Characterizations of free Meixner distributions

Size: px
Start display at page:

Download "Characterizations of free Meixner distributions"

Transcription

1 Characterizations of free Meixner distributions Texas A&M University March 26, 2010

2 Jacobi parameters. Matrix. β 0 γ β 1 γ m n J =. 0 1 β 2 γ.. 2 ; J n = β A new sequence m 1, m 2, m 3,.... Favard s Theorem. [Stone 1932] All γ i 0 {m i } are moments of a measure, m i = x i dµ(x).

3 Definition. b, c, t R, t, t + c 0. Tridiagonal matrix 0 t b t + c 0 0 J = 0 1 b t + c b t + c µt b,c b µ t b,c = free Meixner distributions. Bernstein-Szegő class: β i, γ i eventually constant.

4 Formula. In terms of the Cauchy transform 1 G µ (z) = z x dµ(x), R dµ(x) = 1 π lim ε 0 + Im G µ(x + iε) dx ( 4(t + c) (x b) 2 ) µ t b,c = 1 2π t + bx + (c/t)x 2 + dx + 0, 1,or 2 atoms.

5 Examples. µ 0,1, µ 0,0, µ 0,1/2.

6 Semicircle law. b, c = 0. µ t 0,0 = 1 4t x 2πt 2. Orthogonal polynomials: Chebyshev polynomials of the second kind U n (x). Generating function U n (x, t)w n = n=0 1 1 xw + tw 2.

7 First characterization. Theorem. [A. 03] Orthogonal polynomials P n (x) for a measure µ have a generating function of the resolvent-type form P n (x)w n 1 = A(w) 1 B(w)x n=0 if and only if µ is a free Meixner distribution.

8 Analogy: Meixner class. Theorem. [Meixner 1934] Orthogonal polynomials P n (x) for a measure µ have a generating function of the exponential form n=0 1 n! P n(x)w n = A(w)e B(w)x if and only if µ is a Meixner distribution: Normal, Gamma, hyperbolic secant. Binomial, Poisson, negative binomial. A lot more interesting and important class. Yet: have an analogy.

9 Lévy process. Random variables {X t : t R}, Increments X t0 X t1 X t2 X t3. X(t 1 ) X(t 0 ), X(t 2 ) X(t 1 ),..., X(t k ) X(t k 1 ) independent and stationary: (X t X s ) X t s µ t s. Example. B t = Brownian motion. µ t = 1 2πt e x2 /t dx.

10 Conditional expectation. E [ ] = expectation. E [ X] = conditional expectation = projection. E [f(x) X] = f(x), E [Y X] = E [Y ] if Y, X independent.

11 Exponential martingale. Denote [ F t (θ) = E e ixtθ] = e ixθ dµ t (x) the Fourier transform. ] E [e ixtθ log Ft(θ) X s = e ixsθ log Fs(θ). t eixtθ log Ft(θ) is Brownian motion a martingale. e ibtθ t θ2 2.

12 Other martingales. t 7 eixt θ log Ft (θ).

13 Proof. For X, Y independent F X+Y (θ) = F X (θ)f Y (θ) F µt (θ) = F t (θ) log F t (θ) = t log F(θ). ] ] E [e ixtθ log Ft(θ) X s = E [e i(xt Xs)θ e ixsθ e t log F(θ) X s [ = E e i(xt Xs)θ] e ixsθ t log F(θ) e = e (t s) log F(θ) e t log F(θ) e ixsθ ixsθ log sf(θ) = e

14 Martingale polynomials. Generating function e xz t log F( iz) = n=0 Each P n = martingale polynomial. 1 n! P n(x, t)z n. Brownian motion: H n (x, t) Hermite polynomials. H n (B t, t) = martingale. Meixner class: orthogonal martingale polynomials.

15 Free independence. Independent: E [f(x)g(y )] = E [f(x)] E [g(y )]. What if X, Y don t commute? What is the correct expression for E [f(x)g(y )h(x)] in terms of X and Y separately? Voiculescu s free independence.

16 Free probability (Voiculescu 1980s). Common structure in Operator Algebras Random Matrices Asymptotic Representation Theory Probability theory with (maximally) non-commuting random variables. Free versions of many probabilistic objects and theorems. (Free) independence, (free) product, (free) infinitely divisible distributions and limit theorems, (free) cumulants, (free) normal, Poisson, binomial distributions, etc.

17 Examples. Free central limit theorem. Limit = semicircular distribution = µ 0,0. Free Poisson limit theorem. Limit = free Poisson distribution = µ 1,0. Binomial distribution = sum of independent coin tosses. Coin toss = projection. Sum of freely independent projections = free binomial distribution = µ t 0, 1, t = number of tosses. In the free case, t 1 real!

