Modelling and Design of Service-Time; Phase-Type Distributions.

Size: px
Start display at page:

Download "Modelling and Design of Service-Time; Phase-Type Distributions."

Transcription

1 Service Engineering June 97 Last Revised: April 8, 004 Modelling and Design of Service-Time; Phase-Type Distributions. References. Issaev, Eva,: Fitting phase-type distributions to data from a call center, M.Sc. thesis, Technion IE&M, 003. (With ample references and a literature review.) Neuts, M.F., Matrix Geometric Solutions in Stochastic Models, John Hopins University Press, 98. Mandelbaum, A. and Reiman, M., On pooling in ueueing networs, Management Science, 44, 97-98, Buzacott, J.A. and Shanthiumar, J., Stochastic Models of Manufacturing Systems, pages 63 64, pages ; pages Buzacott and Shanthiumar, on pages 54 55, provide an IE-discussion and references on human tas-time, stochastic variability and woring rates. Their sources are liely to be manufacturing-based. These are their ey points: Much of the variability is beyond control of the operator. There exists minimum time of tas duration. Paced vs. Unpaced wor. (In Services, it is typically unpaced: no upper bound is imposed on tas duration.) Typically, for experienced operators service-time distribution is sewed with P {T mean } 0.65, which is consistent with an exponential distribution. e (For many practical purposes, a distribution with CV is exponential.) For inexperienced operators: greater mean and less sewness. (My understanding of this: greater mean and more symmetry.)

2 It is not clear from the literature whether there is serial correlation in performing successive tass. Variation of woring rate is rarely due to physical fatigue or exhaustion, but rather to inserted-idleness, while the distribution of tas-time is stationary over the day. Personal Experience. Two patterns of service-duration density are prevalent: One pattern is exponential and the other is lognormal. It is interesting to understand what does the shape depend on: is it experience-related? job-related? Research is needed to answer such uestions. Examples: Service (Process) Design Pooling Resources without changing the service process. (At the City Hall of Haifa, moving the Treasury Department to a new location gave rise to phase-type service durations, and motivated M. and Reiman.) IVR/VRU: Design of search protocols (Comverse). Phone Scripts: Design of phone/chat services at call/contact centers. (Electric Company).

3 Contents Design of a service system (service time): Pooling. What is Service Time? - Single- vs. multiple-visits. - Time- and State-dependency. - Sample Size - Estimation and Prediction, Worload. - Production of Health: Hernia, Even-Doctors-Can-Manage. - After-service wor: managing accessibility. - Averages do not tell the whole story: the need for the distribution. - Service Time is a Statistical Distribution: for example, Log-Normal, Exponential, Mixture. - Heterogeneity of Servers. Stochastic Ordering (of distributions). Exponential Service Times in Human Services: How does one recognize an exponential distribution in a histogram. mean = standard deviation (CV = ) sometimes suffices, but not always. (For example, in the QED regime things are yet unclear). Meta Theorem: Durations of human homogeneous services are either exponential or lognormal. Service Time is a Process: Phase-type models natural and useful. Beyond CV s: Some subtle effects of the service-time distribution in the QED regime. 3

4 Phase-Type Service Times (Durations). Service-Time = a seuence/collection of tass, of an exponential duration. There are K types of tass, indexed by =,..., K. m = expected duration of tas ; m = (m ) = % of services in which is first; = ( ) P j = % of incidences in which tas j is immediately followed by. P = [P j ] K l= P l = probability to end service at. j P j j m j Fact: service = finite number of tass [I P ] Indeed, [I P ] j = expected number of visits to, given j was first. ([I P ] ) = expected number of visits to ). As will be articulated below, service-time duration is Phase-type (PH). (Assuming independence among tas-durations.) Definition. Phase-type distribution = absorption time of a finite-space continuous-time Marov chain, with a single absorbing state. Formally: X = {X t, t 0} Marov on states {,,..., K, }, with infinitesimal generator Q =. K R r absorbing (since = 0) r = R (since Q = 0),... K transient R (fact) and initial distribution (of X 0 ) is given by (,...,, 0) = (, 0). Recall: P {X t = } = j j [exp(tr)] j = [exp(tr)] Define: T = inf{t > 0 : X t = } has phase-type distribution, say F T ( ). Claim: F T (t) = e tr, t 0. Proof. P (T > t) = P {X t } = (e tr ) = e tr. 4

