LOWELL. MICHIGAN, THURSDAY, AUGUST 16, Specialty Co. Sells to Hudson Mfg. Company. Ada Farmer Dies When Boat Tips
|
|
- Stephen Price
- 3 years ago
- Views:
Transcription
1 K N» N - K V XXXV - N 22 N 5 V N N q N 0 " " - x Q- & V N -" Q" 24-?? K ; ) ) ( _) ) N K : ; N - K K ) q ( K N ( x z 7 K $2000 ( - N " " K : K V N <& " " : 53; 30; 4; ; 2; 30-40: # ; $750 $800 z 0 - N N K V V : 6-4 z NN - 2 Kz N > N > K - K $4-000 $2500 ( x N ; x $35000 x x N $ x $7537 x x " - " q "" $500 " q ; x Q Q: ( N K x- x 5 8 N Z) 7 8 N " - K" ( " N N N 9 20 Nx " " N N K " - K - N 5 25 N 22 " "? N "" " " N N- N N 9 "" N 0: NZN 0 N 0:30 2 2:30 NN 0:00 :00 : " " " : " VN VN " V; - 27:28 8 " x x $3500 "" $3000 $500 N z x $3500 V 8 84 N K N N 0 z 6 N V N 2 VN : x K 0000 x? » ++»» N 8 KN» * « / Z V V N z Z- NN Z
2 ( ) N - 20 N N - x * N K x x - N N V N $200; x 0 0 : 5 0 ; x? " K N "N " N & N : 0:00 8 : 0 0 N N : x - : : : K ; :30-5: N N N «K K :«K " K N *»?- q - «> V N K " "» 202 N : N : 22-3: " N V N N N N 8K K N 2 9 N 7 9 NN " : " NN 8 K - q N " N - : <-506 " " z N N N K q N - ; V ( 4 - q Q q - - x * z - q 4 * - - ; N - ; x q - -? - " q N K- N q «" V K K N N N N X N N X N *KK «930K " " N N V* X 4 V z 94 N - 0V - x ) " q - N - - ; 2:30 K - " " - N N K V z x K V z K z x " K - K VNN - 2 x N77 N " K N ; N N $50 N z " V K N 4 : " " q " - " x " - ; " " - 47 V - x > z $ 5 0 $ - - ( : - " K 9 " - K N : " N V N N KN x 9 " - - x N x x- " 6 5 " 7 x (- N - NN " " K N - ] - " 9 K 29 5 x - - ( - K > " 7 N - - " " - z K q(> : 40- ; : x x ; : x " " ; x " " x N N N " N - V V V " z "V / N q - 2 ( ) 2 K V " " - - V " ] * " " - - z q 9 * * * V V q x " V ; K " # x 508 x " x " " : q $200 V " ;" q ; N "Q " q- - " " - 84 K K K K N N N ; * ; * q - VN K -( ; - V 03 V 0 ; $00 N - N $485 $600 q NN q q N N q NN N x K - V N V K ( N K XN K K N K K - - x - zz - x K N N - K N x q V x? ( V V V N N K ( ) 0 N ( N N : q x 80? - - ) N - -" ( ( ( 0 - x ) "«q * > - - x //// q ) * / ) - / «%» : ) N z - "< VK KN N NN N N NN 900 ) ) * N N x 4 N - - N - (» - K x - N N ] ( - x ) K - x 0 ( K K > - * * - ( - z K NN ) x - - V V K ( <*K» N V K z x N q - N - K - K N - « K N N (" ) - N - z N x K z K N K N * K > K z V z - ( - ) q x? V " N K «V N ( K K / - ( q - q x V - : K V N : - K x - ( > ; «N 0 > ( 0 N V K " q " > z K- z q - $ * N * V N 2 ) x K VV N - > " z" K V x x x x z K > / - < V { - ; < - ; ; N N N ( x K <+>+++>>++ N «- * (" -: :> : K «* K» -- > - > ) ; - : V N N N ); ) - «x : " "? - > > : ::5 - >: < - ; " " - «" " : " N ; > N x ( ) 76 " - " x - V q $2000q x q 09 5 N K «N N N NN N V ; N * ) 27 " )» N > > < ; q x < K V -- > - > " - N N 9 24 q ( K & VV V3 VV K «K K >0 V X * Q 0/ x "K K" () N - "
3 () ( K z ( ( z K x ) V z z ( K z K ( ( K N V K K K z - 3 N N 3000 q 28; 50 z ( N - 37) «K " V V <? & V " z - 4 V VQ K-x 0 V N - " - K - x - - ; K ; N N N N V V N 42 K q * x ( - " " - ( : :- x " - - x V K x " -" N >-» N N <> <> N - 8;8 - V V X V -» V - - V* V «) [ () ( X * ) N K V? "N «) N 2 > 2000 ; : N X x x N - N V 9000 ) 3500 x - - z ) 24 x 924 z " N - : N N " /KK -" N N x N 22 N K ; x 2:30 8 : 3 0 <5 V K K K Z K - 25 N N 25 N N KN N N N 25 N 23 N x { 28x42 8- q ( 7 K / -" " V K V ( K K K x K z $35 ( 2-3 < 0 $25 3 ( x( 2-3 ) ( 2 ; V ; ; : 3000 N ( ( ( N 3483 N 5626 K x N K V < V ) N N - - K V - x N V : " N " K 25 K ) Z V N x V - [ +< *+ N N V V * - N V V ( V Z - K : - 0V KK V V - N - V V x / N x 5--2 ( 2 4 N - K q 204 ( -2 N 8 ( 2 N - x ( ( ( (> V 4 ( 2 q q Q x- - V - - K N z x - N N ; ; N? N N - N V & K " % _ : Q % : x - V/ ) / $ * q x $ q *** x N :30 7«00 *0 K z V N N K N - q x " " $200 $00 x - x Kz K K ); ( * " : " "? " z? " " " " " " " "? " " N " "?" " " 0 " " " "? " "" " " "? N - " " " V? - N Q N - N 45 ( N K NK- N N ZN "Z" q - ; - K K- " Z " - ; «/ VN NN N 7 VK? K ; - " Z " / > K ); - ; : - "Z" - ; ; > ; - - " Z " - N V» N 5 - N K» K K ( ( * N N K KN N ( N N x - N N K N K K 9 : 3 0 ( 0 ) 928 ) x ( () x x : z 0 - ) 928 x - ( - : N N (2-3-4 N N N NN- N N KKV N () q " " x; " " " - " " x "? " " N? N ;? " " - " " q? " x : V K +++++< <++ V K V K N N N K V? " " " " K "" x - ( ( x z N N - K K x ( x V x - V x x V K V z ( x K - - K K x - V x x V K K K - K - K K z Q N N - V ( ( ( x q -- - : " ( - ) N "? N - : K K V - V K q - - K ; - ( x - x V V K K K V V V - K - x K K ( 5 - K - x " K ( K "? " - V z -- K ) : ( K q N N N - : N $25 Z N -2 V Z x z $000 x z $500 ; $300 ; $00 $500 N z z N ; " " " " z $ (» - ( N N « * N N <
4 () # NX x N N» N V V qk N ) K N ) " ) " " " " " " ) " " " N N 8 - x " " ) 9 x * N - x q z - ) x x ; V N ( ) 0 Q z ( Q K Q 908 N ( -2 K K q- V > V- V (9 K - V ;«> *» :: - "* " V "- -* (" - q V «0"K N - * : :- - - ; " * K K K "* ; x «( - K " " K K * K x- - " V «" - - " " ; K - * K K» x K K " K V - > K K > - - " x - >>" K - K - - q K " :; " " x - " " " " z " : - x x " -; z " " " " z K x " " x : " " " " " - " -" -" " x " " " " "?" q x " " x " " z? x : "-? " "? x " " - " " " " - " " " " " " " q " ( " "? " " K V " - q x -> q : " " x x x : q -? x V : q q q N " " " " " " "?" : " > <- " : "? " : " " > : " q " " q ; " ( " " : " " : "? " :? q q - z ; x x - * x K N? q q q - - q q : " " " " : " " N x q - q x : " q" - x q " " " " " q" : - " x - x - x " : " " " " x q q : q " " q q" " q q - " " " q : " " K q - ( ) V / ": * - - V N ( [ N N V 480 ( K % x VV N N K K N V -( V 25 * x - x x: " q N " " N " * q - " " x? " " q x" " - " "? " " N? - N N -" ( NN) N 8 99 K N x " - ($350000) - ($2484) - ($3500) - -x - ($377084) N ; * K : ( ) Q ( % ) - (29) (7* N N (9) V K & : ( ( ) N K V N ZN z * / 43 V V : K " " 9 ( K 5 ; : " " : "? * ) * / $ * **++**+++++« $ »»>(*»«- Z N V ( ) - V ( ) N K -: N Z N V x V ( ) 928 Q - 0 7:3 : K 2 ( ) - ) Q ( q x ( ) ) (5() - ( ) N K N -- x V* «- - ($80) : ; - K : " - N 4-2 ( ) (>0) z q ; ( ) ( - x ; N? (5() - q ( ) - - : : N V ( ( < q -- x V? «> 5655 (50) : q - ( Z N V 0V< :30 V " 0 " K 5 N 09 " ( (; N Q N q x x N N N x N z NN 9 * N *2" 80 * * K Q K 0 q «97 NNN _ 6-2 K : ; N - NNN K 0 K 0 ) N 2 x " " - ) N q (( ( V " " x (-- - z - " z " " " " ( V - " K " x " " " " "? " " " " " "?" " " " " q x x " x " " " " " " "? " " " V $ $ $ V N N N N N VN VN N - N N K «+ + x x N 340 N V q q N q q + " *«" N V V V V - 7? Q N q K V : - # ; N
5 N - V - z z z V K K / / $ x " " *"** 0 K 7( KV -X QN (> : " N N N $550 N - - ( $239 ( ( K Kz K K K N - - $275 0 K ( Q N ( x q x - 83( 89 $20 V x - K z K () - N K z q K -- q () > z N 28 x - (080( K K z K z z - $00 K K V K z ( K ( K ( V V K { K -z z - x K ( ) z z ( K ( K) - ( x ( V K ( N - N ( N x 929 $29 $09 $300 z N K - K ( ( ) N K ( N «$50 $25 $50 - ( N x ) N N x 9x2 $30 $55 -z z q K -9Z? K V «- :V (-- V V N K /N»K«N K $75 V x N () K «" x "» - V" N : :" N V 0 " V*? / V)"-- V - V/ 5 K; > K ( ;<- K :» - V 4 ; : N 547:27 N 562:48 : N 9 0:43 N 57 8:03 N q : N 32 7:39 * : N 3 0:27 x V $ & N N N Q V z q q z q - & N X VN N 35 KNK /x 97 «9 20 K K 4 9 [ ( X 0 N N Q K " N N 59
i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER
N k Q2 90 k ( < 5 q v k 3X3 0 2 3 Q :: Y? X k 3 : \ N 2 6 3 N > v N z( > > :}9 [ ( k v >63 < vq 9 > k k x k k v 6> v k XN Y k >> k < v Y X X X NN Y 2083 00 N > N Y Y N 0 \ 9>95 z {Q ]k3 Q k x k k z x X
LOWELL JOURNAL CRESP0 REIGNS. MICE DESTROY #10,000 CASH. T O W E L L S T A T E B A N K,
N V 2 2 7 2 9 2 K K «KN < K KY KK K KN ( *
LOWELL, MICHIGAN, MAY 28, Every Patriotic American Salutes His Nation's Flag
/ U N K U Y N Y 8 94 N /U/ N N 3 N U NY NUN ;!! - K - - 93 U U - K K»- [ : U K z ; 3 q U 9:3 - : z 353 «- - - q x z- : N / - q - z 6 - x! -! K N - 3 - U N x >» } ( ) - N Y - q K x x x Y 3 z - x x - x 8
MIS S BALLS, L.L.A.]