18 Processes with free increments. X t = process with freely independent increments. Theorem. [Biane 1998]. {X t } is a Markov processes. Equivalently: is a martingale. t 1 1 X t z + tr(z) Here R(z) = R-transform (Voiculescu), analog of log F(iθ). Free Meixner processes have orthogonal martingale polynomials.

19 Reverse martingales. {X t } a process with freely independent increments. {P n (x, t)} polynomials, P n of degree n. P n a martingale if for s < t, E [P n (X t, t) X s ] = P n (X s, s). P n a reverse martingale if for s < t, E [P n (X s, s) X t ] = f(s) f(t) P n(x t, t).

20 Characterization: reverse martingales. Theorem. [Laha, Lukacs 1960] Their result implies: A Lévy process {X t } has a family of polynomials P n which are both martingales and reverse martingales if and only if each X s has a Meixner distribution. Theorem. [Bożejko, Bryc 06] Their result implies: A free Lévy process {X t } has a family of polynomials P n which are both martingales and reverse martingales if and only if each X s has a free Meixner distribution.

21 Further characterizations. Algebraic Riccati equation (A. 07) Free Jacobi fields (Bożejko, Lytvynov 09) Free quadratic exponential families (Bryc 09) Free quadratic harnesses (Bryc, Wesołowski 05) Etc. Other appearances: Szegö (1922), Bernstein (1930), Boas & Buck (1956), Carlin & McGregor (1957), Geronimus (1961), Allaway (1972), Askey & Ismail (1983), Cohen & Trenholme (1984), Kato (1986), Freeman (1998), Saitoh & Yoshida (2001), Kubo, Kuo & Namli (2006), Belinschi & Nica (2007),...

22 Motivation: Sturm-Liouville operators. Operator Symmetric in L 2 (w(x) dx) for DpD + qd : y (py ) + qy. w w = q p. With appropriate boundary conditions, self-adjoint. Has orthogonal eigenfunctions.

23 Bochner s Theorem. Theorem. [Bochner 1929] DpD + qd has (orthogonal) polynomial eigenfunctions if and only if deg p 2, deg q 1 and w(x) dx = normal distribution (Hermite polynomials) w(x) dx = Gamma distribution (Legendre polynomials) w(x) dx = Beta distribution (Jacobi polynomials) Pearson (1924): for w w = linear quadratic, two more distributions (Bessel polynomials, t-distribution). Easy (calculus).

24 Operator L µ. Replace D with L µ. Definition. For µ a measure, f(x) f(y) L µ [f] = dµ(y) = (I µ) [f]. x y R L µ maps polynomials to polynomials, lowers degree by one. Origin: Maps orthogonal polynomials to associated orthogonal polynomials. Related to the generator of the free Brownian motion.

25 Bochner-Pearson type characterization. Theorem. [A. 09] pl 2 µ + ql µ has polynomial eigenfunctions if and only if µ is a free Meixner distribution.

26 More on free Meixner distributions. The Cauchy transform But also the Hilbert transform G µ (z) = linear quadratic. quadratic dµ(x) = 1 π lim Im G(x + iε) dx. ε 0 + H[µ](x) = 1 π lim Re G(x + iε) dx = linear ε 0 + In fact for H µ = 2πH[µ], H µ = q p. quadratic.

27 Classical-free correspondence. DpD + qd pl 2 µ + ql µ. w w q p H µ. Meaning of H µ : free conjugate variable. Random matrix picture: if then for w(x) dx = e V (x) dx, 1 Z e trv (M) dm µ w w = V = H µ.

28 Random matrix picture. Gaussian Unitary ensemble: e x2 /2 Wigner law (semicircular). Wishart ensemble: x α 1 e x 1 0 x Marchenko-Pastur law (free Poisson). Jacobi ensemble: (1 x) α 1 x β x 1... (free binomial).

29 Summary. w w d + ex a + bx + cx 2 H µ. Correspondence between parameters not precise. normal Poisson binomial semicircular Marchenko-Pastur free binomial normal gamma beta hyperbolic secant gamma negative binomial free h.s. free g. free n.b. Bessel t-distribution?

Characterizations of free Meixner distributions

Characterizations of free Meixner distributions Characterizations of free Meixner distributions Texas A&M University August 18, 2009 Definition via Jacobi parameters. β, γ, b, c R, 1 + γ, 1 + c 0. Tridiagonal matrix {(β, b, b,...), (1 + γ, 1 + c, 1

More information

Free Meixner distributions and random matrices

Free Meixner distributions and random matrices Free Meixner distributions and random matrices Michael Anshelevich July 13, 2006 Some common distributions first... 1 Gaussian Negative binomial Gamma Pascal chi-square geometric exponential 1 2πt e x2

More information

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich Measures, orthogonal polynomials, and continued fractions Michael Anshelevich November 7, 2008 MEASURES AND ORTHOGONAL POLYNOMIALS. MEASURES AND ORTHOGONAL POLYNOMIALS. µ a positive measure on R. 2 MEASURES