5 Parameters: density Laplace transform nth moment (mean = R ) f T (t) = e Rt r 0 e xt F T (dt) = [xi R] r 0 t n F T (dt) = ( ) n n! R n Special Cases: Exponential (µ) : R = [ µ] and =. Erlang: K iid tass / phases ( ) C (T ) = K. Generalized Erlang: exponential phases in series (tandem) (C < ). Hyperexponential: K tass in parallel (mixture) (C > ).. Coxian: K phases; end at phase with probability p. p p -p - Minimum of exponential random variables is exponential. Max of exponential random variables is phase-type: e.g., X i exp() iid. This easily implies that E(max X i ) = i, Var (max X i i) = i bounded! i Erlang mixtures:. 5

6 Importance of Phase-type distributions. Empirical + wishful thining: homogeneous human tass are exponential. Richness: the family of phase-type distributions is dense among all distributions on [0, ). For every non-negative distribution G, there exists a seuence of phase-type distributions F n F n G. (In particular, we can guarantee convergence of any finite number of moments.) Dense subfamilies: Coxian, Erlang mixtures. For Erlang mixtures, this can be explained by the following two facts:. The family of discrete distributions is dense.. Constants can be approximated by Erlang distributions. Therefore, discrete distributions can be approximated by Erlang mixtures. Modelling, via the method of phases. For example, consider M/PH/ ueue (see HW). M/PH/: state-space is (i, ) (i = number in ueue; = phase of service) or 0; e.g., 0 λ (, ). Representation directly in terms of (, P, m). Denote here R = [I P ] (as in Mandelbaum & Reiman). Average wor content E(T ) = Rm (= j j R j m ). Moments: E(T n ) = n! (RM) n, where M = m m K E(T ) = + C (T ) (E(T )) = (RM) (RM) 6

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

Lecturer: Olga Galinina

Lecturer: Olga Galinina Renewal models Lecturer: Olga Galinina E-mail: olga.galinina@tut.fi Outline Reminder. Exponential models definition of renewal processes exponential interval distribution Erlang distribution hyperexponential

More information

Readings: Finish Section 5.2

Readings: Finish Section 5.2 LECTURE 19 Readings: Finish Section 5.2 Lecture outline Markov Processes I Checkout counter example. Markov process: definition. -step transition probabilities. Classification of states. Example: Checkout

More information

Dynamic Control of Parallel-Server Systems

Dynamic Control of Parallel-Server Systems Dynamic Control of Parallel-Server Systems Jim Dai Georgia Institute of Technology Tolga Tezcan University of Illinois at Urbana-Champaign May 13, 2009 Jim Dai (Georgia Tech) Many-Server Asymptotic Optimality

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

Markov processes and queueing networks

Markov processes and queueing networks Inria September 22, 2015 Outline Poisson processes Markov jump processes Some queueing networks The Poisson distribution (Siméon-Denis Poisson, 1781-1840) { } e λ λ n n! As prevalent as Gaussian distribution

More information

Quality of Real-Time Streaming in Wireless Cellular Networks : Stochastic Modeling and Analysis

Quality of Real-Time Streaming in Wireless Cellular Networks : Stochastic Modeling and Analysis Quality of Real-Time Streaming in Wireless Cellular Networs : Stochastic Modeling and Analysis B. Blaszczyszyn, M. Jovanovic and M. K. Karray Based on paper [1] WiOpt/WiVid Mai 16th, 2014 Outline Introduction

More information

Name of the Student:

Name of the Student: SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : Part A questions REGULATION : R2013 UPDATED ON : November 2017 (Upto N/D 2017 QP) (Scan the above QR code for the direct

More information

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory Contents Preface... v 1 The Exponential Distribution and the Poisson Process... 1 1.1 Introduction... 1 1.2 The Density, the Distribution, the Tail, and the Hazard Functions... 2 1.2.1 The Hazard Function

More information

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. Service Engineering Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. G/G/1 Queue: Virtual Waiting Time (Unfinished Work). GI/GI/1: Lindley s Equations

More information

Lecture 20: Reversible Processes and Queues

Lecture 20: Reversible Processes and Queues Lecture 20: Reversible Processes and Queues 1 Examples of reversible processes 11 Birth-death processes We define two non-negative sequences birth and death rates denoted by {λ n : n N 0 } and {µ n : n

More information

1 Basic concepts from probability theory

1 Basic concepts from probability theory Basic concepts from probability theory This chapter is devoted to some basic concepts from probability theory.. Random variable Random variables are denoted by capitals, X, Y, etc. The expected value or

More information

An M/M/1 Queue in Random Environment with Disasters

An M/M/1 Queue in Random Environment with Disasters An M/M/1 Queue in Random Environment with Disasters Noam Paz 1 and Uri Yechiali 1,2 1 Department of Statistics and Operations Research School of Mathematical Sciences Tel Aviv University, Tel Aviv 69978,

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines.