& N k k QY GN ( x - N N & N & k QY GN x 00 - XX N X ± - - - - ---------------- N N G G N N N Y NG 5 880N GN N X GN x ( G ) 8N ---- N 8 Y 8 - N N ( G () G ( ) (N) N? k [ x-k NNG G G k k N NY Y /( Q G (-)
S O A O lllllu O, W E D N E S D A Y N E X T ; D E C 2 9 t h. R E D U C T I O N S. 3 1, 3 2, 3 3, R o b e r t s o n S t., 2 & 3 Q a r e m o n t,
2» q» Z - - Qk»Q») v Q [ z -? ( 27 2 - ( q - < 5 75 7 v v 50 Q > vk 3 Q - -v- 2 3 7> 27
Liberty unci Union One and Insep,arable. r ' LOWELL. MICHIGAN, WEDNESDAY, AUGUST 10. 1*7
LLL KL G L L LLL GN N G 7 L LLL K L K) :K : NN : N K N K K L< N L N $ K 2 NG N q 6 [ ):L NN NK L $ L KKX K N X KK NX K: $ $ $ 2 2 2 2 2: 2 < 2 2 7 L ««$ q L N K» KL L K «» K ««LK K «N «L < K 2 N NG ««G
THE I Establiifrad June, 1893
89 : 8 Y Y 2 96 6 - - : - 2 q - 26 6 - - q 2 2 2 4 6 4«4 ' V () 8 () 6 64-4 '2" () 6 ( ) * 'V ( 4 ) 94-4 q ( / ) K ( x- 6% j 9*V 2'%" 222 27 q - - K 79-29 - K x 2 2 j - -% K 4% 2% 6% ' K - 2 47 x - - j
Lowell Dam Gone Out. Streets Turned I n t o Rivers. No Cause For Alarm Now However As This Happened 35 Years A&o
V ()\\ ))? K K Y 6 96 Y - Y Y V 5 Z ( z x z \ - \ - - z - q q x x - x 5 9 Q \ V - - Y x 59 7 x x - Y - x - - x z - z x - ( 7 x V 9 z q &? - 9 - V ( x - - - V- [ Z x z - -x > -) - - > X Z z ( V V V
HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,
#4 NN N G N N % XX NY N Y FY N 2 88 N 28 k N k F P X Y N Y /» 2«X ««!!! 8 P 3 N 0»9! N k 25 F $ 60 $3 00 $3000 k k N 30 Y F00 6 )P 0» «{ N % X zz» «3 0««5 «N «XN» N N 00/ N 4 GN N Y 07 50 220 35 2 25 0
and A I L j T O S O L O LOWELL, MICHIGAN, THURSDAY, AUG. 1, 1935
Y D D Y 5 VD D Y D D - ( D K D ( > Kz j K D x j ; K D D K x z ( D K D ( ; ) ( ) V DY - j! ) : x x x j K D K j DY 95 Y-D Y D D j 5 4 V 89 j j j j 89 j 4998 9 j K 8 j V x j K x x 5 x x x j - K 4- -D K 4-
Mrs. Joseph Snell Laid lo Rest at 63. Union Service to. Open Lenten Season
U N x» C V YK O CN C 4 94 C N Y O UCC j! j q? N C 5 : 72 92 776 45 74 5 N N : ( z ) N 7 q 6 N 4 C U V O N 6 27 2 7: C 2 C V x N O 2 C C 79 z N \ 27 97 O C 5 N C K C 97 97 N C 4 N C j K ; 26 5 2 25 C K
Mathematical Induction Assignments
1 Mathematical Induction Assignments Prove the Following using Principle of Mathematical induction 1) Prove that for any positive integer number n, n 3 + 2 n is divisible by 3 2) Prove that 1 3 + 2 3 +
W i n t e r r e m e m b e r t h e W O O L L E N S. W rite to the M anageress RIDGE LAUNDRY, ST. H E LE N S. A uction Sale.
> 7? 8 «> ««0? [ -! ««! > - ««>« ------------ - 7 7 7 = - Q9 8 7 ) [ } Q ««
r/lt.i Ml s." ifcr ' W ATI II. The fnncrnl.icniccs of Mr*. John We mil uppn our tcpiiblicnn rcprc Died.
$ / / - (\ \ - ) # -/ ( - ( [ & - - - - \ - - ( - - - - & - ( ( / - ( \) Q & - - { Q ( - & - ( & q \ ( - ) Q - - # & - - - & - - - $ - 6 - & # - - - & -- - - - & 9 & q - / \ / - - - -)- - ( - - 9 - - -
Oddn ENTRIES. Two New Buildings For County 4-H Fair
D G N H V G NNG \VH FYXH Y N $40000 b U v v 000 v b vv v vb v v b b x b z b v b b b & K b K G DH F H H /\U F b 80 K b z b bb v $40000 b v x v b bb 8 v b 30 K b b v v b v b b? x v z v b H D N G N H H Fz
Monday, July First, And continues until further notice.
