Regular n-gon as a model of discrete gravitational system. Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia,

Size: px
Start display at page:

Download "Regular n-gon as a model of discrete gravitational system. Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia,"

Transcription

1 Regular n-gon as a model of discrete gravitational system Rosaev A.E. OAO NPC NEDRA, Jaroslavl Russia, hegem@mail.ru

2 Introduction A system of N points, each having mass m, forming a planar regular polygon (N-gon), and a central mass M, are considered. The motion equations for a testing particle are given in different coordinates. To provide stability, N-gon must always rotate, including case zero central mass. The velocity of rotation is calculated. N stationary points (libration points) appear in a system. Studying of libration point behavior is a main result of this paper. It is shown, that the stationary solution (libration points) in considered system may be determined from algebraic equation of 5-th degree. In case small m / M coordinates of these points may be calculated as a generalization of classical gravitation -body problem. In present research, the dependence of libration points coordinates on mass and number of particles is studied. Obtained results are discussed and compared with another authors. Area, where potential allows a linearization is described in small vicinity of N-gon. However, oscillations even in this small area become strongly nonlinear due to differential rotation of system. In fact, approximation ring potential by N-gon is an example of a pointmass modeling. But specific of potential expansion gives an ability to study more complex (non-homogenous) systems on base of considered model.

3

4 Definitions Definition [1]: A configuration of the n particles is a central configuration at time t if there exist some scalar such that r r for i=1,...,n. U U mir i mri 0 r r i i i i In particular every body can move on a circle around the common center of masses. In these solutions the motion behaves as if the bodies form a rigid body. These solutions are also denoted as relative equilibrium solutions, being a fixed point of (1) if we use a rotating frame. U mim r r i j j

5 Main target to describe motion infinitesimal particle perturbed by n-gon Determine stationary points in the system Show difference between three body and continue case Consider some generalizations

6 Libration points

7 A system of N points, each having mass m, placed in vertex of regular polygon, and a central mass M, is considered. Such system, forming a planar central configuration, called a relative equilibrium system [1]. There are N-1 stationary points (libration points) appear in a system (Fig.1). Fig. 1. Libration points positions for -body (left) and N-body (right) relative equilibrium configurations.

8 []: The libration point coordinates can be determined from equations R GM R N j1 Gm x R sin j x R sin 1 x R j R GM R Gm x N 1 j 1 Gm x R sin j x R sin j 1 x R j N j 0 Here G gravity constant, R is the central configuration s radius, j is the angle between particles, and x is a distance between the test particle and the central configuration. In the first case 0 = /N, x=0 and we have non-collinear libration point. In the second case 0 = 0, x 0 and the x-coordinate of the collinear points must be determined.

9 Regular n-gon configuration begets a periodic solution in which the bodies rotate uniformly about the central mass with rotation speed (Roberts[6], Rosaev[]): N sin j 4M j1 m 1/ 0 GM R The equations for the collinear libration points are the most interesting. They can be reduced to a fifth degree polynomial: ( +A)x 5 + ( R + AR + B)x 4 + ( R + R A+ BR)x + (BR Gm)x GmR =0 The sign + is for libration point inside central configuration, and for outside ones. Equations for non-collinear libration points have a similar form.

10 Coefficients are: Gm A R N 1 j1 1 sin 8sin j j B Gm 4R 1 N 1 1 j sin j When A=0 and B=0 we have well known case -body problem (Szebehely1967). Considered equation for determination libration points coordinates always have only one real root.

11 Summation Coefficients A of expansion depending on number of particles. For collinear case: N N 1/(sin( i / N)) N /( ) / i N /( ) i1 i1 N 100 1/(sin( i / N)) / i For non-collinear case:: Gm A R N 1 j1 1 sin N j N 8sin j N /( ) Gm R N1 N Gm 1 Gm B N /( ) 1/ i 4R sin R j1 j N i1

12 By analogy with three body problem, solution of equations for collinear libration points can be calculated as a series: / 1/ 1 B A M m B A M m B A M m x / 1/ B A M m B A M m B A M m x for inner point L 1 and for outer point L respectively. These equations are valid for small m/m ratio and when N is not large than few hundreds. But in all cases, solutions of fifth degree equation can be obtained for example, with Maple.

13 F := x x x x.9559 m/m= , ln N=5 x= m/m= , ln N=5 x=

14 Libration point coordinates on mass ratio dependence

15 Fig. To a non-collinear points coordinates determination Equation for non-collinear libration points has trivial solution x=0 and non-trivial solution of cubic equation: ( ( A) x R ( R R AR B) x A BR) x BR which have at least one real root. For case B=0 we have three real roots if A sufficiently large (small central mass): 0 J := 0, A 4 4 A, ( A) A 4 4 A ( A)

16 Motion in field of N-gon

17 In restricted three body problem (RTBP), each k-th of it s period, test particle has strong perturbation close encounter with planet. For case N+ body problem strong perturbed encounters take place in N-times more frequently. There are more significant variations in orbital elements expected in this case. At limit large N there are no any resonant phenomena. At small N we have chaotic motion due to close encounters. If N sufficiently large, effect of initial phase not significant. Conjunction. At fixed total mass of N-gon, m=m i N, interaction test particle with regular N- gon strongly depends on number of N. At conditions: ( r / R) / p / P n : m 1 outer ( r / R) / p / P n : m 1 inner where r, R and p, P central distances and periods of test particle and particle of ring respectively, resonance effects in motion test particle take place.