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. Chapter 10 Queuing Systems D. 10. 1. (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. D. 10.. (Queuing System) A ueuing system consists of 1. a user source.

More information

Chapter 1. Introduction. 1.1 Stochastic process

Chapter 1. Introduction. 1.1 Stochastic process Chapter 1 Introduction Process is a phenomenon that takes place in time. In many practical situations, the result of a process at any time may not be certain. Such a process is called a stochastic process.

More information

Chapter 3: Markov Processes First hitting times

Chapter 3: Markov Processes First hitting times Chapter 3: Markov Processes First hitting times L. Breuer University of Kent, UK November 3, 2010 Example: M/M/c/c queue Arrivals: Poisson process with rate λ > 0 Example: M/M/c/c queue Arrivals: Poisson

More information

Introduction to Rare Event Simulation

Introduction to Rare Event Simulation Introduction to Rare Event Simulation Brown University: Summer School on Rare Event Simulation Jose Blanchet Columbia University. Department of Statistics, Department of IEOR. Blanchet (Columbia) 1 / 31

More information

Glossary availability cellular manufacturing closed queueing network coefficient of variation (CV) conditional probability CONWIP

Glossary availability cellular manufacturing closed queueing network coefficient of variation (CV) conditional probability CONWIP Glossary availability The long-run average fraction of time that the processor is available for processing jobs, denoted by a (p. 113). cellular manufacturing The concept of organizing the factory into

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

VARUN GUPTA. Takayuki Osogami (IBM Research-Tokyo) Carnegie Mellon Google Research University of Chicago Booth School of Business.

VARUN GUPTA. Takayuki Osogami (IBM Research-Tokyo) Carnegie Mellon Google Research University of Chicago Booth School of Business. VARUN GUPTA Carnegie Mellon Google Research University of Chicago Booth School of Business With: Taayui Osogami (IBM Research-Toyo) 1 2 Homogeneous servers 3 First-Come-First-Serve Buffer Homogeneous servers

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Waiting Time to Absorption

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Waiting Time to Absorption Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 6888-030 http://www.math.unl.edu Voice: 402-472-373 Fax: 402-472-8466 Topics in Probability Theory and

More information

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18.

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18. IEOR 6711: Stochastic Models I, Fall 23, Professor Whitt Solutions to Final Exam: Thursday, December 18. Below are six questions with several parts. Do as much as you can. Show your work. 1. Two-Pump Gas

More information

Pooling in tandem queueing networks with non-collaborative servers

Pooling in tandem queueing networks with non-collaborative servers DOI 10.1007/s11134-017-9543-0 Pooling in tandem queueing networks with non-collaborative servers Nilay Tanık Argon 1 Sigrún Andradóttir 2 Received: 22 September 2016 / Revised: 26 June 2017 Springer Science+Business

More information

IEOR 6711, HMWK 5, Professor Sigman

IEOR 6711, HMWK 5, Professor Sigman IEOR 6711, HMWK 5, Professor Sigman 1. Semi-Markov processes: Consider an irreducible positive recurrent discrete-time Markov chain {X n } with transition matrix P (P i,j ), i, j S, and finite state space.

More information

Stein s Method for Steady-State Approximations: Error Bounds and Engineering Solutions

Stein s Method for Steady-State Approximations: Error Bounds and Engineering Solutions Stein s Method for Steady-State Approximations: Error Bounds and Engineering Solutions Jim Dai Joint work with Anton Braverman and Jiekun Feng Cornell University Workshop on Congestion Games Institute

More information

MULTIVARIATE DISCRETE PHASE-TYPE DISTRIBUTIONS

MULTIVARIATE DISCRETE PHASE-TYPE DISTRIBUTIONS MULTIVARIATE DISCRETE PHASE-TYPE DISTRIBUTIONS By MATTHEW GOFF A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department

More information

Queuing Analysis of Markovian Queue Having Two Heterogeneous Servers with Catastrophes using Matrix Geometric Technique