4 E N % q * - z P q ««- V * 5 Z V E V 3 7 2 4 8 9 E KN YNG P E K G zz -E P * - PEZZ 23-48 G z : P P 78 N P K - - Q P - 8 N! - P - P 8 8 E E-*«- - 3 4 : G P - G N K P P Q* N N 23 E 2 *8342 P 23 2552 2K
LHS Grads Are 89 in Number Hahn,
KMU D N Q «««v v 8 v K v C Cv U v U v M M D M 3 v U v 8 v x M v Dv Dv v v v v v ( 6 : C C N 4 M C v v U C C «v q v q M - 8 v v v v M: v : x v v v v : v : x vv x v v v x - x x $00000 - v x 73 x 80 Y-X Y
UP TUB G. R. & I. Wo took tho train at EALERS ID Uragi.PatentKtdloinei.Psrlumtry
LLL NL G B- L - 60 VL V LLL GN NY Y 3 NB NY BL VY LLL Y- NNG -- K G B F BN: F x «5 $00 F VN L q L B K B B- - 3 6 L» q $00 $300 $00 $00 00 F q 600 00-00 900 L 500 00 500 000 5 0 BK Nx 00 500 50 3000 000
LOWELL JOURNAL. DEBS IS DOOMED. Presldrtit Cleveland Write* to the New York Democratic Rilltors. friends were present at the banquet of
X 9 Z X 99 G F > «?« - F # K-j! K F v G v x- F v v» v K v v v F
MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS
MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS 1. We have one theorem whose conclusion says an alternating series converges. We have another theorem whose conclusion says an alternating series diverges.
and A T. T O S O L O LOWELL. MICHIGAN. THURSDAY. NOVEMBER and Society Seriously Hurt Ann Arbor News Notes Thursday Eve
M-M- M N > N B W MN UY NVMB 22 928 VUM XXXV --> W M B B U M V N QUY Y Q W M M W Y Y N N M 0 Y W M Y x zz MM W W x M x B W 75 B 75 N W Y B W & N 26 B N N M N W M M M MN M U N : j 2 YU N 9 M 6 -- -
and A L T O SOLO LOWELL, MICHIGAN, THURSDAY, J U N E Farm Necessities Off State Sales Tax list Now Exempt
H DG N Bg G HN H ND H NG g g g g Yg x x g g gg k B g g g g g g g g g g x g g g k g g g k gg g x g z g g g g k k g g g g k XY- DN H GN DP N PG P D HN DN NPNG D- H HGN HDY N 3 935 Y - H D Y X 93 D B N H
LOWELL JOURNAL. LOWSLL, MICK., WSSDNaSDAY", FEB 1% 1894:
? jpv J V# 33 K DDY % 9 D Y D z K x p * pp J - jj Q D V Q< - j «K * j G»D K* G 3 zz DD V V K Y p K K 9 G 3 - G p! ( - p j p p p p Q 3 p ZZ - p- pp p- D p pp z p p pp G pp G pp J D p G z p _ YK G D xp p-
W I T H M A L I C E T O W A R D N O N E A N D C H A R I T Y F O R A L L. " A LOWELL MM. Sent to Jackson for 30 Years for Attempt
D N N N D Y F 6 KN NY G 2 89 N NG NK!? B! ( Y FB Y N @ N6 F NDD / B F N 8DBK GN B B ) F K Y Y N? x N B D B NNG = ZK N F D BBB ZN F NF? K8 D BND ND ND F ND N DNG FXBN NDNG DD BX N NG ND B K DN G8 > B K
S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc
M D O : 8 / M z G D z F zw z z P Dẹ O B M B N O U v O NO - v M v - v v v K M z z - v v MC : B ; 9 ; C vk C G D N C - V z N D v - v v z v W k W - v v z v O v : v O z k k k q k - v q v M z k k k M O k v
SPIRITUALISM. forces. of Spirit, A n stiy a e d f r o m a C o m m o n rhey. n o d and H en so S ta n d p o in t. Lea d s i 1 T U A L I.S M.
~ 3 : K G V 7 G GG 2 3 9 3» < V ; j z_! V 9 7 ' ; > : ; _ < - «-] 88 _ K _ [ -] ZZ - - _ [ ) G K < ' - - ( - '! j () - -] < : : < :?! q z ; [ > # : - 2 - - j ; :!_ - ] ' z ; : j G - j j - [ _ j! { q -
E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk
K q X k K 5 ) ) 5 / K K x x) )? //? q? k X z K 8 5 5? K K K / / $8 ± K K K 8 K / 8 K K X k k X ) k k /» / K / / / k / ] 5 % k / / k k? Z k K ] 8 K K K )» 5 ) # 8 q»)kk q»» )88{ k k k k / k K X 8 8 8 ]
LOWELL J O U R N A L
O O V X 5 O G O X G O K O K FG O O K F; K F OK 5 O K $GOO «OKK O G F G G G G ( v v Gvz O O *«* K ] F F K v v v : v : F OG O OK O G?;;::OO O K O O vv v q >v v V v / (}»* v v v: v vv?? O ; Q
WOMAN Suffrage County Convention at Grand Rapids June 16tb. THB appcarance of the Tillage cemetery has been greatly improved this season.