18 The longitude (solid line) and eccentricity (dashed line) on number of ring particles N dependence.

19 Fig.. Difference between perturbed and unperturbed positions for resonance case N=19 and for case N=100, close to continuous limit. Orbit with a=1.07

20 Generalization to Low-Elliptic case

21 Put ring of N particles m with small eccentricity in gravity field of central mass M. It is naturally to find stationary distribution of particles by true anomaly and about influence of mutual perturbations of particles on ring s eccentricity. There are two possibility. For the low-massive particles m<<m, their orbital distribution determined by keplerian angular velocity (L - angular momentum): d const dt L (1 0 ecos( )) mr Fig.. Orbital distribution of particles along eccentric ring (small mass particle case)

22 Fig. Declination of the shape of ring (from best fitted rotated ellipse) as function of true anomaly. Fig.. Eccentric ring shape change due to gravitational interactios of particles.

23 Other applications

24 U Thompson Heptagon i j j i log x x y y i j i j 1/ Model of N point-vortex on sphere by 6.Boatto S, Simo C.: Thompson heptagon: a case of bifurcation ad infinity., Physica D: Nonlinear Phenomena., Volume 7, Issue 14-17, p Real stable vortex on Saturn pole

25 Results and conclusions In result, the dependence of libration points coordinates on mass and number of particles is studied. Coefficients A and B have a limit at large N, depends on N and m/m ratio. Accordingly, libration point coordinates close to a fixed value, slowly depends on mass ratio. On the other hand, at large m coordinates have a maximal value, which respect a case infinitesimal central mass. In case small m and small N we have a -body problem. Positions of non-collinear libration points are slightly differ from n-gon described circle. In conclusions, some generalizations of problem and possible way of future work are considered. Area, where potential allows a linearization exists in small vicinity of N-gon. However, oscillations even in this small area become strongly nonlinear due to differential rotation of system. In fact, approximation ring potential by N-gon is an example of a point-mass modeling. But specific of potential expansion gives an ability to study more complex (non-homogenous) systems on base of considered model.

26 Few References 1.Wintner, A. The Analytical Foundation of Celestial Mechanics, Princeton University Press (1941)..Rosaev A.E. The investigation of stationary points in central configuration dynamics. Proceedings of Libration Point Orbits and Applications Conference, Parador d'aiguablava, Girona, Spain June, 00 Eds. by G. Gomez, M. W. Lo and.j.j. Masdemont, World Scientific Pub, New Jersey - London Singapore - Hon Kong, (00). p Rosaev A.E. The application of Computer Algebra to Central configuration dynamics. Abstr. of 6-th IMACS Int Conf on Applications of Computer Algebra (IMACS ACA 000), June 5-8, 000 St.Petersburg, Russia, p Szebehely, V. Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press (1967). 5.Ollongren A. (1981). On a restricted (n+) body problem. Celestial Mechanics, 45, Roberts G. Linear Stability of the 1+n-gon Relative Equilibrium Hamiltonian Systems and Celestial Mechanics (HAMSYS-98), World Scientific Monograph Series in Mathematics 6, 0-0, Boatto S, Simo C.: Thompson heptagon: a case of bifurcation ad infinity., Physica D: Nonlinear Phenomena., Volume 7, Issue 14-17, p

27 Future works Test particle motion in N-gon potential Relative equilibrium in case non-equal masses Approximation of oblate planet potential by system of N-gons N-gon as a Toda chain with non-zero curvature

28 Thank You very much

Study of the Restricted Three Body Problem When One Primary Is a Uniform Circular Disk

Study of the Restricted Three Body Problem When One Primary Is a Uniform Circular Disk Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Applications and Applied Mathematics: An International Journal (AAM) Vol. 3, Issue (June 08), pp. 60 7 Study of the Restricted Three Body

More information

I ve Got a Three-Body Problem

I ve Got a Three-Body Problem I ve Got a Three-Body Problem Gareth E. Roberts Department of Mathematics and Computer Science College of the Holy Cross Mathematics Colloquium Fitchburg State College November 13, 2008 Roberts (Holy Cross)

More information

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS A1.1. Kepler s laws Johannes Kepler (1571-1630) discovered the laws of orbital motion, now called Kepler's laws.