Queuing Analysis of Markovian Queue Having Two Heterogeneous Servers with Catastrophes using Matrix Geometric Technique International Journal of Statistics and Systems ISSN 0973-2675 Volume 12, Number 2 (2017), pp. 205-212 Research India Publications http://www.ripublication.com Queuing Analysis of Markovian Queue Having

More information

1 Continuous-time chains, finite state space

1 Continuous-time chains, finite state space Université Paris Diderot 208 Markov chains Exercises 3 Continuous-time chains, finite state space Exercise Consider a continuous-time taking values in {, 2, 3}, with generator 2 2. 2 2 0. Draw the diagramm

More information

INDEX. production, see Applications, manufacturing

INDEX. production, see Applications, manufacturing INDEX Absorbing barriers, 103 Ample service, see Service, ample Analyticity, of generating functions, 100, 127 Anderson Darling (AD) test, 411 Aperiodic state, 37 Applications, 2, 3 aircraft, 3 airline

More information

Service Engineering January Laws of Congestion

Service Engineering January Laws of Congestion Service Engineering January 2004 http://ie.technion.ac.il/serveng2004 Laws of Congestion The Law for (The) Causes of Operational Queues Scarce Resources Synchronization Gaps (in DS PERT Networks) Linear

More information

BRAVO for QED Queues

BRAVO for QED Queues 1 BRAVO for QED Queues Yoni Nazarathy, The University of Queensland Joint work with Daryl J. Daley, The University of Melbourne, Johan van Leeuwaarden, EURANDOM, Eindhoven University of Technology. Applied

More information

Control of Fork-Join Networks in Heavy-Traffic

Control of Fork-Join Networks in Heavy-Traffic in Heavy-Traffic Asaf Zviran Based on MSc work under the guidance of Rami Atar (Technion) and Avishai Mandelbaum (Technion) Industrial Engineering and Management Technion June 2010 Introduction Network

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 6

MATH 56A: STOCHASTIC PROCESSES CHAPTER 6 MATH 56A: STOCHASTIC PROCESSES CHAPTER 6 6. Renewal Mathematically, renewal refers to a continuous time stochastic process with states,, 2,. N t {,, 2, 3, } so that you only have jumps from x to x + and

More information

Basic concepts of probability theory

Basic concepts of probability theory Basic concepts of probability theory Random variable discrete/continuous random variable Transform Z transform, Laplace transform Distribution Geometric, mixed-geometric, Binomial, Poisson, exponential,

More information

J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY

J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY SECOND EDITION ACADEMIC PRESS An imprint of Elsevier Science Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo Contents

More information

Queues with Many Servers and Impatient Customers

Queues with Many Servers and Impatient Customers MATHEMATICS OF OPERATIOS RESEARCH Vol. 37, o. 1, February 212, pp. 41 65 ISS 364-765X (print) ISS 1526-5471 (online) http://dx.doi.org/1.1287/moor.111.53 212 IFORMS Queues with Many Servers and Impatient

More information

Continuous Time Markov Chain Examples

Continuous Time Markov Chain Examples Continuous Markov Chain Examples Example Consider a continuous time Markov chain on S {,, } The Markov chain is a model that describes the current status of a match between two particular contestants:

More information

Jitter Analysis of an MMPP 2 Tagged Stream in the presence of an MMPP 2 Background Stream

Jitter Analysis of an MMPP 2 Tagged Stream in the presence of an MMPP 2 Background Stream Jitter Analysis of an MMPP 2 Tagged Stream in the presence of an MMPP 2 Background Stream G Geleji IBM Corp Hursley Park, Hursley, UK H Perros Department of Computer Science North Carolina State University

More information

Data analysis and stochastic modeling

Data analysis and stochastic modeling Data analysis and stochastic modeling Lecture 7 An introduction to queueing theory Guillaume Gravier guillaume.gravier@irisa.fr with a lot of help from Paul Jensen s course http://www.me.utexas.edu/ jensen/ormm/instruction/powerpoint/or_models_09/14_queuing.ppt

More information

O June, 2010 MMT-008 : PROBABILITY AND STATISTICS

O June, 2010 MMT-008 : PROBABILITY AND STATISTICS No. of Printed Pages : 8 M.Sc. MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE (MACS) tr.) Term-End Examination O June, 2010 : PROBABILITY AND STATISTICS Time : 3 hours Maximum Marks : 100 Note : Question

More information

M/M/c Queue with Two Priority Classes

M/M/c Queue with Two Priority Classes Submitted to Operations Research manuscript (Please, provide the manuscript number!) Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the

