: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)

Size: px
Start display at page:

Download ": œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)"

Transcription

1 â œ Ö =? À =ß> real numbers : SpanÖ?ß@ œ Ö: =? À =ß> real numbers œ the previous plane with each point translated by : Ðfor example, is translated to :) á In general: Adding a vector : to each vector in a set translates the set of vectors along a copy of the vector :

2 Theorem Suppose E, is consistent. Let : be one particular solution (so that E: œ, Ñ Then every solution ; for E, can be written as ; œ : 2 Å where 2 is a solution of the corresponding homogeneous equation E More informally: when E, is consistent, you can write all its solutions by taking a particular solution : of the equation and adding on all possible solutions of the corresponding homogenous equation E Þ If is happens that E has only one solution,, then E, also has only one solution, : œ : Þ (See proof in class notes or text.)

3 Exercises 1. E Þ Suppose the rref for the coefficient matrix E is Ô " # " " " Õ The general solution in parametric vector form is:??? Solution: The rref for the coefficient matrix for E is: rrefðeñ œ Ô " # " " " Õ #B B# œ B# B " # B B $ % % % B Parametric vector form Ô B" Ô # Ô Ô " B# " B$ œ B# B% " B Ö Ù Ö Ù Ö Ù Ö Ù B% " ÕB Õ Õ Õ "

4 2. E, Ðsame matrix E as in 1)). Suppose the rref for the augmented matrix is Ô " # " l $ " " l % Õ l 0 Write solution in parametric vector form: Solution:rref of augment matrix œ Ô " # " l $ " " l % Õ l 0 B" œ $ #B# B B# œ B# B$ œ % B% B% œ B% B, so (free) (free) (free) Ô $ Ô # Ô Ô " " % B# B% " B Ö Ù Ö Ù Ö Ù Ö Ù " Õ Õ Õ Õ " Å Å a particular general solution for solution of E, homogeneous system E Look at the relationship between the solution sets in 1. and 2. Ô $ Note that this set of solutions is a translation along a copy of the vector % of the Ö Ù Õ solution set in the preceding problem E,. What is the general solution if the rref for the Ô " # " $ " " %? Õ augmented matrix is

5 The set of vectors ß is linearly dependent if " # : if ÞÞÞ œ has a nontrivial solution, that is there are scalars - ß- ßÞÞÞß- " # : not all ÞÞÞ œ " " # # : : Same as saying homogeneous matrix equation for which E Ô B" B# Ò@ "@# ÞÞÞ@ : ÓÖ Ù œ has a nontrivial solution ã ÕB : (which happens if E has free variables) Otherwise, we say that the set Ö@ " ß@ # is linearly independent Sometimes we say that the ß@ # are linearly dependent or independent. Ô $ Ô # Ô " Example Is ', ), # Ÿ Õ$ Õ Õ $ linearly independent? We know how to do the calculation to get the answer. You just have know linearly independent means Look at homogeneous vector equation Ô $ Ô # Ô " Ô B" ' B# ) B# # œ Õ$ Õ Õ @ $ or

6 equivalent matrix equation Ô $ # " ' ) # Õ$ $ Does the equation have only the trivial solution (then, the set is linearly independent)? or are there aksi other solutions (then, the set is linearly @ $ Ô $ # " Ô " " ' ) # µ ÞÞÞ µ " " Õ$ $ Õ there are infinitely many solutions: B" œ B$ B# œ B$ B$ œ B$ So can use weights (for example) "ß " $ " # The set is linearly dependent. Check: for example, Ô $ Ô # Ô " Ô " ' " ) Ð "Ñ # œ Õ$ Õ Õ $ Õ Ô 1 Ô 0 Ô Example Is Ö Ù, Ö Ù, Ö ÙŸ linearly independent? Õ 1 Õ 0 Õ 0 Homogeneous vector equation Ô 1 Ô 0 Ô 2 Ô B" Ö Ù B# Ö Ù B$ Ö Ù œ Ö Ù Õ 1 Õ 0 Õ 0 Õ 0 equivalent matrix equation Ô " # " " Ö Ù " Õ "

7 Row reduction of coefficient matrix: Ô " # Ô " " " " Ö Ù µ ÞÞÞ µ Ö Ù " " Õ" Õ Answer to original question:? Important Results about linear dependence and independence (for vectors in any 8 Ñ See proofs from class or textbook. 1. Ð For : 2) Ö@ " is linearly dependent if and only if at least one of the vectors is a linear combination of the other vectors. 2. Ö is linearly dependent, but is linearly independent Á " "