More information

A STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3:1 RESONANCE. Érica C. Nogueira, Othon C. Winter

A STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3:1 RESONANCE. Érica C. Nogueira, Othon C. Winter A STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3: RESONANCE Érica C. Nogueira, Othon C. Winter Grupo de Dinâmica Orbital e Planetologia UNESP -- Guaratinguetá -- Brazil Antonio F.B. de

More information

Barcelona, Spain. RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen

Barcelona, Spain.   RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 27 (pp. 1 8) The dynamics around the collinear point L 3 of the RTBP E. Barrabés 1, J.M.

More information

SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID. F. Gabern, W.S. Koon and J.E. Marsden

SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID. F. Gabern, W.S. Koon and J.E. Marsden PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS June 16 19, 2004, Pomona, CA, USA pp. 1 10 SPACECRAFT DYNAMICS NEAR A BINARY ASTEROID F. Gabern, W.S. Koon

More information

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM HOU Xi-yun,2 TANG Jing-shi,2 LIU Lin,2. Astronomy Department, Nanjing University, Nanjing 20093, China 2. Institute of Space Environment

More information

Theory of mean motion resonances.

Theory of mean motion resonances. Theory of mean motion resonances. Mean motion resonances are ubiquitous in space. They can be found between planets and asteroids, planets and rings in gaseous disks or satellites and planetary rings.

More information

Gravitation. Kepler s Law. BSc I SEM II (UNIT I)

Gravitation. Kepler s Law. BSc I SEM II (UNIT I) Gravitation Kepler s Law BSc I SEM II (UNIT I) P a g e 2 Contents 1) Newton s Law of Gravitation 3 Vector representation of Newton s Law of Gravitation 3 Characteristics of Newton s Law of Gravitation

More information

Question 1: Spherical Pendulum

Question 1: Spherical Pendulum Question 1: Spherical Pendulum Consider a two-dimensional pendulum of length l with mass M at its end. It is easiest to use spherical coordinates centered at the pivot since the magnitude of the position

More information

Satellite Communications

Satellite Communications Satellite Communications Lecture (3) Chapter 2.1 1 Gravitational Force Newton s 2nd Law: r r F = m a Newton s Law Of Universal Gravitation (assuming point masses or spheres): Putting these together: r

More information

Restricted three body problems in the Solar System: simulations

Restricted three body problems in the Solar System: simulations Author:. Facultat de Física, Universitat de Barcelona, Diagonal 645, 0808 Barcelona, Spain. Advisor: Antoni Benseny i Ardiaca. Facultat de Matemàtiques, Universitat de Barcelona, Gran Via de les Corts

More information

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc.

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc. Q13.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Lecture XIX: Particle motion exterior to a spherical star

Lecture XIX: Particle motion exterior to a spherical star Lecture XIX: Particle motion exterior to a spherical star Christopher M. Hirata Caltech M/C 350-7, Pasadena CA 95, USA Dated: January 8, 0 I. OVERVIEW Our next objective is to consider the motion of test

More information

Orbital Evolution in Extra-solar systems

Orbital Evolution in Extra-solar systems Orbital Evolution in Extra-solar systems George Voyatzis Section of Astronomy, Astrophysics and Mechanics, Department of Physics, Aristotle University of Thessaloniki, Greece. Abstract Nowadays, extra-solar

More information

Dynamics and Mission Design Near Libration Points

Dynamics and Mission Design Near Libration Points r orld Scientific Monograph Series Mathematics - Vol. 3 Dynamics and Mission Design Near Libration Points Vol. II Fundamentals: The Case of Triangular Libration Points T World Scientific World Scientific

More information

PHYS2330 Intermediate Mechanics Fall Final Exam Tuesday, 21 Dec 2010

PHYS2330 Intermediate Mechanics Fall Final Exam Tuesday, 21 Dec 2010 Name: PHYS2330 Intermediate Mechanics Fall 2010 Final Exam Tuesday, 21 Dec 2010 This exam has two parts. Part I has 20 multiple choice questions, worth two points each. Part II consists of six relatively

More information

arxiv: v1 [astro-ph.ep] 1 May 2018

arxiv: v1 [astro-ph.ep] 1 May 2018 Origin and continuation of 3/2, 5/2, 3/1, 4/1 and 5/1 resonant periodic orbits in the circular and elliptic restricted three-body problem Kyriaki I. Antoniadou and Anne-Sophie Libert NaXys, Department

More information

Chaotic Motion in Problem of Dumbell Satellite

Chaotic Motion in Problem of Dumbell Satellite Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 7, 299-307 Chaotic Motion in Problem of Dumbell Satellite Ayub Khan Department of Mathematics, Zakir Hussain College University of Delhi, Delhi, India

More information

CELESTIAL MECHANICS. Part I. Mathematical Preambles

CELESTIAL MECHANICS. Part I. Mathematical Preambles Chapter 1. Numerical Methods CELESTIAL MECHANICS Part I. Mathematical Preambles 1.1 Introduction 1.2 Numerical Integration 1.3 Quadratic Equations 1.4 The Solution of f(x) = 0 1.5 The Solution of Polynomial

More information

PADEU. Pulsating zero velocity surfaces and capture in the elliptic restricted three-body problem. 1 Introduction