LLL UNL G 2 U8 U 0 LU X LLL GN NY UN 3 84 NU 48 NK XLY 8 U KL LK LY 8L8 L L N U08 UNL j X UKL UL q : N N X L } $ L q G - 8 8 4 N LX q U U 0 L N -U j UXL 88 G U X KK N U N LL LL QULY G : XLULY N Y j - x
LOWELL, MICHIGAN, THURSDAY, MARCH 7, 1929 HATS OFF TO PRESIDENT HOOVER
U M N 7 M N Y G W MGN UY M 7 929 VUM XXXV N Y M-- Q M 38 U 5 N 2 2 V 7 28 9 38 W G M M W Y G Y Q? q x : U MM MU MM M MM W M M M N M N M M N N MNU M $995 U W N Y YMN N Y U G Y W MGN V M q zz : NUN N 2 3
M e t ir c S p a c es
A G M A A q D q O I q 4 78 q q G q 3 q v- q A G q M A G M 3 5 4 A D O I A 4 78 / 3 v D OI A G M 3 4 78 / 3 54 D D v M q D M 3 v A G M 3 v M 3 5 A 4 M W q x - - - v Z M * A D q q q v W q q q q D q q W q
SINCLAIR COM M UNITY COLLEGE
0 UN ( ) V 0 P N. - N W. NU NN. W UNY YN, 0 WN UNY NY UNY UNY NN UN, 0 pp rchitecture PY NNN Woodside rive 00 W. Y N nglewood, hio ayton, hio 0 UN ( ) V 0 P N. - N UNY W. YN, 0 VNY P Y PN N NN ( 0) WN
Intrinsic Definition of Strong Shape for Compact Metric Spaces
Volume 39, 0 Pages 7 39 http://topology.auburn.edu/tp/ Intrinsic Definition of Strong Shape for Compact Metric Spaces by Nikita Shekutkovski Electronically published on April 4, 0 Topology Proceedings
V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday
1 6 5 J 9 6 " " z k ; k x k k k z z k j " " ( k " " k 8 1959 " " x k j 5 25 ; ; k k qz ; x 13 x k * k ( ) k k : qz 13 k k k j ; q k x ; x 615 26 ( : k z 113 99751 z k k q ; 15 k k k j q " " k j x x ( *»
O W 1 L L LiXWJER. Memorial. W. M. Lawton Shone Bright. Park Planted. Legionaires. Yesterday. Met at Lowell
? BU M N N B W XW ; / W M G N U Y 93 VUM XXXV ] N 6 M W M B M B M N Y M M 27 93 G W B U ( ) $78752 ( 92683;) M /MM 5 B 238 j59m B jj? j x U «B B $73535 B U x M B $25 25 7878 35796 5 858 9886382 $7353665
LOWELL JOURNAL.. TOOK H BR LIFE.
( \ R 277 v G v R 7 889 C? K R F Y C G F R C K 6 RYC K C K K 8 9 2 K C CK» R C G RR F v K K v Rk k v k x k Y QR FF F RKR C k \ R 4 ( k R F G q 5 R Y Y FR v R ; k k Y 8 K k : F K CK{ 8 k K x K K 2 K «v
nd A L T O SOLO LOWELL. MICHIGAN. THURSDAY. APRIL Spring Activities Heads Up and Forward (Editorial By " T h e Committee'')
- 6 7 8 9 3-6 7 8 9 3 G UDY 3 93 VU XXXV U XY F K FD D j V K D V FY G F D Y X K X DD Y j \ V F \ VD GD D U Y 78 K U D Y U Y 484?35 V 93 7 4 U x K 77 - D :3 F K > 6 D x F 5 - - x - G 7 43 8 D $35 K F $5
flbc in Russia. PIWiREE COHORTS ARE NOT PULL- ING TOGETHER. SIGHTS AND SCENES IN ST. PETERSBURG.
# O E O KOE O F Y F O VO V NO 5 OE KEN ONY Y 2 9 OE NO 265 E K N F z 5 7 X ) $2 Q - EO NE? O - 5 OO Y F F 2 - P - F O - FEE > < 5 < P O - 9 #»»» F & & F $ P 57 5 9 E 64 } 5 { O $665 $5 $ 25 E F O 9 5 [
filing for office of CO AN Co L POlS R 4 home phone epqropriate elections officials ORS Filing for State Voters Pamphlet Fi rstday
Fn nddy npn nn L v 6 R 49 h nn pb d nd y b pbhd pdd p yp pn by n b k nk nb d ndd n d M LG hw n hd pp n b H MB L n A L P R 4 d dp pn nb ddd y 8 zp d R D R A b A ka DL d ny d h phn d AK L x dd W b W n ddwh
Una aad Ark«m*. I cuim tie la.-seit HTni«.ent 9. Twenty.? S 3 S 3 CLOTHS, MEMPHIS, TENN., SATURDAY. JANUARY 18, 1873.
8! (!> > > ( v 7 q! v Y vq! >5! #! g k gg y y k Q G [x y k xv < zg > 9 _ 7 v ) 6 4 { k & x > 5! k & \ ) >% G > k k x k< G < q k>{> y k k kk k 2 k y y k ( y k y y Y g
An Obligation Regarding. Best Yet
5 L K N C N LL b b b b b b L L L L L C G N Y C 2 929 L N 929 b L G Y b b Y N NK b b b < C b z b L C b b b Gb G b q b b : x C - Q C b 22 5 b 5 b b 5 2 b K 2 b 3-2 b 6 b Gb b Lb C C -- L - 9 : 999 929 ]
ACHD Roadways to Bikeways Update June Hills Gate Dr. Ec ho Summit Pl. Star Ridge Ln. Sunrise View Ln. Eagle Pointe Pl.
v U v G G q G G z j v Q v v v v v v G v U v v v z K K z v J v v v G v v 16 z z v q v G v J J K:\_j\20\20987 - U\\ 1-4_24. - - 3:46 6/2/2017 O ( O) O z O O v v v v J J J G v O G J v z zz G v v Q zz / /
. ffflffluary 7, 1855.
x B B - Y 8 B > ) - ( vv B ( v v v (B/ x< / Y 8 8 > [ x v 6 ) > ( - ) - x ( < v x { > v v q < 8 - - - 4 B ( v - / v x [ - - B v B --------- v v ( v < v v v q B v B B v?8 Y X $ v x B ( B B B B ) ( - v -
TO. cash register at Helm's filling stafrom By K. K. Vlnlng under i t o -!