More information

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich

Measures, orthogonal polynomials, and continued fractions. Michael Anshelevich Measures, orthogonal polynomials, and continued fractions Michael Anshelevich November 7, 2008 MEASURES AND ORTHOGONAL POLYNOMIALS. µ a positive measure on R. A linear functional µ[p ] = P (x) dµ(x), µ

More information

Meixner matrix ensembles

Meixner matrix ensembles Meixner matrix ensembles W lodek Bryc 1 Cincinnati April 12, 2011 1 Based on joint work with Gerard Letac W lodek Bryc (Cincinnati) Meixner matrix ensembles April 12, 2011 1 / 29 Outline of talk Random

More information

From random matrices to free groups, through non-crossing partitions. Michael Anshelevich

From random matrices to free groups, through non-crossing partitions. Michael Anshelevich From random matrices to free groups, through non-crossing partitions Michael Anshelevich March 4, 22 RANDOM MATRICES For each N, A (N), B (N) = independent N N symmetric Gaussian random matrices, i.e.

More information

Kernel families of probability measures. Saskatoon, October 21, 2011

Kernel families of probability measures. Saskatoon, October 21, 2011 Kernel families of probability measures Saskatoon, October 21, 2011 Abstract The talk will compare two families of probability measures: exponential, and Cauchy-Stjelties families. The exponential families

More information

Nonlinear Integral Equation Formulation of Orthogonal Polynomials

Nonlinear Integral Equation Formulation of Orthogonal Polynomials Nonlinear Integral Equation Formulation of Orthogonal Polynomials Eli Ben-Naim Theory Division, Los Alamos National Laboratory with: Carl Bender (Washington University, St. Louis) C.M. Bender and E. Ben-Naim,

More information

ULTRASPHERICAL TYPE GENERATING FUNCTIONS FOR ORTHOGONAL POLYNOMIALS

ULTRASPHERICAL TYPE GENERATING FUNCTIONS FOR ORTHOGONAL POLYNOMIALS ULTRASPHERICAL TYPE GENERATING FUNCTIONS FOR ORTHOGONAL POLYNOMIALS arxiv:083666v [mathpr] 8 Jan 009 Abstract We characterize, up to a conjecture, probability distributions of finite all order moments

More information

Free Probability Theory and Random Matrices. Roland Speicher Queen s University Kingston, Canada

Free Probability Theory and Random Matrices. Roland Speicher Queen s University Kingston, Canada Free Probability Theory and Random Matrices Roland Speicher Queen s University Kingston, Canada We are interested in the limiting eigenvalue distribution of N N random matrices for N. Usually, large N

More information

Linearization coefficients for orthogonal polynomials. Michael Anshelevich

Linearization coefficients for orthogonal polynomials. Michael Anshelevich Linearization coefficients for orthogonal polynomials Michael Anshelevich February 26, 2003 P n = monic polynomials of degree n = 0, 1,.... {P n } = basis for the polynomials in 1 variable. Linearization

More information

Quadratic harnesses, q-commutations, and orthogonal martingale polynomials. Quadratic harnesses. Previous research. Notation and Motivation

Quadratic harnesses, q-commutations, and orthogonal martingale polynomials. Quadratic harnesses. Previous research. Notation and Motivation Quadratic harnesses, q-commutations, and orthogonal martingale polynomials Quadratic harnesses Slide 1 W lodek Bryc University of Cincinnati August 2005 Based on joint research with W Matysiak and J Wesolowski

More information

Selfadjoint Polynomials in Independent Random Matrices. Roland Speicher Universität des Saarlandes Saarbrücken

Selfadjoint Polynomials in Independent Random Matrices. Roland Speicher Universität des Saarlandes Saarbrücken Selfadjoint Polynomials in Independent Random Matrices Roland Speicher Universität des Saarlandes Saarbrücken We are interested in the limiting eigenvalue distribution of an N N random matrix for N. Typical

More information

Exponential tail inequalities for eigenvalues of random matrices

Exponential tail inequalities for eigenvalues of random matrices Exponential tail inequalities for eigenvalues of random matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify

More information

COMPUTING MOMENTS OF FREE ADDITIVE CONVOLUTION OF MEASURES

COMPUTING MOMENTS OF FREE ADDITIVE CONVOLUTION OF MEASURES COMPUTING MOMENTS OF FREE ADDITIVE CONVOLUTION OF MEASURES W LODZIMIERZ BRYC Abstract. This short note explains how to use ready-to-use components of symbolic software to convert between the free cumulants

More information

Cauchy-Stieltjes kernel families

Cauchy-Stieltjes kernel families Cauchy-Stieltjes kernel families Wlodek Bryc Fields Institute, July 23, 2013 NEF versus CSK families The talk will switch between two examples of kernel families K(µ) = {P θ (dx) : θ Θ} NEF versus CSK

