

ELASTICITY AND FRACTURE MECHANICS. Vijay G. Ukadgaonker

ELASTICITY AND FRACTURE MECHANICS. Vijay G. Ukadgaonker THEORY OF ELASTICITY AND FRACTURE MECHANICS y x Vijay G. Ukadgaonker Theory of Elasticity and Fracture Mechanics VIJAY G. UKADGAONKER Former Professor Indian Institute of Technology Bombay Delhi-110092

More information

Module 5: Theories of Failure

Module 5: Theories of Failure Module 5: Theories of Failure Objectives: The objectives/outcomes of this lecture on Theories of Failure is to enable students for 1. Recognize loading on Structural Members/Machine elements and allowable

More information

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer

Esben Byskov. Elementary Continuum. Mechanics for Everyone. With Applications to Structural Mechanics. Springer Esben Byskov Elementary Continuum Mechanics for Everyone With Applications to Structural Mechanics Springer Contents Preface v Contents ix Introduction What Is Continuum Mechanics? "I Need Continuum Mechanics

More information

A short review of continuum mechanics

A short review of continuum mechanics A short review of continuum mechanics Professor Anette M. Karlsson, Department of Mechanical ngineering, UD September, 006 This is a short and arbitrary review of continuum mechanics. Most of this material

More information

Research on Crowning Profile to Obtain Maximum Load Carrying Capacity for Roller Bearings

Research on Crowning Profile to Obtain Maximum Load Carrying Capacity for Roller Bearings Research on Crowning Profile to Obtain Maximum Load Carrying Capacity for Roller Bearings S. KAMAMOTO * K. FUJIMOTO ** T. YAMAMOTO *** * Mechatronic Systems Research & Development Department, Research

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 Math Problem a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1 3 6 Solve the initial value problem u ( t) = Au( t) with u (0) =. 3 1 u 1 =, u 1 3 = b- True or false and why 1. if A is

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM

INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM 1 INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM Influence of anisotropy Daniel Riemensperger, Adam Opel AG Paul Du Bois, PDB 2 www.opel.com CONTENT Introduction/motivation Isotropic & anisotropic material

More information

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials

Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels Stresses Under Combined Loads Yield Criteria for Ductile Materials and Fracture Criteria for Brittle Materials Pressure Vessels: In the previous lectures we have discussed elements subjected

More information

Stress, Strain, Mohr s Circle

Stress, Strain, Mohr s Circle Stress, Strain, Mohr s Circle The fundamental quantities in solid mechanics are stresses and strains. In accordance with the continuum mechanics assumption, the molecular structure of materials is neglected

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9 Table of Contents 1. Plasticity:... 3 1.1 Plastic Deformation,

More information

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup,

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup, Introduction to Finite Element Analysis Using MATLAB and Abaqus Amar Khennane Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

FOCUS NANOSCIENCE AND NANOTECHNOLOGY SERIES. Silicon Carbide One-dimensional Nanostructures. Laurence Latu-Romain Maelig Ollivier

FOCUS NANOSCIENCE AND NANOTECHNOLOGY SERIES. Silicon Carbide One-dimensional Nanostructures. Laurence Latu-Romain Maelig Ollivier FOCUS NANOSCIENCE AND NANOTECHNOLOGY SERIES Silicon Carbide One-dimensional Nanostructures Laurence Latu-Romain Maelig Ollivier Silicon Carbide One-dimensional Nanostructures FOCUS SERIES Series Editor

More information

Introduction to CLASSICAL MECHANICS

Introduction to CLASSICAL MECHANICS Introduction to CLASSICAL MECHANICS Introduction to CLASSICAL MECHANICS A.P. FRENCH Massachusetts Institute oj Technology M.G. EBISON The Institute oj Physics, London KLUWER ACADEMIC PUBLISHERS DORDRECHT

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states?

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states? Lecture 5.11 Triaial Stress and Yield Criteria When does ielding occurs in multi-aial stress states? Representing stress as a tensor operational stress sstem Compressive stress sstems Triaial stresses:

More information

Elements of Rock Mechanics

Elements of Rock Mechanics Elements of Rock Mechanics Stress and strain Creep Constitutive equation Hooke's law Empirical relations Effects of porosity and fluids Anelasticity and viscoelasticity Reading: Shearer, 3 Stress Consider

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

Mechanics PhD Preliminary Spring 2017

Mechanics PhD Preliminary Spring 2017 Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n

More information

Cavity Expansion Methods in Geomechanics

Cavity Expansion Methods in Geomechanics Cavity Expansion Methods in Geomechanics by Hai-Sui Yu School of Civil Engineering, University of Nottingham, U. K. KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON TABLE OF CONTENTS Foreword Preface