PADEU. Pulsating zero velocity surfaces and capture in the elliptic restricted three-body problem. 1 Introduction PADEU PADEU 15, 221 (2005) ISBN 963 463 557 c Published by the Astron. Dept. of the Eötvös Univ. Pulsating zero velocity surfaces and capture in the elliptic restricted three-body problem F. Szenkovits

More information

Galaxy interaction and transformation

Galaxy interaction and transformation Galaxy interaction and transformation Houjun Mo April 13, 2004 A lot of mergers expected in hierarchical models. The main issues: The phenomena of galaxy interaction: tidal tails, mergers, starbursts When

More information

Lecture 41: Highlights

Lecture 41: Highlights Lecture 41: Highlights The goal of this lecture is to remind you of some of the key points that we ve covered this semester Note that this is not the complete set of topics that may appear on the final

More information

Three objects; 2+1 problem

Three objects; 2+1 problem Three objects; 2+1 problem Having conquered the two-body problem, we now set our sights on more objects. In principle, we can treat the gravitational interactions of any number of objects by simply adding

More information

Existence and stability of collinear equilibrium points in elliptic restricted three body problem with radiating primary and triaxial secondary

Existence and stability of collinear equilibrium points in elliptic restricted three body problem with radiating primary and triaxial secondary Modelling, Measurement and Control A Vol. 9, No., March, 08, pp. -8 Journal homepage: http://iieta.org/journals/mmc/mmc_a Existence and stability of collinear equilibrium points in elliptic restricted

More information

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly

Dynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly First Kepler s Law The secondary body moves in an elliptical orbit, with the primary body at the focus Valid for bound orbits with E < 0 The conservation of the total energy E yields a constant semi-major

More information

Astronomy 6570 Physics of the Planets

Astronomy 6570 Physics of the Planets Astronomy 6570 Physics of the Planets Planetary Rotation, Figures, and Gravity Fields Topics to be covered: 1. Rotational distortion & oblateness 2. Gravity field of an oblate planet 3. Free & forced planetary

More information

Today in Astronomy 111: rings, gaps and orbits

Today in Astronomy 111: rings, gaps and orbits Today in Astronomy 111: rings, gaps and orbits Gap sizes: the Hill radius Perturbations and resonances The variety of structures in planetary rings Spiral density waves Titan Bending waves Horseshoe and

More information

Orbital and Celestial Mechanics

Orbital and Celestial Mechanics Orbital and Celestial Mechanics John P. Vinti Edited by Gim J. Der TRW Los Angeles, California Nino L. Bonavito NASA Goddard Space Flight Center Greenbelt, Maryland Volume 177 PROGRESS IN ASTRONAUTICS

More information

The Planar, Circular, Restricted Four-Body Problem

The Planar, Circular, Restricted Four-Body Problem The Planar, Circular, Restricted Four-Body Problem Gareth E. Roberts Julianne Kulevich Christopher J. Smith Department of Mathematics and Computer Science College of the Holy Cross NSF DMS-0708741 HC Faculty

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation e = c/a A note about eccentricity For a circle c = 0 à e = 0 a Orbit Examples Mercury has the highest eccentricity of any planet (a) e Mercury = 0.21 Halley s comet has an orbit

More information

Solar vs. Lunar Tides

Solar vs. Lunar Tides 1 2 3 4 Solar vs. Lunar Tides In the force equations M is the mass of the tide-causing object, r is the separation between the two objects. dr is the size of the object on which the tides are being raised.

More information

Gravitation. chapter 9

Gravitation. chapter 9 chapter 9 Gravitation Circular orbits (Section 9.3) 1, 2, and 3 are simple exercises to supplement the quantitative calculations of Examples 4, 5, and 6 in Section 9.3. 1. Satellite near Earth s surface

More information

Celestial Mechanics I. Introduction Kepler s Laws

Celestial Mechanics I. Introduction Kepler s Laws Celestial Mechanics I Introduction Kepler s Laws Goals of the Course The student will be able to provide a detailed account of fundamental celestial mechanics The student will learn to perform detailed

More information

A map approximation for the restricted three-body problem

A map approximation for the restricted three-body problem A map approximation for the restricted three-body problem Shane Ross Engineering Science and Mechanics, Virginia Tech www.esm.vt.edu/ sdross Collaborators: P. Grover (Virginia Tech) & D. J. Scheeres (U

More information

The restricted, circular, planar three-body problem

The restricted, circular, planar three-body problem The restricted, circular, planar three-body problem Luigi Chierchia Dipartimento di Matematica Università Roma Tre Largo S L Murialdo 1, I-00146 Roma (Italy) (luigi@matuniroma3it) March, 2005 1 The restricted

More information

RETHINKING GRAVITY. The gravitational force produced by the mass of the atom is determined by the number of electrons that are bound to it.