More information

HANDBOOK OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS for ENGINEERS and SCIENTISTS

HANDBOOK OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS for ENGINEERS and SCIENTISTS HANDBOOK OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS for ENGINEERS and SCIENTISTS Andrei D. Polyanin Chapman & Hall/CRC Taylor & Francis Group Boca Raton London New York Singapore Foreword Basic Notation

More information

Markov operators, classical orthogonal polynomial ensembles, and random matrices

Markov operators, classical orthogonal polynomial ensembles, and random matrices Markov operators, classical orthogonal polynomial ensembles, and random matrices M. Ledoux, Institut de Mathématiques de Toulouse, France 5ecm Amsterdam, July 2008 recent study of random matrix and random

More information

Special Functions of Mathematical Physics

Special Functions of Mathematical Physics Arnold F. Nikiforov Vasilii B. Uvarov Special Functions of Mathematical Physics A Unified Introduction with Applications Translated from the Russian by Ralph P. Boas 1988 Birkhäuser Basel Boston Table

More information

Introduction to orthogonal polynomials. Michael Anshelevich

Introduction to orthogonal polynomials. Michael Anshelevich Introduction to orthogonal polynomials Michael Anshelevich November 6, 2003 µ = probability measure on R with finite moments m n (µ) = R xn dµ(x)

More information

Polynomials in Free Variables

Polynomials in Free Variables Polynomials in Free Variables Roland Speicher Universität des Saarlandes Saarbrücken joint work with Serban Belinschi, Tobias Mai, and Piotr Sniady Goal: Calculation of Distribution or Brown Measure of

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS MATHEMATICAL FORMULAS AND INTEGRALS ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom Academic Press San Diego New York Boston London

More information

TOPICS ON MEIXNER FAMILIES AND ULTRASPHERICAL TYPE GENERATING FUNCTIONS FOR ORTHOGONAL POLYNOMIALS. Marek Bozejko 1 and Nizar Demni 2

TOPICS ON MEIXNER FAMILIES AND ULTRASPHERICAL TYPE GENERATING FUNCTIONS FOR ORTHOGONAL POLYNOMIALS. Marek Bozejko 1 and Nizar Demni 2 TOPICS ON MEIXNE FAMILIES AND ULTASPHEICAL TYPE GENEATING FUNCTIONS FO OTHOGONAL POLYNOMIALS Marek Bozejko and Nizar Demni 2 Abstract. We highlight some connections between different characterizations

More information

TEST CODE: MMA (Objective type) 2015 SYLLABUS

TEST CODE: MMA (Objective type) 2015 SYLLABUS TEST CODE: MMA (Objective type) 2015 SYLLABUS Analytical Reasoning Algebra Arithmetic, geometric and harmonic progression. Continued fractions. Elementary combinatorics: Permutations and combinations,

More information

MATHEMATICAL FORMULAS AND INTEGRALS

MATHEMATICAL FORMULAS AND INTEGRALS HANDBOOK OF MATHEMATICAL FORMULAS AND INTEGRALS Second Edition ALAN JEFFREY Department of Engineering Mathematics University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom ACADEMIC PRESS A Harcourt

More information

Limit Laws for Random Matrices from Traffic Probability

Limit Laws for Random Matrices from Traffic Probability Limit Laws for Random Matrices from Traffic Probability arxiv:1601.02188 Slides available at math.berkeley.edu/ bensonau Benson Au UC Berkeley May 9th, 2016 Benson Au (UC Berkeley) Random Matrices from

More information

Expectation. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Expectation. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Expectation DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean, variance,

More information

Bulk scaling limits, open questions

Bulk scaling limits, open questions Bulk scaling limits, open questions Based on: Continuum limits of random matrices and the Brownian carousel B. Valkó, B. Virág. Inventiones (2009). Eigenvalue statistics for CMV matrices: from Poisson

More information

Chapter 7 Polynomial Functions. Factoring Review. We will talk about 3 Types: ALWAYS FACTOR OUT FIRST! Ex 2: Factor x x + 64

Chapter 7 Polynomial Functions. Factoring Review. We will talk about 3 Types: ALWAYS FACTOR OUT FIRST! Ex 2: Factor x x + 64 Chapter 7 Polynomial Functions Factoring Review We will talk about 3 Types: 1. 2. 3. ALWAYS FACTOR OUT FIRST! Ex 1: Factor x 2 + 5x + 6 Ex 2: Factor x 2 + 16x + 64 Ex 3: Factor 4x 2 + 6x 18 Ex 4: Factor

More information

Quantum Probability and Asymptotic Spectral Analysis of Growing Roma, GraphsNovember 14, / 47