More information

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

FINAL EXAMINATION. (CE130-2 Mechanics of Materials) UNIVERSITY OF CLIFORNI, ERKELEY FLL SEMESTER 001 FINL EXMINTION (CE130- Mechanics of Materials) Problem 1: (15 points) pinned -bar structure is shown in Figure 1. There is an external force, W = 5000N,

More information

CHAPTER 4 Stress Transformation

CHAPTER 4 Stress Transformation CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z

More information

MATERIAL PROPERTIES. Material Properties Must Be Evaluated By Laboratory or Field Tests 1.1 INTRODUCTION 1.2 ANISOTROPIC MATERIALS

MATERIAL PROPERTIES. Material Properties Must Be Evaluated By Laboratory or Field Tests 1.1 INTRODUCTION 1.2 ANISOTROPIC MATERIALS . MARIAL PROPRIS Material Properties Must Be valuated By Laboratory or Field ests. INRODUCION he fundamental equations of structural mechanics can be placed in three categories[]. First, the stress-strain

More information

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly .3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original

More information

COSSERAT THEORIES: SHELLS, RODS AND POINTS

COSSERAT THEORIES: SHELLS, RODS AND POINTS COSSERAT THEORIES: SHELLS, RODS AND POINTS SOLID MECHANICS AND ITS APPLICATIONS Volume 79 Series Editor: G.M.L. GLADWELL Department of Civil Engineering University of Waterloo Waterloo, Ontario, Canada

More information

7.3 Design of members subjected to combined forces

7.3 Design of members subjected to combined forces 7.3 Design of members subjected to combined forces 7.3.1 General In the previous chapters of Draft IS: 800 LSM version, we have stipulated the codal provisions for determining the stress distribution in

More information

ENGINEERING MECHANICS: STATICS AND DYNAMICS

ENGINEERING MECHANICS: STATICS AND DYNAMICS ENGINEERING MECHANICS: STATICS AND DYNAMICS Dr. A.K. Tayal ENGINEERING MECHANICS STATICS AND DYNAMICS A.K. Tayal Ph. D. Formerly Professor Department of Mechanical Engineering Delhi College of Engineering

More information

Elasticity and Plasticity. 1.Basic principles of Elasticity and plasticity. 2.Stress and Deformation of Bars in Axial load 1 / 59

Elasticity and Plasticity. 1.Basic principles of Elasticity and plasticity. 2.Stress and Deformation of Bars in Axial load 1 / 59 Elasticity and Plasticity 1.Basic principles of Elasticity and plasticity 2.Stress and Deformation of Bars in Axial load 1 / 59 Basic principles of Elasticity and plasticity Elasticity and plasticity in

More information

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment

7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment 7.6 Stress in symmetrical elastic beam transmitting both shear force and bending moment à It is more difficult to obtain an exact solution to this problem since the presence of the shear force means that

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 6 Brittle Deformation Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton, unless noted otherwise Brittle deformation EarthStructure (2 nd

More information

CHAPTER 6: Shearing Stresses in Beams

CHAPTER 6: Shearing Stresses in Beams (130) CHAPTER 6: Shearing Stresses in Beams When a beam is in pure bending, the only stress resultants are the bending moments and the only stresses are the normal stresses acting on the cross sections.

More information

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PEAT SEISMOLOGY Lecture 2: Continuum mechanics PEAT8002 - SEISMOLOGY Lecture 2: Continuum mechanics Nick Rawlinson Research School of Earth Sciences Australian National University Strain Strain is the formal description of the change in shape of a

More information

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical

More information

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

More information

202 Index. failure, 26 field equation, 122 force, 1

202 Index. failure, 26 field equation, 122 force, 1 Index acceleration, 12, 161 admissible function, 155 admissible stress, 32 Airy's stress function, 122, 124 d'alembert's principle, 165, 167, 177 amplitude, 171 analogy, 76 anisotropic material, 20 aperiodic

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

More information

COMPUTATIONAL ELASTICITY

COMPUTATIONAL ELASTICITY COMPUTATIONAL ELASTICITY Theory of Elasticity and Finite and Boundary Element Methods Mohammed Ameen Alpha Science International Ltd. Harrow, U.K. Contents Preface Notation vii xi PART A: THEORETICAL ELASTICITY

More information

Fundamentals of Linear Elasticity

Fundamentals of Linear Elasticity Fundamentals of Linear Elasticity Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research of the Polish Academy

More information

7. Design of pressure vessels and Transformation of plane stress Contents

7. Design of pressure vessels and Transformation of plane stress Contents 7. Design of pressure vessels and Transformation of plane stress Contents 7. Design of pressure vessels and Transformation of plane stress... 1 7.1 Introduction... 7. Design of pressure vessels... 7..1