RETHINKING GRAVITY. The gravitational force produced by the mass of the atom is determined by the number of electrons that are bound to it. RETHINKING GRAVITY. What causes gravity? The mass of an atom is the source of gravity. The gravitational force produced by the mass of the atom is determined by the number of electrons that are bound to

More information

SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS. Sandro da Silva Fernandes. Cleverson Maranhão Porto Marinho

SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS. Sandro da Silva Fernandes. Cleverson Maranhão Porto Marinho SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS Sandro da Silva Fernandes Instituto Tecnológico de Aeronáutica, São José dos Campos - 12228-900 - SP-Brazil, (+55) (12) 3947-5953 sandro@ita.br Cleverson

More information

UNIFORM SUBHARMONIC ORBITS FOR SITNIKOV PROBLEM

UNIFORM SUBHARMONIC ORBITS FOR SITNIKOV PROBLEM Manuscript submitted to Website: http://aimsciences.org AIMS Journals Volume 00, Number 0, Xxxx XXXX pp. 000 000 UNIFORM SUBHARMONIC ORBITS FOR SITNIKOV PROBLEM CLARK ROBINSON Abstract. We highlight the

More information

HOW TO FIND SPATIAL PERIODIC ORBITS AROUND THE MOON IN THE TBP *

HOW TO FIND SPATIAL PERIODIC ORBITS AROUND THE MOON IN THE TBP * IJST, Transactions of Mechanical Engineering, Vol. 6, No. M1, pp 8-9 Printed in The Islamic Republic of Iran, 01 Shiraz University HOW TO FIND SPATIAL PERIODIC ORBITS AROUND THE MOON IN THE TBP * A. ARAM

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation 13.2 Newton s Law of Gravitation Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G =6.67 x10 11 Nm 2 /kg 2

More information

Notes to Saturn satellites Ijiraq and Kiviuq mutual close encounters. A.E. Rosaev. FGUP NPC "NEDRA", Yaroslavl, Russia

Notes to Saturn satellites Ijiraq and Kiviuq mutual close encounters. A.E. Rosaev. FGUP NPC NEDRA, Yaroslavl, Russia Notes to Saturn satellites Iiraq and Kiviuq mutual close encounters A.E. Rosaev FGUP NPC "NEDRA", Yaroslavl, Russia The problem of origin of outer irregular satellites of large planets is considered. The

More information

Tangent and Normal Vectors

Tangent and Normal Vectors Tangent and Normal Vectors MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Navigation When an observer is traveling along with a moving point, for example the passengers in

More information

Advanced Newtonian gravity

Advanced Newtonian gravity Foundations of Newtonian gravity Solutions Motion of extended bodies, University of Guelph h treatment of Newtonian gravity, the book develops approximation methods to obtain weak-field solutions es the

More information

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements AST111, Lecture 1b Measurements of bodies in the solar system (overview continued) Orbital elements Planetary properties (continued): Measuring Mass The orbital period of a moon about a planet depends

More information

A SYMPLECTIC MAPPING MODEL FOR THE STUDY OF 2:3 RESONANT TRANS-NEPTUNIAN MOTION

A SYMPLECTIC MAPPING MODEL FOR THE STUDY OF 2:3 RESONANT TRANS-NEPTUNIAN MOTION 3 A SYMPLECTIC MAPPING MODEL FOR THE STUDY OF 2:3 RESONANT TRANS-NEPTUNIAN MOTION K.G. HADJIFOTINOU and JOHN D. HADJIDEMETRIOU Department of Physics, University of Thessaloniki, 540 06 Thessaloniki, Greece

More information

Regular Keplerian motions in classical many-body systems

Regular Keplerian motions in classical many-body systems Eur. J. Phys. 21 (2000) 1 18. Printed in the UK PII: S0143-0807(00)14581-7 Regular Keplerian motions in classical many-body systems Eugene I Butikov St Petersburg State University, St Petersburg, Russia

More information

Third Body Perturbation

Third Body Perturbation Third Body Perturbation p. 1/30 Third Body Perturbation Modeling the Space Environment Manuel Ruiz Delgado European Masters in Aeronautics and Space E.T.S.I. Aeronáuticos Universidad Politécnica de Madrid

More information

The 3D restricted three-body problem under angular velocity variation. K. E. Papadakis

The 3D restricted three-body problem under angular velocity variation. K. E. Papadakis A&A 425, 11 1142 (2004) DOI: 10.1051/0004-661:20041216 c ESO 2004 Astronomy & Astrophysics The D restricted three-body problem under angular velocity variation K. E. Papadakis Department of Engineering

More information

Fundamentals of Satellite technology

Fundamentals of Satellite technology Fundamentals of Satellite technology Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Orbital Plane All of the planets,

More information

Celestial mechanics and dynamics. Topics to be covered. The Two-Body problem. Solar System and Planetary Astronomy Astro 9601

Celestial mechanics and dynamics. Topics to be covered. The Two-Body problem. Solar System and Planetary Astronomy Astro 9601 Celestial mechanics and dynamics Solar System and Planetary Astronomy Astro 9601 1 Topics to be covered The two-body problem (.1) The three-body problem (.) Perturbations and resonances (.3) Long-term