L G N B C V L G LL LL L? U Q N LLL CGN FBUY 6 9 FY-NN Y N \// F K C G V/NY F -? - - VC N? C F q q L C L L L ; $ K - F B K K V - q -! G K - N G B B G - K G C ( C U L L - < - # ( - - 9 C K x ( C(! L K UU
LOWELL, MICHIGAN, OCTOBER 22, Interesting Sequence to Article in Lowell Ledger
K3 DG N Bg: C V G UNG V CN b v Nvb 3 b g b gzg v bg g k g q W b g v vg v g x gz g g g v g v k g g x v q g b g g v g b gz v g gv b g b g b g g b v k g b b b b q k g g g b g x b g g gz bg b g v Y g q g zg
OTSEGO COUNTY HERALD TIME3
V UNY RD 3 875 U 2 7 U { ^ ««««««B NN-KD UR Y; R «5 jj /j // ; N V W ; / B * j R- 5 W 268000 U-27-3 $30000 2 000 U-27 5 W $ 5000 46000 U-27 32 $72000 5000 D V $7674 000 $2225000 $450000 - * j 25 j 934
CHAPTER 2 INFINITE SUMS (SERIES) Lecture Notes PART 1
CHAPTER 2 INFINITE SUMS (SERIES) Lecture Notes PART We extend now the notion of a finite sum Σ n k= a k to an INFINITE SUM which we write as Σ n= a n as follows. For a given a sequence {a n } n N {0},
an;'. Union One aud lnsopftrabls.'' LOWELL. MICflTGAN, WKDM SDAV, MAY I I is: LOW.NATIONAL 1>AXK ullv tn , ,800.
Y v N Y Y \\ «\ v R v R F RN «x vv 2 R F RN N # Z qr $ $ $2 2 2 X R 2 2
(EccL HUt, Mosheim, p. 40.) AGC3. Rgnres. We shall now proceed to show two things:
P K K P / P V -K VX - x K D K GFF G D G DKX X P P F D K 8 6 Y X X X P 9 ] K V Y 0 - D 00 D P F G K K PXVK P > G K K V v v v v PK P v D > v Y v D P > P v v - v x V D - ()zx q - & 9 K x K > % x v - - P x
Proof by Induction. Andreas Klappenecker
Proof by Induction Andreas Klappenecker 1 Motivation Induction is an axiom which allows us to prove that certain properties are true for all positive integers (or for all nonnegative integers, or all integers
CSCE 222 Discrete Structures for Computing. Proof by Induction. Dr. Hyunyoung Lee. !!!!!! Based on slides by Andreas Klappenecker
CSCE 222 Discrete Structures for Computing Proof by Induction Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Motivation Induction is an axiom which allows us to prove that certain properties
Kent Co. Received Red Cross Service Abundantly in ' 4 9 E
G N GN Y 95 89 N - q» B < ) < - 9 - - - - q ( B 6 - q - Q» x x 8 {) N - 9» -
Problem Set 5 Solutions
Problem Set 5 Solutions Section 4.. Use mathematical induction to prove each of the following: a) For each natural number n with n, n > + n. Let P n) be the statement n > + n. The base case, P ), is true
Solving Linear Systems Using Gaussian Elimination. How can we solve
Solving Linear Systems Using Gaussian Elimination How can we solve? 1 Gaussian elimination Consider the general augmented system: Gaussian elimination Step 1: Eliminate first column below the main diagonal.
Taylor and Maclaurin Series
Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as
d A L. T O S O U LOWELL, MICHIGAN. THURSDAY, DECEMBER 5, 1929 Cadillac, Nov. 20. Indignation
) - 5 929 XXX - $ 83 25 5 25 $ ( 2 2 z 52 $9285)9 7 - - 2 72 - - 2 3 zz - 9 86 - - - - 88 - q 2 882 q 88 - - - - - - ( 89 < - Q - 857-888 - - - & - - q - { q 7 - - - - q - - - - - - q - - - - 929 93 q
W I T H M i A. L I O E T O W A R D ISTOlNrE ^ I S T D C H A. n i T Y F O R - A L L. "
J/ H L D N D H Y F L L L N LLL KN NY H Y 2 95 HL N NG F L G NG F LNDD H H J F NH D K GN L _ L L :? H F K b H Y L DD Y N? N L L LD H LL LLL LNNG LL J K N 3 ND DL6 N Lb L F KF FH D LD3 D ND ND F ND LKKN
Pithy P o i n t s Picked I ' p and Patljr Put By Our P e r i p a tetic Pencil Pusher VOLUME X X X X. Lee Hi^h School Here Friday Ni^ht
G G QQ K K Z z U K z q Z 22 x z - z 97 Z x z j K K 33 G - 72 92 33 3% 98 K 924 4 G G K 2 G x G K 2 z K j x x 2 G Z 22 j K K x q j - K 72 G 43-2 2 G G z G - -G G U q - z q - G x) z q 3 26 7 x Zz - G U-
MTH 3318 Solutions to Induction Problems Fall 2009
Pat Rossi Instructions. MTH 338 Solutions to Induction Problems Fall 009 Name Prove the following by mathematical induction. Set (): ++3+...+ n n(n+) i n(n+) Step #: Show that the proposition is true for
SHARP BOUNDS FOR PROBABILITIES WITH GIVEN SHAPE INFORMATION
R u t c o r Research R e p o r t SHARP BOUNDS FOR PROBABILITIES WITH GIVEN SHAPE INFORMATION Ersoy Subasi a Mine Subasi b András Prékopa c RRR 4-006, MARCH, 006 RUTCOR Rutgers Center for Operations Research
A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth
6 6 0 x J 8 0 J 0 z (0 8 z x x J x 6 000 X j x "" "" " " x " " " x " " " J " " " " " " " " x : 0 z j ; J K 0 J K q 8 K K J x 0 j " " > J x J j z ; j J q J 0 0 8 K J 60 : K 6 x 8 K J :? 0 J J K 0 6% 8 0
arxiv: v2 [math.co] 15 Feb 2014
On the determinant of hexagonal grids H k,n Anna Bień 1 Institute of Mathematics, University of Silesia, Katowice, Poland arxiv:1309.0087v [math.co] 15 Feb 014 Abstract We analyse the problem of singularity
2 2 + x =
Lecture 30: Power series A Power Series is a series of the form c n = c 0 + c 1 x + c x + c 3 x 3 +... where x is a variable, the c n s are constants called the coefficients of the series. n = 1 + x +
. ^e Traveler in taesnok. i the IHilty.-^ifStiiart. BbUaaoa aad WalL.""ras 'crossing a mountain»h ch w e are A«ply inteiwted. Add
x 8[ x [qqq xq F x & R FX G NR F XN R X ( F R Y
Mathematical Induction Again
Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 12, 2017 Outline Mathematical Induction Simple POMI Examples
Str«S A N F R A N C I S C O, C A L., S A T U R D A Y, M A Y i
V V JUN V VN UNY N N VN J J WN i ii i k «N N U Y Y i N N i k - G f ; i X ) w i W J vi - k W i 'ii ii i ; i i ; w J i vi f i ; G ; iii ; ii fi U ( ii) ii ; i; W ik ; i W k; V i i f if ; k f ; N f ; i i
M A. L I O E T O W A R D N O N E A. N I D O H A R I T Y F O R A L L. " An Old Timor's DesorSptlon of HI* Camp Outfit. THE DEATH OF M R L A. R. WEEKS.