Quantum Probability and Asymptotic Spectral Analysis of Growing Roma, GraphsNovember 14, / 47 Quantum Probability and Asymptotic Spectral Analysis of Growing Graphs Nobuaki Obata GSIS, Tohoku University Roma, November 14, 2013 Quantum Probability and Asymptotic Spectral Analysis of Growing Roma,

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Free Probability Theory and Random Matrices

Free Probability Theory and Random Matrices Free Probability Theory and Random Matrices Roland Speicher Motivation of Freeness via Random Matrices In this chapter we want to motivate the definition of freeness on the basis of random matrices.. Asymptotic

More information

Operator-Valued Free Probability Theory and Block Random Matrices. Roland Speicher Queen s University Kingston

Operator-Valued Free Probability Theory and Block Random Matrices. Roland Speicher Queen s University Kingston Operator-Valued Free Probability Theory and Block Random Matrices Roland Speicher Queen s University Kingston I. Operator-valued semicircular elements and block random matrices II. General operator-valued

More information

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra and its Applications-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)

More information

Recall that any inner product space V has an associated norm defined by

Recall that any inner product space V has an associated norm defined by Hilbert Spaces Recall that any inner product space V has an associated norm defined by v = v v. Thus an inner product space can be viewed as a special kind of normed vector space. In particular every inner

More information

P AC COMMUTATORS AND THE R TRANSFORM

P AC COMMUTATORS AND THE R TRANSFORM Communications on Stochastic Analysis Vol. 3, No. 1 (2009) 15-31 Serials Publications www.serialspublications.com P AC COMMUTATORS AND THE R TRANSFORM AUREL I. STAN Abstract. We develop an algorithmic

More information

MS 2001: Test 1 B Solutions

MS 2001: Test 1 B Solutions MS 2001: Test 1 B Solutions Name: Student Number: Answer all questions. Marks may be lost if necessary work is not clearly shown. Remarks by me in italics and would not be required in a test - J.P. Question

More information

Expectation. DS GA 1002 Probability and Statistics for Data Science. Carlos Fernandez-Granda

Expectation. DS GA 1002 Probability and Statistics for Data Science.   Carlos Fernandez-Granda Expectation DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Describe random variables with a few numbers: mean,

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

Determinantal point processes and random matrix theory in a nutshell

Determinantal point processes and random matrix theory in a nutshell Determinantal point processes and random matrix theory in a nutshell part II Manuela Girotti based on M. Girotti s PhD thesis, A. Kuijlaars notes from Les Houches Winter School 202 and B. Eynard s notes

More information

A CHARACTERIZATION OF ULTRASPHERICAL POLYNOMIALS 1. THE QUESTION

A CHARACTERIZATION OF ULTRASPHERICAL POLYNOMIALS 1. THE QUESTION A CHARACTERIZATION OF ULTRASPHERICAL POLYNOMIALS MICHAEL ANSHELEVICH ABSTRACT. We show that the only orthogonal polynomials with a generating function of the form F xz αz are the ultraspherical, Hermite,

More information

The norm of polynomials in large random matrices

The norm of polynomials in large random matrices The norm of polynomials in large random matrices Camille Mâle, École Normale Supérieure de Lyon, Ph.D. Student under the direction of Alice Guionnet. with a significant contribution by Dimitri Shlyakhtenko.

More information

FFTs in Graphics and Vision. Fast Alignment of Spherical Functions

FFTs in Graphics and Vision. Fast Alignment of Spherical Functions FFTs in Graphics and Vision Fast Alignment of Spherical Functions Outline Math Review Fast Rotational Alignment Review Recall 1: We can represent any rotation R in terms of the triplet of Euler angles

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

MOMENTS AND CUMULANTS OF THE SUBORDINATED LEVY PROCESSES

MOMENTS AND CUMULANTS OF THE SUBORDINATED LEVY PROCESSES MOMENTS AND CUMULANTS OF THE SUBORDINATED LEVY PROCESSES PENKA MAYSTER ISET de Rades UNIVERSITY OF TUNIS 1 The formula of Faa di Bruno represents the n-th derivative of the composition of two functions

More information

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space. Chapter 1 Preliminaries The purpose of this chapter is to provide some basic background information. Linear Space Hilbert Space Basic Principles 1 2 Preliminaries Linear Space The notion of linear space

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Central Limit Theorems for linear statistics for Biorthogonal Ensembles

Central Limit Theorems for linear statistics for Biorthogonal Ensembles Central Limit Theorems for linear statistics for Biorthogonal Ensembles Maurice Duits, Stockholm University Based on joint work with Jonathan Breuer (HUJI) Princeton, April 2, 2014 M. Duits (SU) CLT s

More information

Applications of the time derivative of the L 2 -Wasserstein distance and the free entropy dissipation

Applications of the time derivative of the L 2 -Wasserstein distance and the free entropy dissipation Applications of the time derivative of the L 2 -Wasserstein distance and the free entropy dissipation Hiroaki YOSHIDA Ochanomizu University Tokyo, Japan at Fields Institute 23 July, 2013 Plan of talk 1.