More information

Course 1 Solutions November 2001 Exams

Course 1 Solutions November 2001 Exams Course Solutions November Exams . A For i =,, let R = event that a red ball is drawn form urn i i B = event that a blue ball is drawn from urn i. i Then if x is the number of blue balls in urn, ( R R)

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 22 12/09/2013. Skorokhod Mapping Theorem. Reflected Brownian Motion

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 22 12/09/2013. Skorokhod Mapping Theorem. Reflected Brownian Motion MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.7J Fall 213 Lecture 22 12/9/213 Skorokhod Mapping Theorem. Reflected Brownian Motion Content. 1. G/G/1 queueing system 2. One dimensional reflection mapping

More information

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1 Queueing systems Renato Lo Cigno Simulation and Performance Evaluation 2014-15 Queueing systems - Renato Lo Cigno 1 Queues A Birth-Death process is well modeled by a queue Indeed queues can be used to

More information

Transient Analysis of a Series Configuration Queueing System

Transient Analysis of a Series Configuration Queueing System Transient Analysis of a Series Configuration Queueing System Yu-Li Tsai*, Daichi Yanagisawa, and Katsuhiro Nishinari Abstract In this paper, we consider the transient analysis of a popular series configuration

More information

On optimization of a Coxian queueing model with two phases

On optimization of a Coxian queueing model with two phases AppliedandComputationalMathematics 204; 3(2): 43-47 Published online March 20, 204 (http://www.sciencepublishinggroup.com/j/acm) doi: 0.648/j.acm.2040302. On optimization of a Coxian queueing model with

More information

Lecture 9: Deterministic Fluid Models and Many-Server Heavy-Traffic Limits. IEOR 4615: Service Engineering Professor Whitt February 19, 2015

Lecture 9: Deterministic Fluid Models and Many-Server Heavy-Traffic Limits. IEOR 4615: Service Engineering Professor Whitt February 19, 2015 Lecture 9: Deterministic Fluid Models and Many-Server Heavy-Traffic Limits IEOR 4615: Service Engineering Professor Whitt February 19, 2015 Outline Deterministic Fluid Models Directly From Data: Cumulative

More information

Modelling Complex Queuing Situations with Markov Processes

Modelling Complex Queuing Situations with Markov Processes Modelling Complex Queuing Situations with Markov Processes Jason Randal Thorne, School of IT, Charles Sturt Uni, NSW 2795, Australia Abstract This article comments upon some new developments in the field

More information

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 2. Poisson Processes Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Outline Introduction to Poisson Processes Definition of arrival process Definition

More information

Introduction to Markov Chains, Queuing Theory, and Network Performance

Introduction to Markov Chains, Queuing Theory, and Network Performance Introduction to Markov Chains, Queuing Theory, and Network Performance Marceau Coupechoux Telecom ParisTech, departement Informatique et Réseaux marceau.coupechoux@telecom-paristech.fr IT.2403 Modélisation

More information

One important issue in the study of queueing systems is to characterize departure processes. Study on departure processes was rst initiated by Burke (

One important issue in the study of queueing systems is to characterize departure processes. Study on departure processes was rst initiated by Burke ( The Departure Process of the GI/G/ Queue and Its MacLaurin Series Jian-Qiang Hu Department of Manufacturing Engineering Boston University 5 St. Mary's Street Brookline, MA 2446 Email: hqiang@bu.edu June

More information

Math Homework 5 Solutions

Math Homework 5 Solutions Math 45 - Homework 5 Solutions. Exercise.3., textbook. The stochastic matrix for the gambler problem has the following form, where the states are ordered as (,, 4, 6, 8, ): P = The corresponding diagram

More information

Waiting time characteristics in cyclic queues

Waiting time characteristics in cyclic queues Waiting time characteristics in cyclic queues Sanne R. Smits, Ivo Adan and Ton G. de Kok April 16, 2003 Abstract In this paper we study a single-server queue with FIFO service and cyclic interarrival and

More information

P (L d k = n). P (L(t) = n),

P (L d k = n). P (L(t) = n), 4 M/G/1 queue In the M/G/1 queue customers arrive according to a Poisson process with rate λ and they are treated in order of arrival The service times are independent and identically distributed with

More information

Stationary remaining service time conditional on queue length

Stationary remaining service time conditional on queue length Stationary remaining service time conditional on queue length Karl Sigman Uri Yechiali October 7, 2006 Abstract In Mandelbaum and Yechiali (1979) a simple formula is derived for the expected stationary

More information

Classical Queueing Models.