J : UO XOW YOU ONY «00 V DVZ WOW R KO L O O W R D N O N N D O R Y O R L L VOL LOWLL KN OUNY NOVR 25 893 NO 22 W L L L K Y O WNR K 0? 0 LOR W Y K YUU U O LO L ND YL LOW R N D R O ND N L O O LL 0R8 D KOR
arxiv: v1 [cs.ds] 11 Oct 2018
Path matrix and path energy of graphs arxiv:1810.04870v1 [cs.ds] 11 Oct 018 Aleksandar Ilić Facebook Inc, Menlo Park, California, USA e-mail: aleksandari@gmail.com Milan Bašić Faculty of Sciences and Mathematics,
An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim
An idea how to solve some of the problems 5.2-2. (a) Does not converge: By multiplying across we get Hence 2k 2k 2 /2 k 2k2 k 2 /2 k 2 /2 2k 2k 2 /2 k. As the series diverges the same must hold for the
PEDIATRICS WEST - McADORY
P W - McY N N N0. M N M M M - M M 0 VW WN NX PJ M N N YN U.N.N 0 //0 :0:0 M :\Users\richard\ocuments\PW-Mcdory_richard.rvt WN PPY N N YN N N PU, P N W N P U NY PUP WU PPV N N YN N UN UPN QU. NU Mc, 0 0'
Extension of the Barut-Girardello Coherent State and Path Integral
Extension of the Barut-Girardello Coherent State and Path Integral Kazuyuki FUJII and Kunio FUNAHASHI Department of Mathematics, Yokohama City University, Yokohama 36, Japan April, 997 Abstract We extend
Mathematical Induction Again
Mathematical Induction Again James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 2, 207 Outline Mathematical Induction 2 Simple POMI Examples
Section 5.3, Exercise 22
The Legendre equation is where α is a constant. Section 5.3, Exercise 22 (1 x 2 ) 2x + α(α + 1) 0 Determine two linearl independent solutions in powers of x for x < 1. Assume (x) a n x n and substitute
Signal Analysis, Systems, Transforms
Michael J. Corinthios Signal Analysis, Systems, Transforms Engineering Book (English) August 29, 2007 Springer Contents Discrete-Time Signals and Systems......................... Introduction.............................................2
Problem Set 4 Solutions 3.20 MIT Dr. Anton Van Der Ven Fall 2002
Problem Set 4 Solutions 3.20 MIT Dr. Anton Van Der Ven Fall 2002 Problem -22 For this problem we need the formula given in class (Mcuarie -33) for the energy states of a particle in an three-dimensional
LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort
- 7 7 Z 8 q ) V x - X > q - < Y Y X V - z - - - - V - V - q \ - q q < -- V - - - x - - V q > x - x q - x q - x - - - 7 -» - - - - 6 q x - > - - x - - - x- - - q q - V - x - - ( Y q Y7 - >»> - x Y - ] [
LOWELL WEEKLY JOURNAL
KY Y 872 K & q $ < 9 2 q 4 8 «7 K K K «> 2 26 8 5 4 4 7»» 2 & K q 4 [«5 «$6 q X «K «8K K88 K 7 ««$25 K Q ««q 8 K K Y & 7K /> Y 8«#»«Y 87 8 Y 4 KY «7««X & Y» K ) K K 5 KK K > K» Y Y 8 «KK > /» >» 8 K X
UCSD ECE250 Handout #20 Prof. Young-Han Kim Monday, February 26, Solutions to Exercise Set #7
UCSD ECE50 Handout #0 Prof. Young-Han Kim Monday, February 6, 07 Solutions to Exercise Set #7. Minimum waiting time. Let X,X,... be i.i.d. exponentially distributed random variables with parameter λ, i.e.,
Examination with solution suggestions SSY130 Applied Signal Processing
Examination with solution suggestions SSY3 Applied Signal Processing Jan 8, 28 Rules Allowed aids at exam: L. Råde and B. Westergren, Mathematics Handbook (any edition, including the old editions called
Study # 1 11, 15, 19
Goals: 1. Recognize Taylor Series. 2. Recognize the Maclaurin Series. 3. Derive Taylor series and Maclaurin series representations for known functions. Study 11.10 # 1 11, 15, 19 f (n) (c)(x c) n f(c)+
THE LOWELL LEDGER. INDEPENDENT-NOT NEUTRAL.