More information

Lecture 4.6: Some special orthogonal functions

Lecture 4.6: Some special orthogonal functions Lecture 4.6: Some special orthogonal functions Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4340, Advanced Engineering Mathematics

More information

Qualification Exam: Mathematical Methods

Qualification Exam: Mathematical Methods Qualification Exam: Mathematical Methods Name:, QEID#41534189: August, 218 Qualification Exam QEID#41534189 2 1 Mathematical Methods I Problem 1. ID:MM-1-2 Solve the differential equation dy + y = sin

More information

ORTHOGONAL POLYNOMIALS IN PROBABILITY THEORY ABSTRACTS MINI-COURSES

ORTHOGONAL POLYNOMIALS IN PROBABILITY THEORY ABSTRACTS MINI-COURSES ORTHOGONAL POLYNOMIALS IN PROBABILITY THEORY ABSTRACTS Jinho Baik (University of Michigan) ORTHOGONAL POLYNOMIAL ENSEMBLES MINI-COURSES TALK 1: ORTHOGONAL POLYNOMIAL ENSEMBLES We introduce a certain joint

More information

Workshop on Free Probability and Random Combinatorial Structures. 6-8 December 2010

Workshop on Free Probability and Random Combinatorial Structures. 6-8 December 2010 Workshop on Free Probability and Random Combinatorial Structures 6-8 December 2010 Bielefeld University Department of Mathematics V3-201 (Common Room) This workshop is part of the conference program of

More information

Boundary Conditions associated with the Left-Definite Theory for Differential Operators

Boundary Conditions associated with the Left-Definite Theory for Differential Operators Boundary Conditions associated with the Left-Definite Theory for Differential Operators Baylor University IWOTA August 15th, 2017 Overview of Left-Definite Theory A general framework for Left-Definite

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions Chapter 2 Polynomial and Rational Functions Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Quadratic Functions Polynomial Functions of Higher Degree Real Zeros of Polynomial Functions

More information

Probability and combinatorics

Probability and combinatorics Texas A&M University May 1, 2012 Probability spaces. (Λ, M, P ) = measure space. Probability space: P a probability measure, P (Λ) = 1. Probability spaces. (Λ, M, P ) = measure space. Probability space:

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

Progress in the method of Ghosts and Shadows for Beta Ensembles

Progress in the method of Ghosts and Shadows for Beta Ensembles Progress in the method of Ghosts and Shadows for Beta Ensembles Alan Edelman (MIT) Alex Dubbs (MIT) and Plamen Koev (SJS) Oct 8, 2012 1/47 Wishart Matrices (arbitrary covariance) G=mxn matrix of Gaussians

More information

Free Entropy for Free Gibbs Laws Given by Convex Potentials

Free Entropy for Free Gibbs Laws Given by Convex Potentials Free Entropy for Free Gibbs Laws Given by Convex Potentials David A. Jekel University of California, Los Angeles Young Mathematicians in C -algebras, August 2018 David A. Jekel (UCLA) Free Entropy YMC

More information

ADVANCED ENGINEERING MATHEMATICS MATLAB

ADVANCED ENGINEERING MATHEMATICS MATLAB ADVANCED ENGINEERING MATHEMATICS WITH MATLAB THIRD EDITION Dean G. Duffy Contents Dedication Contents Acknowledgments Author Introduction List of Definitions Chapter 1: Complex Variables 1.1 Complex Numbers

More information

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim.

256 Summary. D n f(x j ) = f j+n f j n 2n x. j n=1. α m n = 2( 1) n (m!) 2 (m n)!(m + n)!. PPW = 2π k x 2 N + 1. i=0?d i,j. N/2} N + 1-dim. 56 Summary High order FD Finite-order finite differences: Points per Wavelength: Number of passes: D n f(x j ) = f j+n f j n n x df xj = m α m dx n D n f j j n= α m n = ( ) n (m!) (m n)!(m + n)!. PPW =

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

MFM Practitioner Module: Quantitative Risk Management. John Dodson. September 23, 2015

MFM Practitioner Module: Quantitative Risk Management. John Dodson. September 23, 2015 MFM Practitioner Module: Quantitative Risk Management September 23, 2015 Mixtures Mixtures Mixtures Definitions For our purposes, A random variable is a quantity whose value is not known to us right now

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

Mathematics (MA) Mathematics (MA) 1. MA INTRO TO REAL ANALYSIS Semester Hours: 3

Mathematics (MA) Mathematics (MA) 1. MA INTRO TO REAL ANALYSIS Semester Hours: 3 Mathematics (MA) 1 Mathematics (MA) MA 502 - INTRO TO REAL ANALYSIS Individualized special projects in mathematics and its applications for inquisitive and wellprepared senior level undergraduate students.