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

ENGI 9420 Lecture Notes 4 - Stability Analysis Page Stability Analysis for Non-linear Ordinary Differential Equations

ENGI 9420 Lecture Notes 4 - Stability Analysis Page Stability Analysis for Non-linear Ordinary Differential Equations ENGI 940 Lecture Notes 4 - Stability Analysis Page 4.01 4. Stability Analysis for Non-linear Ordinary Differential Equations A pair of simultaneous first order homogeneous linear ordinary differential

More information

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws

Lecture 13 REVIEW. Physics 106 Spring What should we know? What should we know? Newton s Laws Lecture 13 REVIEW Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ What should we know? Vectors addition, subtraction, scalar and vector multiplication Trigonometric functions sinθ, cos θ, tan θ,

More information

PURE Math Residents Program Gröbner Bases and Applications Week 3 Lectures

PURE Math Residents Program Gröbner Bases and Applications Week 3 Lectures PURE Math Residents Program Gröbner Bases and Applications Week 3 Lectures John B. Little Department of Mathematics and Computer Science College of the Holy Cross June 2012 Overview of this week The research

More information

2.2 Regression of Lunar nodes

2.2 Regression of Lunar nodes . Regression of Lunar nodes Andrej Rehak www.principiauniversi.com Abstract Simple mathematical demonstration solves one of the problems of lunar motion, the regression of lunar nodes, observed more than

More information

Extrasolar Planets in Mean-Motion Resonance: Apses Alignment and Asymmetric Stationary Solutions

Extrasolar Planets in Mean-Motion Resonance: Apses Alignment and Asymmetric Stationary Solutions Submitted to Astrophysical Journal Extrasolar Planets in Mean-Motion Resonance: Apses Alignment and Asymmetric Stationary Solutions C. Beaugé 1 Observatorio Astronómico, Universidad Nacional de Córdoba,

More information

Searching for less perturbed elliptical orbits around Europa

Searching for less perturbed elliptical orbits around Europa Journal of Physics: Conference Series PAPER OPEN ACCESS Searching for less perturbed elliptical orbits around Europa To cite this article: J Cardoso dos Santos et al 2015 J. Phys.: Conf. Ser. 641 012011

More information

Bifurcations thresholds of halo orbits

Bifurcations thresholds of halo orbits 10 th AstroNet-II Final Meeting, 15 th -19 th June 2015, Tossa Del Mar 1/23 spazio Bifurcations thresholds of halo orbits Dr. Ceccaroni Marta ceccaron@mat.uniroma2.it University of Roma Tor Vergata Work

More information

On the Estimated Precession of Mercury s Orbit

On the Estimated Precession of Mercury s Orbit 1 On the Estimated Precession of Mercury s Orbit R. Wayte. 9 Audley Way, Ascot, Berkshire, SL5 8EE, England, UK e-mail: rwayte@googlemail.com Research Article, Submitted to PMC Physics A 4 Nov 009 Abstract.

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely

More information

Cambridge University Press The Geometry of Celestial Mechanics: London Mathematical Society Student Texts 83 Hansjörg Geiges

Cambridge University Press The Geometry of Celestial Mechanics: London Mathematical Society Student Texts 83 Hansjörg Geiges acceleration, xii action functional, 173 and Newton s equation (Maupertuis s principle), 173 action of a group on a set, 206 transitive, 157 affine part of a subset of RP 2, 143 algebraic multiplicity

More information

On the 2/1 resonant planetary dynamics - Periodic orbits and dynamical stability

On the 2/1 resonant planetary dynamics - Periodic orbits and dynamical stability Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 14 January 2009 (MN LATEX style file v2.2) On the 2/1 resonant planetary dynamics - Periodic orbits and dynamical stability G. Voyatzis T. Kotoulas

More information

Celestial mechanics and dynamics. Topics to be covered

Celestial mechanics and dynamics. Topics to be covered Celestial mechanics and dynamics Solar System and Planetary Astronomy Astro 9601 1 Topics to be covered The two-body problem (2.1) The three-body problem (2.2) Perturbations and resonances (2.3) Long-term

More information

ORBITAL CHARACTERISTICS DUE TO THE THREE DIMENSIONAL SWING-BY IN THE SUN-JUPITER SYSTEM

ORBITAL CHARACTERISTICS DUE TO THE THREE DIMENSIONAL SWING-BY IN THE SUN-JUPITER SYSTEM ORBITAL CHARACTERISTICS DUE TO THE THREE DIMENSIONAL SWING-BY IN THE SUN-JUPITER SYSTEM JORGE K. S. FORMIGA 1,2 and ANTONIO F B A PRADO 2 National Institute for Space Research -INPE 1 Technology Faculty-FATEC-SJC