Classical Queueing Models. Sergey Zeltyn January 2005 STAT 99. Service Engineering. The Wharton School. University of Pennsylvania. Based on: Classical Queueing Models. Mandelbaum A. Service Engineering course, Technion. http://iew3.technion.ac.il/serveng2005w

More information

Bulk input queue M [X] /M/1 Bulk service queue M/M [Y] /1 Erlangian queue M/E k /1

Bulk input queue M [X] /M/1 Bulk service queue M/M [Y] /1 Erlangian queue M/E k /1 Advanced Markovian queues Bulk input queue M [X] /M/ Bulk service queue M/M [Y] / Erlangian queue M/E k / Bulk input queue M [X] /M/ Batch arrival, Poisson process, arrival rate λ number of customers in

More information

THE INTERCHANGEABILITY OF./M/1 QUEUES IN SERIES. 1. Introduction

THE INTERCHANGEABILITY OF./M/1 QUEUES IN SERIES. 1. Introduction THE INTERCHANGEABILITY OF./M/1 QUEUES IN SERIES J. Appl. Prob. 16, 690-695 (1979) Printed in Israel? Applied Probability Trust 1979 RICHARD R. WEBER,* University of Cambridge Abstract A series of queues

More information

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes

CDA6530: Performance Models of Computers and Networks. Chapter 3: Review of Practical Stochastic Processes CDA6530: Performance Models of Computers and Networks Chapter 3: Review of Practical Stochastic Processes Definition Stochastic process X = {X(t), t2 T} is a collection of random variables (rvs); one rv

More information

Statistics 150: Spring 2007

Statistics 150: Spring 2007 Statistics 150: Spring 2007 April 23, 2008 0-1 1 Limiting Probabilities If the discrete-time Markov chain with transition probabilities p ij is irreducible and positive recurrent; then the limiting probabilities

More information

Section 7.3: Continuous RV Applications

Section 7.3: Continuous RV Applications Section 7.3: Continuous RV Applications Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 7.3: Continuous RV Applications

More information

Stochastic Modelling Unit 1: Markov chain models

Stochastic Modelling Unit 1: Markov chain models Stochastic Modelling Unit 1: Markov chain models Russell Gerrard and Douglas Wright Cass Business School, City University, London June 2004 Contents of Unit 1 1 Stochastic Processes 2 Markov Chains 3 Poisson

More information

Synchronized Queues with Deterministic Arrivals

Synchronized Queues with Deterministic Arrivals Synchronized Queues with Deterministic Arrivals Dimitra Pinotsi and Michael A. Zazanis Department of Statistics Athens University of Economics and Business 76 Patission str., Athens 14 34, Greece Abstract

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Worst Case and Average Case Behavior of the Simplex Algorithm

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Worst Case and Average Case Behavior of the Simplex Algorithm Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebrasa-Lincoln Lincoln, NE 68588-030 http://www.math.unl.edu Voice: 402-472-373 Fax: 402-472-8466 Topics in Probability Theory and

More information

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) =

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) = Chapter 7 Generating functions Definition 7.. Let X be a random variable. The moment generating function is given by M X (t) =E[e tx ], provided that the expectation exists for t in some neighborhood of

More information

1 Approximate Counting by Random Sampling

1 Approximate Counting by Random Sampling COMP8601: Advanced Topics in Theoretical Computer Science Lecture 5: More Measure Concentration: Counting DNF Satisfying Assignments, Hoeffding s Inequality Lecturer: Hubert Chan Date: 19 Sep 2013 These

More information

School of Electrical Engineering, Phillips Hall, Cornell University, Ithaca, NY 14853, U.S.A.

School of Electrical Engineering, Phillips Hall, Cornell University, Ithaca, NY 14853, U.S.A. Queueing Systems 2 (1987) 387-392 387 PROBABILISTIC PROOF OF THE INTERCHANGEABILITY OF./M/1 QUEUES IN SERIES V. ANANTHARAM School of Electrical Engineering, Phillips Hall, Cornell University, Ithaca, NY

More information

Matrix analytic methods. Lecture 1: Structured Markov chains and their stationary distribution

Matrix analytic methods. Lecture 1: Structured Markov chains and their stationary distribution 1/29 Matrix analytic methods Lecture 1: Structured Markov chains and their stationary distribution Sophie Hautphenne and David Stanford (with thanks to Guy Latouche, U. Brussels and Peter Taylor, U. Melbourne

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

The Study State Analysis of Tandem Queue with Blocking and Feedback

The Study State Analysis of Tandem Queue with Blocking and Feedback ` Journal Of Advanced Networing and Applications 4 Vol. 0 No. 0 pages: 4-0 (009) The Study State Analysis of Tandem Queue with Blocing and Feedbac C Chandra Sehar Reddy Asst. Prof., RGM Engg. College,

More information

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue.