: / LOLL LDGR NDNDNNO NRL VOL X NO 26 LOLL GN RDY DR 902 FV N ONDRFL GRO D x N Y NK LL & O OLD RDN GON ROR NR R «ROY ND R LON N V» Rx Rj K» O ««(» F R G GRLND x ( ) R OF FRND ;«QK L L RNG X R D 02 Q F
Real Analysis Chapter 1 Solutions Jonathan Conder
3. (a) Let M be an infinite σ-algebra of subsets of some set X. There exists a countably infinite subcollection C M, and we may choose C to be closed under taking complements (adding in missing complements
Minimax Redundancy for Large Alphabets by Analytic Methods
Minimax Redundancy for Large Alphabets by Analytic Methods Wojciech Szpankowski Purdue University W. Lafayette, IN 47907 March 15, 2012 NSF STC Center for Science of Information CISS, Princeton 2012 Joint
14 EE 2402 Engineering Mathematics III Solutions to Tutorial 3 1. For n =0; 1; 2; 3; 4; 5 verify that P n (x) is a solution of Legendre's equation wit
EE 0 Engineering Mathematics III Solutions to Tutorial. For n =0; ; ; ; ; verify that P n (x) is a solution of Legendre's equation with ff = n. Solution: Recall the Legendre's equation from your text or
Y'* C 0!),.1 / ; ')/ Y 0!)& 1 0R NK& A Y'. 1 ^. ]'Q 1 I1 )H ;". D* 1 = Z)& ^. H N[Qt C =
(-) 393 F!/ $5 $% T K&L =>-? J (&A )/>2 I B!" GH 393/05/07 :K 393/07/23 :7b +B 0 )NO M / Y'* C a23 N/ * = = Z)& ^. ;$ 0'* Y'2 8 OI 53 = ;" ~" O* Y.b ;" ; ')/ Y'* C 0!),. / ; ')/ Y 0!)& 0R NK& A Y'. ^.
Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets
Existence of a Limit on a Dense Set, and Construction of Continuous Functions on Special Sets REU 2012 Recap: Definitions Definition Given a real-valued function f, the limit of f exists at a point c R
YOU IX. SERIAL NO BROAD/fsEETJUjEAT.. ISj&ECTED. VEWAfi2> a8t « Mesifc. lee M-^n H * * ident at Annual Convention in Atlantic
> PPL P! Y G LLNY C LP L P 9 B /> z $00 C / C Q 98 C k 9 7 700 v k $00 L \ x z =6=! k v G $9 L v 0 8 v N P Y C CC v B C P 0 698 BP CC P 9 B CN PBYN CC P v Cv P P L 00 B k x LPN 8 Q xkv/ q/ > < P B B /
MOL NM UR PM NUMR L RVON LVL T RWN K PPROV NOT P RVON T NUMR of -N TLP P0 K 0 0K R TLP P0 Z Z0WVX KTN Q U00 0 K KMZ Z R 0 0K 0 0 R K R N00 0 0K 0 K U00 0 K 0 KJ R U00 0 0.ohm R0 W -N Max.0KOM RX0 Min./W
Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation. Bhaskar D Rao University of California, San Diego
Generalized Sidelobe Canceller and MVDR Power Spectrum Estimation Bhaskar D Rao University of California, San Diego Email: brao@ucsd.edu Reference Books 1. Optimum Array Processing, H. L. Van Trees 2.
ELEG 305: Digital Signal Processing
ELEG 305: Digital Signal Processing Lecture 19: Lattice Filters Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 2008 K. E. Barner (Univ. of Delaware) ELEG
KEEP PACE WITH. Volume 3, Number.38, 12 Pages. at Michigan State university.
2 3, 98! W \G \ q vk \ b v \(, v v ;, ): j:!, ; W, j v ; ;, \ ;, : z W, x,, G, 38 G v W W WW Y G W X Q G 82, v v G b Y v : W G : Y G X W Y 32 WG G G WG G X x x v v k v x b b b b b b 3 (x ) x, b b, W, v
Daily Register Q7 w r\ i i n i i /"\ HTT /"\I AIM MPmf>riAnpn ^ ^ oikiar <mn ^^^*»^^*^^ _.. *-.,..,» * * w ^.. i nr\r\
$ 000 w G K G y' F: w w w y' w-y k Yk w k ' V 0 8 y Q w \ /"\ /"\ > ^ ^ k < ^^^*»^^*^^ _*-» * * w ^ \\ Y 88 Y Y 8 G b k =-- K w' K y J KKY G - - v v -y- K -y- x- y bb K' w k y k y K y y w b v w y F y w
SOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS We want to solve the linear system a, x + + a,n x n = b a n, x + + a n,n x n = b n This will be done by the method used in beginning algebra, by successively eliminating unknowns
Variable, Step-Size, Block Normalized, Least Mean, Square Adaptive Filter: A Unied Framework
Scientia Iranica, Vol. 15, No. 2, pp 195{202 c Sharif University of Technology, April 2008 Research Note Variable, Step-Size, Block Normalized, Least Mean, Square Adaptive Filter: A Unied Framework M.
Number Theory and Graph Theory
1 Number Theory and Graph Theory Chapter 1 Introduction and Divisibility By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 1 DIVISION
Improved bounds for (kn)! and the factorial polynomial
Divulgaciones Matemáticas Vol 11 No 003), pp 153 159 Improved bounds for kn)! and the factorial polynomial Cotas mejoradas para kn)! y el polinomio factorial Daniel A Morales danoltab@ulave) Facultad de
MAHALAKSHMI ENGINEERING COLLEGE-TRICHY
DIGITAL SIGNAL PROCESSING DEPT./SEM.: ECE&EEE /V DISCRETE FOURIER TRANFORM AND FFT PART-A 1. Define DFT of a discrete time sequence? AUC MAY 06 The DFT is used to convert a finite discrete time sequence