More information

Unit 13 Review of Simple Beam Theory

Unit 13 Review of Simple Beam Theory MIT - 16.0 Fall, 00 Unit 13 Review of Simple Beam Theory Readings: Review Unified Engineering notes on Beam Theory BMP 3.8, 3.9, 3.10 T & G 10-15 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

Foundations and Applications of Engineering Mechanics

Foundations and Applications of Engineering Mechanics Foundations and Applications of Engineering Mechanics 4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India Cambridge University Press is part of the University of Cambridge. It furthers the

More information

3.22 Mechanical Properties of Materials Spring 2008

3.22 Mechanical Properties of Materials Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 3.22 Mechanical Properties of Materials Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Quiz #1 Example

More information

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07)

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07) Tensor Transformations and the Maximum Shear Stress (Draft 1, 1/28/07) Introduction The order of a tensor is the number of subscripts it has. For each subscript it is multiplied by a direction cosine array

More information

A Notes Formulas. This chapter is composed of 15 double pages which list, with commentaries, the results for:

A Notes Formulas. This chapter is composed of 15 double pages which list, with commentaries, the results for: The modeling process is a key step of conception. First, a crude modeling allows to validate (or not) the concept and identify the best combination of properties that maximize the performances. Then, a

More information

Chapter 1 Fluid Characteristics

Chapter 1 Fluid Characteristics Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity

More information

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

More information

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 0 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6 TIME SCHEDULE Module Topics Period Moment of forces Support reactions Centre

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

MECHANICS OF AERO-STRUCTURES

MECHANICS OF AERO-STRUCTURES MECHANICS OF AERO-STRUCTURES Mechanics of Aero-structures is a concise textbook for students of aircraft structures, which covers aircraft loads and maneuvers, as well as torsion and bending of singlecell,

More information

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ. Mohr s Circle By drawing Mohr s circle, the stress transformation in -D can be done graphically. σ = σ x + σ y τ = σ x σ y + σ x σ y cos θ + τ xy sin θ, 1 sin θ + τ xy cos θ. Note that the angle of rotation,

More information

UNIT I SIMPLE STRESSES AND STRAINS

UNIT I SIMPLE STRESSES AND STRAINS Subject with Code : SM-1(15A01303) Year & Sem: II-B.Tech & I-Sem SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) UNIT I SIMPLE STRESSES

More information

CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS. Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university

CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS. Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS By Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university Agenda Introduction to your lecturer Introduction

More information

Symmetric Bending of Beams

Symmetric Bending of Beams Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications

More information

Theory of Elasticity

Theory of Elasticity Theory of Elasticity Aldo Maceri Theory of Elasticity 123 Prof. Dr.-Ing. Aldo Maceri Universitá Roma Tre Departimento di Ingegneria Meccanica e Industriale Via della Vasca Navale, 79 00146 Roma Italy

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

Macroscopic theory Rock as 'elastic continuum'

Macroscopic theory Rock as 'elastic continuum' Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6.

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6. Delft University of Technology Faculty of Civil Engineering and Geosciences Structural Mechanics Section Write your name and study number at the top right-hand of your work. Exam CT4143 Shell Analysis

More information

MECH 401 Mechanical Design Applications

MECH 401 Mechanical Design Applications MECH 401 Mechanical Design Applications Dr. M. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Updates HW 1 due Thursday (1-17-08) Last time Introduction Units Reliability engineering

More information

Continuum mechanism: Stress and strain

Continuum mechanism: Stress and strain Continuum mechanics deals with the relation between forces (stress, σ) and deformation (strain, ε), or deformation rate (strain rate, ε). Solid materials, rigid, usually deform elastically, that is the

More information

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)

Geology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6) Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties: - elastic modulii Outline of this Lecture 1. Uniaxial rock

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

Shear stresses around circular cylindrical openings

Shear stresses around circular cylindrical openings Shear stresses around circular cylindrical openings P.C.J. Hoogenboom 1, C. van Weelden 1, C.B.M. Blom 1, 1 Delft University of Technology, the Netherlands Gemeentewerken Rotterdam, the Netherlands In

More information

in this web service Cambridge University Press

in this web service Cambridge University Press CONTINUUM MECHANICS This is a modern textbook for courses in continuum mechanics. It provides both the theoretical framework and the numerical methods required to model the behavior of continuous materials.

More information

Advanced Engineering. Dynamics. H. R. Harrison. T. Nettleton. Formerly Department of Mechanical Engineering & Aeronautics City University London

Advanced Engineering. Dynamics. H. R. Harrison. T. Nettleton. Formerly Department of Mechanical Engineering & Aeronautics City University London Advanced Engineering Dynamics H. R. Harrison Formerly Department of Mechanical Engineering & Aeronautics City University London T. Nettleton Formerly Department of Mechanical Engineering & Aeronautics

More information