More information

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition Ulrich Walter Astronautics The Physics of Space Flight 2nd, Enlarged and Improved Edition Preface to Second Edition Preface XVII Acknowledgments XIX List of Symbols XXI XV 1 Rocket Fundamentals 1 1.1 Rocket

More information

OPTIMAL MANEUVERS IN THREE-DIMENSIONAL SWING-BY TRAJECTORIES

OPTIMAL MANEUVERS IN THREE-DIMENSIONAL SWING-BY TRAJECTORIES OPTIMAL MANEUVERS IN THREE-DIMENSIONAL SWING-BY TRAJECTORIES Gislaine de Felipe and Antonio Fernando Bertachini de Almeida Prado Instituto Nacional de Pesquisas Espaciais - São José dos Campos - SP - 12227-010

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Orbital Motion in Schwarzschild Geometry

Orbital Motion in Schwarzschild Geometry Physics 4 Lecture 29 Orbital Motion in Schwarzschild Geometry Lecture 29 Physics 4 Classical Mechanics II November 9th, 2007 We have seen, through the study of the weak field solutions of Einstein s equation

More information

AST111 PROBLEM SET 2 SOLUTIONS. RA=02h23m35.65s, DEC=+25d18m42.3s (Epoch J2000).

AST111 PROBLEM SET 2 SOLUTIONS. RA=02h23m35.65s, DEC=+25d18m42.3s (Epoch J2000). AST111 PROBLEM SET 2 SOLUTIONS Home work problems 1. Angles on the sky and asteroid motion An asteroid is observed at two different times. The asteroid is located at RA=02h23m35.65s, DEC=+25d18m42.3s (Epoch

More information

Chapter 8. Orbits. 8.1 Conics

Chapter 8. Orbits. 8.1 Conics Chapter 8 Orbits 8.1 Conics Conic sections first studied in the abstract by the Greeks are the curves formed by the intersection of a plane with a cone. Ignoring degenerate cases (such as a point, or pairs

More information

Celestial mechanics and dynamics. Solar System and Planetary Astronomy Astro 9601

Celestial mechanics and dynamics. Solar System and Planetary Astronomy Astro 9601 Celestial mechanics and dynamics Solar System and Planetary Astronomy Astro 9601 1 Topics to be covered The two-body problem (2.1) The three-body problem (2.2) Perturbations ti and resonances (2.3) Long-term

More information

ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points)

ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points) ORBITS WRITTEN Q.E. (June 2012) Each of the five problems is valued at 20 points. (Total for exam: 100 points) PROBLEM 1 A) Summarize the content of the three Kepler s Laws. B) Derive any two of the Kepler

More information

The motions of stars in the Galaxy

The motions of stars in the Galaxy The motions of stars in the Galaxy The stars in the Galaxy define various components, that do not only differ in their spatial distribution but also in their kinematics. The dominant motion of stars (and

More information

Orbital Mechanics! Space System Design, MAE 342, Princeton University! Robert Stengel

Orbital Mechanics! Space System Design, MAE 342, Princeton University! Robert Stengel Orbital Mechanics Space System Design, MAE 342, Princeton University Robert Stengel Conic section orbits Equations of motion Momentum and energy Kepler s Equation Position and velocity in orbit Copyright

More information

Orbit Characteristics

Orbit Characteristics Orbit Characteristics We have shown that the in the two body problem, the orbit of the satellite about the primary (or vice-versa) is a conic section, with the primary located at the focus of the conic

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Hill's Approximation in the Three-Body Problem

Hill's Approximation in the Three-Body Problem Progress of Theoretical Physics Supplement No. 96, 1988 167 Chapter 15 Hill's Approximation in the Three-Body Problem Kiyoshi N AKAZA W A and Shigeru IDA* Department of Applied Physics, T.okyo Institute

More information

Central Force Problem

Central Force Problem Central Force Problem Consider two bodies of masses, say earth and moon, m E and m M moving under the influence of mutual gravitational force of potential V(r). Now Langangian of the system is where, µ

More information

This article has been accepted for publication in [Monthly notices of the Royal Astronomical Society] : [2016] [Pseudo-heteroclinic connections

This article has been accepted for publication in [Monthly notices of the Royal Astronomical Society] : [2016] [Pseudo-heteroclinic connections This article has been accepted for publication in [Monthly notices of the Royal Astronomical Society] : [2016] [Pseudo-heteroclinic connections between bicircular restricted four-body problems] Published

More information

7 - GRAVITATION Page 1 ( Answers at the end of all questions )

7 - GRAVITATION Page 1 ( Answers at the end of all questions ) 7 - GRAVITATION Page 1 1 ) The change in the value of g at a height h above the surface of the earth is the same as at a depth d below the surface of earth. When both d and h are much smaller than the

More information

Keywords : Restricted three-body problem, triaxial rigid body, periodic orbits, Liapunov stability. 1. Introduction

Keywords : Restricted three-body problem, triaxial rigid body, periodic orbits, Liapunov stability. 1. Introduction Bull. Astr. Soc. India (006) 34, 11 3 Periodic orbits around the collinear liberation points in the restricted three body problem when the smaller primary is a triaxial rigid body : Sun-Earth case Sanjay

More information

The Heliocentric Model of Copernicus

The Heliocentric Model of Copernicus Celestial Mechanics The Heliocentric Model of Copernicus Sun at the center and planets (including Earth) orbiting along circles. inferior planets - planets closer to Sun than Earth - Mercury, Venus superior

More information

5.1. Accelerated Coordinate Systems:

5.1. Accelerated Coordinate Systems: 5.1. Accelerated Coordinate Systems: Recall: Uniformly moving reference frames (e.g. those considered at 'rest' or moving with constant velocity in a straight line) are called inertial reference frames.