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue. Outline Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue Batch queue Bulk input queue M [X] /M/1 Bulk service queue M/M [Y]

More information

Contents LIST OF TABLES... LIST OF FIGURES... xvii. LIST OF LISTINGS... xxi PREFACE. ...xxiii

Contents LIST OF TABLES... LIST OF FIGURES... xvii. LIST OF LISTINGS... xxi PREFACE. ...xxiii LIST OF TABLES... xv LIST OF FIGURES... xvii LIST OF LISTINGS... xxi PREFACE...xxiii CHAPTER 1. PERFORMANCE EVALUATION... 1 1.1. Performance evaluation... 1 1.2. Performance versus resources provisioning...

More information

Stochastic Networks and Parameter Uncertainty

Stochastic Networks and Parameter Uncertainty Stochastic Networks and Parameter Uncertainty Assaf Zeevi Graduate School of Business Columbia University Stochastic Processing Networks Conference, August 2009 based on joint work with Mike Harrison Achal

More information

Answers to selected exercises

Answers to selected exercises Answers to selected exercises A First Course in Stochastic Models, Henk C. Tijms 1.1 ( ) 1.2 (a) Let waiting time if passengers already arrived,. Then,, (b) { (c) Long-run fraction for is (d) Let waiting

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts 1 Simulation Where real stuff starts ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3 What is a simulation?

More information

10-701/15-781, Machine Learning: Homework 4

10-701/15-781, Machine Learning: Homework 4 10-701/15-781, Machine Learning: Homewor 4 Aarti Singh Carnegie Mellon University ˆ The assignment is due at 10:30 am beginning of class on Mon, Nov 15, 2010. ˆ Separate you answers into five parts, one

More information

Modelling the risk process

Modelling the risk process Modelling the risk process Krzysztof Burnecki Hugo Steinhaus Center Wroc law University of Technology www.im.pwr.wroc.pl/ hugo Modelling the risk process 1 Risk process If (Ω, F, P) is a probability space

More information

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions Queueing Theory II Summary! M/M/1 Output process! Networks of Queue! Method of Stages " Erlang Distribution " Hyperexponential Distribution! General Distributions " Embedded Markov Chains M/M/1 Output

More information

Stochastic2010 Page 1

Stochastic2010 Page 1 Stochastic2010 Page 1 Extinction Probability for Branching Processes Friday, April 02, 2010 2:03 PM Long-time properties for branching processes Clearly state 0 is an absorbing state, forming its own recurrent

More information

Dr. Arno Berger School of Mathematics

Dr. Arno Berger School of Mathematics Nilay Tanik Argon School of Industrial and Systems Engineering Partial Pooling in Tandem Lines with Cooperation and Blocking For a tandem line of finite queues, we study the effects of pooling several

More information

Stochastic Processes

Stochastic Processes Stochastic Processes 8.445 MIT, fall 20 Mid Term Exam Solutions October 27, 20 Your Name: Alberto De Sole Exercise Max Grade Grade 5 5 2 5 5 3 5 5 4 5 5 5 5 5 6 5 5 Total 30 30 Problem :. True / False

More information

Lecture 16: Introduction to Neural Networks

Lecture 16: Introduction to Neural Networks Lecture 16: Introduction to Neural Networs Instructor: Aditya Bhasara Scribe: Philippe David CS 5966/6966: Theory of Machine Learning March 20 th, 2017 Abstract In this lecture, we consider Bacpropagation,

More information

Overall Plan of Simulation and Modeling I. Chapters

Overall Plan of Simulation and Modeling I. Chapters Overall Plan of Simulation and Modeling I Chapters Introduction to Simulation Discrete Simulation Analytical Modeling Modeling Paradigms Input Modeling Random Number Generation Output Analysis Continuous