More information

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality.

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality. 88 Chapter 5 Distribution Theory In this chapter, we summarize the distributions related to the normal distribution that occur in linear models. Before turning to this general problem that assumes normal

More information

Spectral Theory of X 1 -Laguerre Polynomials

Spectral Theory of X 1 -Laguerre Polynomials Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 8, Number 2, pp. 181 192 (213) http://campus.mst.edu/adsa Spectral Theory of X 1 -Laguerre Polynomials Mohamed J. Atia Université de

More information

Classical Fourier Analysis

Classical Fourier Analysis Loukas Grafakos Classical Fourier Analysis Second Edition 4y Springer 1 IP Spaces and Interpolation 1 1.1 V and Weak IP 1 1.1.1 The Distribution Function 2 1.1.2 Convergence in Measure 5 1.1.3 A First

More information

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1

Math 651 Introduction to Numerical Analysis I Fall SOLUTIONS: Homework Set 1 ath 651 Introduction to Numerical Analysis I Fall 2010 SOLUTIONS: Homework Set 1 1. Consider the polynomial f(x) = x 2 x 2. (a) Find P 1 (x), P 2 (x) and P 3 (x) for f(x) about x 0 = 0. What is the relation

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Peter J. Olver School of Mathematics University of Minnesota Minneapolis, MN 55455 olver@math.umn.edu http://www.math.umn.edu/ olver Chehrzad Shakiban Department of Mathematics University

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA)

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA) The circular law Lewis Memorial Lecture / DIMACS minicourse March 19, 2008 Terence Tao (UCLA) 1 Eigenvalue distributions Let M = (a ij ) 1 i n;1 j n be a square matrix. Then one has n (generalised) eigenvalues

More information

Probability and Estimation. Alan Moses

Probability and Estimation. Alan Moses Probability and Estimation Alan Moses Random variables and probability A random variable is like a variable in algebra (e.g., y=e x ), but where at least part of the variability is taken to be stochastic.

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information

Lecture 22: Variance and Covariance

Lecture 22: Variance and Covariance EE5110 : Probability Foundations for Electrical Engineers July-November 2015 Lecture 22: Variance and Covariance Lecturer: Dr. Krishna Jagannathan Scribes: R.Ravi Kiran In this lecture we will introduce

More information

Combinatorial Aspects of Free Probability and Free Stochastic Calculus

Combinatorial Aspects of Free Probability and Free Stochastic Calculus Combinatorial Aspects of Free Probability and Free Stochastic Calculus Roland Speicher Saarland University Saarbrücken, Germany supported by ERC Advanced Grant Non-Commutative Distributions in Free Probability

More information

EXACT SOLUTIONS for ORDINARY DIFFERENTIAL EQUATIONS SECOND EDITION

EXACT SOLUTIONS for ORDINARY DIFFERENTIAL EQUATIONS SECOND EDITION HANDBOOK OF EXACT SOLUTIONS for ORDINARY DIFFERENTIAL EQUATIONS SECOND EDITION Andrei D. Polyanin Valentin F. Zaitsev CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London New York Washington, D.C.

More information

Random Variables. P(x) = P[X(e)] = P(e). (1)

Random Variables. P(x) = P[X(e)] = P(e). (1) Random Variables Random variable (discrete or continuous) is used to derive the output statistical properties of a system whose input is a random variable or random in nature. Definition Consider an experiment

More information

Triangular matrices and biorthogonal ensembles

Triangular matrices and biorthogonal ensembles /26 Triangular matrices and biorthogonal ensembles Dimitris Cheliotis Department of Mathematics University of Athens UK Easter Probability Meeting April 8, 206 2/26 Special densities on R n Example. n

More information

MATHEMATICS. Course Syllabus. Section A: Linear Algebra. Subject Code: MA. Course Structure. Ordinary Differential Equations

MATHEMATICS. Course Syllabus. Section A: Linear Algebra. Subject Code: MA. Course Structure. Ordinary Differential Equations MATHEMATICS Subject Code: MA Course Structure Sections/Units Section A Section B Section C Linear Algebra Complex Analysis Real Analysis Topics Section D Section E Section F Section G Section H Section

More information

Contents. 1 Preliminaries 3. Martingales

Contents. 1 Preliminaries 3. Martingales Table of Preface PART I THE FUNDAMENTAL PRINCIPLES page xv 1 Preliminaries 3 2 Martingales 9 2.1 Martingales and examples 9 2.2 Stopping times 12 2.3 The maximum inequality 13 2.4 Doob s inequality 14

More information

Cumulants of a convolution and applications to monotone probability theory

Cumulants of a convolution and applications to monotone probability theory Cumulants of a convolution and applications to monotone probability theory arxiv:95.3446v2 [math.pr] 24 May 29 Takahiro Hasebe JSPS Research Fellow (DC), Graduate School of Science, Kyoto University, Kyoto