More information

Towards stability results for planetary problems with more than three bodies

Towards stability results for planetary problems with more than three bodies Towards stability results for planetary problems with more than three bodies Ugo Locatelli [a] and Marco Sansottera [b] [a] Math. Dep. of Università degli Studi di Roma Tor Vergata [b] Math. Dep. of Università

More information

Invariant Manifolds and Transport in the Three-Body Problem

Invariant Manifolds and Transport in the Three-Body Problem Dynamical S C C A L T E C H Invariant Manifolds and Transport in the Three-Body Problem Shane D. Ross Control and Dynamical Systems California Institute of Technology Classical N-Body Systems and Applications

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

Lecture D30 - Orbit Transfers

Lecture D30 - Orbit Transfers J. Peraire 16.07 Dynamics Fall 004 Version 1.1 Lecture D30 - Orbit Transfers In this lecture, we will consider how to transfer from one orbit, or trajectory, to another. One of the assumptions that we

More information

Computational Problem: Keplerian Orbits

Computational Problem: Keplerian Orbits Computational Problem: Keplerian Orbits April 10, 2006 1 Part 1 1.1 Problem For the case of an infinite central mass and an orbiting test mass, integrate a circular orbit and an eccentric orbit. Carry

More information

The two-body Kepler problem

The two-body Kepler problem The two-body Kepler problem set center of mass at the origin (X = 0) ignore all multipole moments (spherical bodies or point masses) define r := r 1 r 2,r:= r,m:= m 1 + m 2,µ:= m 1 m 2 /m reduces to effective

More information

Chapter 13. Gravitation. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 13. Gravitation. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 13 Gravitation PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Next one week Today: Ch 13 Wed: Review of Ch 8-11, focusing

More information

Invariant manifolds of L 3 and horseshoe motion in the restricted three-body problem

Invariant manifolds of L 3 and horseshoe motion in the restricted three-body problem Invariant manifolds of and horseshoe motion in the restricted three-body problem Esther Barrabés (1) and Mercè Ollé (2) 17th May 26 (1) Dept. Informàtica i Matemàtica Aplicada, Universitat de Girona, Avd.

More information

arxiv: v1 [astro-ph.ep] 3 Apr 2018

arxiv: v1 [astro-ph.ep] 3 Apr 2018 Astronomy& Astrophysics manuscript no. zanardi_ c ESO 28 September 2, 28 The role of the general relativity on icy body reservoirs under the effects of an inner eccentric Jupiter M. Zanardi, 2, G. C. de

More information

Analysis of Periodic Orbits with Smaller Primary As Oblate Spheroid

Analysis of Periodic Orbits with Smaller Primary As Oblate Spheroid Kalpa Publications in Computing Volume 2, 2017, Pages 38 50 ICRISET2017. International Conference on Research and Innovations in Science, Engineering &Technology. Selected Papers in Computing Analysis

More information

Aim: Understand equilibrium of galaxies

Aim: Understand equilibrium of galaxies 8. Galactic Dynamics Aim: Understand equilibrium of galaxies 1. What are the dominant forces? 2. Can we define some kind of equilibrium? 3. What are the relevant timescales? 4. Do galaxies evolve along

More information

Chapter 13. Universal Gravitation

Chapter 13. Universal Gravitation Chapter 13 Universal Gravitation Planetary Motion A large amount of data had been collected by 1687. There was no clear understanding of the forces related to these motions. Isaac Newton provided the answer.

More information

Lecture 15 - Orbit Problems

Lecture 15 - Orbit Problems Lecture 15 - Orbit Problems A Puzzle... The ellipse shown below has one focus at the origin and its major axis lies along the x-axis. The ellipse has a semimajor axis of length a and a semi-minor axis

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS

AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS Kenneth R. Meyer 1 Jesús F. Palacián 2 Patricia Yanguas 2 1 Department of Mathematical Sciences University of Cincinnati, Cincinnati, Ohio (USA) 2 Departamento

More information

Periodic Orbits in Rotating Second Degree and Order Gravity Fields

Periodic Orbits in Rotating Second Degree and Order Gravity Fields Chin. J. Astron. Astrophys. Vol. 8 (28), No. 1, 18 118 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Periodic Orbits in Rotating Second Degree and Order Gravity Fields Wei-Duo Hu

More information