More information

The M/M/n+G Queue: Summary of Performance Measures

The M/M/n+G Queue: Summary of Performance Measures The M/M/n+G Queue: Summary of Performance Measures Avishai Mandelbaum and Sergey Zeltyn Faculty of Industrial Engineering & Management Technion Haifa 32 ISRAEL emails: avim@tx.technion.ac.il zeltyn@ie.technion.ac.il

More information

Lecture 28 Continuous-Time Fourier Transform 2

Lecture 28 Continuous-Time Fourier Transform 2 Lecture 28 Continuous-Time Fourier Transform 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/14 1 Limit of the Fourier Series Rewrite (11.9) and (11.10) as As, the fundamental

More information

Probabilistic Model Checking for Biochemical Reaction Systems

Probabilistic Model Checking for Biochemical Reaction Systems Probabilistic Model Checing for Biochemical Reaction Systems Ratana Ty Ken-etsu Fujita Ken ichi Kawanishi Graduated School of Science and Technology Gunma University Abstract Probabilistic model checing

More information

1 Hoeffding s Inequality

1 Hoeffding s Inequality Proailistic Method: Hoeffding s Inequality and Differential Privacy Lecturer: Huert Chan Date: 27 May 22 Hoeffding s Inequality. Approximate Counting y Random Sampling Suppose there is a ag containing

More information

Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers

Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers OPERATIONS RESEARCH Vol. 59, No. 1, January February 2011, pp. 50 65 issn 0030-364X eissn 1526-5463 11 5901 0050 informs doi 10.1287/opre.1100.0878 2011 INFORMS Routing and Staffing in Large-Scale Service

More information

Lecturer: Olga Galinina

Lecturer: Olga Galinina Lecturer: Olga Galinina E-mail: olga.galinina@tut.fi Outline Motivation Modulated models; Continuous Markov models Markov modulated models; Batch Markovian arrival process; Markovian arrival process; Markov

More information

Proactive Care with Degrading Class Types

Proactive Care with Degrading Class Types Proactive Care with Degrading Class Types Yue Hu (DRO, Columbia Business School) Joint work with Prof. Carri Chan (DRO, Columbia Business School) and Prof. Jing Dong (DRO, Columbia Business School) Motivation

More information

Lecture 27 Frequency Response 2

Lecture 27 Frequency Response 2 Lecture 27 Frequency Response 2 Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/6/12 1 Application of Ideal Filters Suppose we can generate a square wave with a fundamental period

More information

Reliability Engineering I

Reliability Engineering I Happiness is taking the reliability final exam. Reliability Engineering I ENM/MSC 565 Review for the Final Exam Vital Statistics What R&M concepts covered in the course When Monday April 29 from 4:30 6:00

More information

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1 Irreducibility Irreducible every state can be reached from every other state For any i,j, exist an m 0, such that i,j are communicate, if the above condition is valid Irreducible: all states are communicate

More information

Multi-layered Round Robin Routing for Parallel Servers

Multi-layered Round Robin Routing for Parallel Servers Multi-layered Round Robin Routing for Parallel Servers Douglas G. Down Department of Computing and Software McMaster University 1280 Main Street West, Hamilton, ON L8S 4L7, Canada downd@mcmaster.ca 905-525-9140

More information

Performance-based Dynamic Scheduling of Hybrid Real-time Applications on a Cluster of Heterogeneous Workstations 1

Performance-based Dynamic Scheduling of Hybrid Real-time Applications on a Cluster of Heterogeneous Workstations 1 Performance-based Dynamic Scheduling of Hybrid Real-time Applications on a Cluster of Heterogeneous Worstations 1 Ligang He, Stephen A. Jarvis, Daniel P. Spooner and Graham R. Nudd Department of Computer

More information

An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling F An Introduction to Stochastic Modeling Fourth Edition Mark A. Pinsky Department of Mathematics Northwestern University Evanston, Illinois Samuel Karlin Department of Mathematics Stanford University Stanford,

More information

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion IEOR 471: Stochastic Models in Financial Engineering Summer 27, Professor Whitt SOLUTIONS to Homework Assignment 9: Brownian motion In Ross, read Sections 1.1-1.3 and 1.6. (The total required reading there

More information

Lycka till!

Lycka till! Avd. Matematisk statistik TENTAMEN I SF294 SANNOLIKHETSTEORI/EXAM IN SF294 PROBABILITY THE- ORY MONDAY THE 14 T H OF JANUARY 28 14. p.m. 19. p.m. Examinator : Timo Koski, tel. 79 71 34, e-post: timo@math.kth.se

More information