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 18-27 Review Scott Sheffield MIT Outline Outline It s the coins, stupid Much of what we have done in this course can be motivated by the i.i.d. sequence X i where each X i is

More information

Mathematics of Physics and Engineering II: Homework answers You are encouraged to disagree with everything that follows. P R and i j k 2 1 1

Mathematics of Physics and Engineering II: Homework answers You are encouraged to disagree with everything that follows. P R and i j k 2 1 1 Mathematics of Physics and Engineering II: Homework answers You are encouraged to disagree with everything that follows Homework () P Q = OQ OP =,,,, =,,, P R =,,, P S = a,, a () The vertex of the angle

More information

9th Sendai Workshop Infinite Dimensional Analysis and Quantum Probability

9th Sendai Workshop Infinite Dimensional Analysis and Quantum Probability 9th Sendai Workshop Infinite Dimensional Analysis and Quantum Probability September 11-12, 2009 Graduate School of Information Sciences Tohoku University PROGRAM September 11 (Fri) GSIS, Large Lecture

More information

18.175: Lecture 17 Poisson random variables

18.175: Lecture 17 Poisson random variables 18.175: Lecture 17 Poisson random variables Scott Sheffield MIT 1 Outline More on random walks and local CLT Poisson random variable convergence Extend CLT idea to stable random variables 2 Outline More

More information

McGill University Department of Mathematics and Statistics. Ph.D. preliminary examination, PART A. PURE AND APPLIED MATHEMATICS Paper BETA

McGill University Department of Mathematics and Statistics. Ph.D. preliminary examination, PART A. PURE AND APPLIED MATHEMATICS Paper BETA McGill University Department of Mathematics and Statistics Ph.D. preliminary examination, PART A PURE AND APPLIED MATHEMATICS Paper BETA 17 August, 2018 1:00 p.m. - 5:00 p.m. INSTRUCTIONS: (i) This paper

More information

ASSIGNMENT-1 M.Sc. (Previous) DEGREE EXAMINATION, DEC First Year MATHEMATICS. Algebra. MAXIMUM MARKS:30 Answer ALL Questions

ASSIGNMENT-1 M.Sc. (Previous) DEGREE EXAMINATION, DEC First Year MATHEMATICS. Algebra. MAXIMUM MARKS:30 Answer ALL Questions (DM1) ASSIGNMENT-1 Algebra MAXIMUM MARKS:3 Q1) a) If G is an abelian group of order o(g) and p is a prime number such that p α / o(g), p α+ 1 / o(g) then prove that G has a subgroup of order p α. b) State

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

Octavio Arizmendi, Ole E. Barndorff-Nielsen and Víctor Pérez-Abreu

Octavio Arizmendi, Ole E. Barndorff-Nielsen and Víctor Pérez-Abreu ON FREE AND CLASSICAL TYPE G DISTRIBUTIONS Octavio Arizmendi, Ole E. Barndorff-Nielsen and Víctor Pérez-Abreu Comunicación del CIMAT No I-9-4/3-4-29 (PE /CIMAT) On Free and Classical Type G Distributions

More information

Orthogonal Polynomial Ensembles

Orthogonal Polynomial Ensembles Chater 11 Orthogonal Polynomial Ensembles 11.1 Orthogonal Polynomials of Scalar rgument Let wx) be a weight function on a real interval, or the unit circle, or generally on some curve in the comlex lane.

More information

Lyapunov exponents of free operators

Lyapunov exponents of free operators Journal of Functional Analysis 255 (28) 1874 1888 www.elsevier.com/locate/jfa Lyapunov exponents of free operators Vladislav Kargin Department of Mathematics, Stanford University, Stanford, CA 9435, USA

More information

Mathematical Methods for Engineers and Scientists 1

Mathematical Methods for Engineers and Scientists 1 K.T. Tang Mathematical Methods for Engineers and Scientists 1 Complex Analysis, Determinants and Matrices With 49 Figures and 2 Tables fyj Springer Part I Complex Analysis 1 Complex Numbers 3 1.1 Our Number

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Multiple orthogonal polynomials. Bessel weights

Multiple orthogonal polynomials. Bessel weights for modified Bessel weights KU Leuven, Belgium Madison WI, December 7, 2013 Classical orthogonal polynomials The (very) classical orthogonal polynomials are those of Jacobi, Laguerre and Hermite. Classical

More information

Luigi Accardi Classification of probability measures in terms of the canonically associated commutation relations Talk given at the: 5-th Levy

Luigi Accardi Classification of probability measures in terms of the canonically associated commutation relations Talk given at the: 5-th Levy Luigi Accardi Classification of probability measures in terms of the canonically associated commutation relations Talk given at the: 5-th Levy Conference (for the 20-th centenary of P. Levy) Meijo University,

More information