Æ Å not every column in E is a pivot column (so EB œ! has at least one free variable) Æ Å E has linearly dependent columns

Æ Å not every column in E is a pivot column (so EB œ! has at least one free variable) Æ Å E has linearly dependent columns ßÞÞÞß @ is linearly independent if B" @" B# @# ÞÞÞ B: @: œ! has only the trivial solution EB œ! has only the trivial solution Ðwhere E œ Ò@ @ ÞÞÞ@ ÓÑ every column in E is a pivot column E has linearly

More information

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

B œ c   ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true System of Linear Equations variables Ð unknowns Ñ B" ß B# ß ÞÞÞ ß B8 Æ Æ Æ + B + B ÞÞÞ + B œ, "" " "# # "8 8 " + B + B ÞÞÞ + B œ, #" " ## # #8 8 # ã + B + B ÞÞÞ + B œ, 3" " 3# # 38 8 3 ã + 7" B" + 7# B#

More information

Linear Independence x

Linear Independence x Linear Independence A consistent system of linear equations with matrix equation Ax = b, where A is an m n matrix, has a solution set whose graph in R n is a linear object, that is, has one of only n +

More information

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!!

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!! MATH Exam -Solutions pts Write your answers on separate paper. You do not need to copy the questions. Show your work!!!. ( pts) Find the reduced row echelon form of the matrix Solution : 4 4 6 4 4 R R

More information

Here are proofs for some of the results about diagonalization that were presented without proof in class.

Here are proofs for some of the results about diagonalization that were presented without proof in class. Suppose E is an 8 8 matrix. In what follows, terms like eigenvectors, eigenvalues, and eigenspaces all refer to the matrix E. Here are proofs for some of the results about diagonalization that were presented

More information

The Leontief Open Economy Production Model

The Leontief Open Economy Production Model The Leontief Open Economy Production Model We will look at the idea for Leontief's model of an open economy a term which we will explain below. It starts by looking very similar to an example of a closed

More information

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times.

8œ! This theorem is justified by repeating the process developed for a Taylor polynomial an infinite number of times. Taylor and Maclaurin Series We can use the same process we used to find a Taylor or Maclaurin polynomial to find a power series for a particular function as long as the function has infinitely many derivatives.

More information

The Leontief Open Economy Production Model

The Leontief Open Economy Production Model The Leontief Open Economy Production Model We will look at the idea for Leontief's model of an open economy a term which we will explain below. It starts by looking very similar to an example of a closed

More information

solve EB œ,, we can row reduce the augmented matrix

solve EB œ,, we can row reduce the augmented matrix PY Decomposition: Factoring E œ P Y Motivation To solve EB œ,, we can row reduce the augmented matrix Ò + + ÞÞÞ+ ÞÞÞ + l, Ó µ ÞÞÞ µ Ò- - ÞÞÞ- ÞÞÞ-. Ó " # 3 8 " # 3 8 When we get to Ò-" -# ÞÞÞ -3 ÞÞÞ-8Ó

More information

Introduction to Diagonalization

Introduction to Diagonalization Introduction to Diagonalization For a square matrix E, a process called diagonalization can sometimes give us more insight into how the transformation B ÈE B works. The insight has a strong geometric flavor,

More information

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix Math 34H EXAM I Do all of the problems below. Point values for each of the problems are adjacent to the problem number. Calculators may be used to check your answer but not to arrive at your answer. That

More information

Lecture 6: Spanning Set & Linear Independency

Lecture 6: Spanning Set & Linear Independency Lecture 6: Elif Tan Ankara University Elif Tan (Ankara University) Lecture 6 / 0 Definition (Linear Combination) Let v, v 2,..., v k be vectors in (V,, ) a vector space. A vector v V is called a linear

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra Linear Equations in Linear Algebra.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v,, v p } in n is said to be linearly independent if the vector equation x x x 2 2 p

More information

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a Practice Exercises for Exam Exam will be on Monday, September 8, 7. The syllabus for Exam consists of Sections One.I, One.III, Two.I, and Two.II. You should know the main definitions, results and computational

More information

Systems of Equations 1. Systems of Linear Equations

Systems of Equations 1. Systems of Linear Equations Lecture 1 Systems of Equations 1. Systems of Linear Equations [We will see examples of how linear equations arise here, and how they are solved:] Example 1: In a lab experiment, a researcher wants to provide

More information

Determine whether the following system has a trivial solution or non-trivial solution:

Determine whether the following system has a trivial solution or non-trivial solution: Practice Questions Lecture # 7 and 8 Question # Determine whether the following system has a trivial solution or non-trivial solution: x x + x x x x x The coefficient matrix is / R, R R R+ R The corresponding

More information

Relations. Relations occur all the time in mathematics. For example, there are many relations between # and % À

Relations. Relations occur all the time in mathematics. For example, there are many relations between # and % À Relations Relations occur all the time in mathematics. For example, there are many relations between and % À Ÿ% % Á% l% Ÿ,, Á ß and l are examples of relations which might or might not hold between two

More information

Section 1.5. Solution Sets of Linear Systems

Section 1.5. Solution Sets of Linear Systems Section 1.5 Solution Sets of Linear Systems Plan For Today Today we will learn to describe and draw the solution set of an arbitrary system of linear equations Ax = b, using spans. Ax = b Recall: the solution

More information

Example: A Markov Process

Example: A Markov Process Example: A Markov Process Divide the greater metro region into three parts: city such as St. Louis), suburbs to include such areas as Clayton, University City, Richmond Heights, Maplewood, Kirkwood,...)

More information

solve EB œ,, we can row reduce the augmented matrix

solve EB œ,, we can row reduce the augmented matrix Motivation To PY Decomposition: Factoring E œ P Y solve EB œ,, we can row reduce the augmented matrix Ò + + ÞÞÞ+ ÞÞÞ + l, Ó µ ÞÞÞ µ Ò- - ÞÞÞ- ÞÞÞ-. Ó " # 3 8 " # 3 8 we get to Ò-" -# ÞÞÞ -3 ÞÞÞ-8Ó in an

More information

Review for Chapter 1. Selected Topics

Review for Chapter 1. Selected Topics Review for Chapter 1 Selected Topics Linear Equations We have four equivalent ways of writing linear systems: 1 As a system of equations: 2x 1 + 3x 2 = 7 x 1 x 2 = 5 2 As an augmented matrix: ( 2 3 ) 7

More information

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and 6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A x= 0, where

More information

Solutions of Linear system, vector and matrix equation

Solutions of Linear system, vector and matrix equation Goals: Solutions of Linear system, vector and matrix equation Solutions of linear system. Vectors, vector equation. Matrix equation. Math 112, Week 2 Suggested Textbook Readings: Sections 1.3, 1.4, 1.5

More information

MATH10212 Linear Algebra B Homework Week 4

MATH10212 Linear Algebra B Homework Week 4 MATH22 Linear Algebra B Homework Week 4 Students are strongly advised to acquire a copy of the Textbook: D. C. Lay Linear Algebra and its Applications. Pearson, 26. ISBN -52-2873-4. Normally, homework

More information

Inner Product Spaces

Inner Product Spaces Inner Product Spaces In 8 X, we defined an inner product? @? @?@ ÞÞÞ? 8@ 8. Another notation sometimes used is? @? ß@. The inner product in 8 has several important properties ( see Theorem, p. 33) that

More information

The Spotted Owls 5 " 5. = 5 " œ!þ")45 Ð'!% leave nest, 30% of those succeed) + 5 " œ!þ("= 5!Þ*%+ 5 ( adults live about 20 yrs)

The Spotted Owls 5  5. = 5  œ!þ)45 Ð'!% leave nest, 30% of those succeed) + 5  œ!þ(= 5!Þ*%+ 5 ( adults live about 20 yrs) The Spotted Owls Be sure to read the example at the introduction to Chapter in the textbook. It gives more general background information for this example. The example leads to a dynamical system which

More information

Framework for functional tree simulation applied to 'golden delicious' apple trees

Framework for functional tree simulation applied to 'golden delicious' apple trees Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations Spring 2015 Framework for functional tree simulation applied to 'golden delicious' apple trees Marek Fiser Purdue University

More information

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3.

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3. 1. Determine by inspection which of the following sets of vectors is linearly independent. (a) (d) 1, 3 4, 1 { [ [,, 1 1] 3]} (b) 1, 4 5, (c) 3 6 (e) 1, 3, 4 4 3 1 4 Solution. The answer is (a): v 1 is

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

Lecture 18: Section 4.3

Lecture 18: Section 4.3 Lecture 18: Section 4.3 Shuanglin Shao November 6, 2013 Linear Independence and Linear Dependence. We will discuss linear independence of vectors in a vector space. Definition. If S = {v 1, v 2,, v r }

More information

Row Reduction and Echelon Forms

Row Reduction and Echelon Forms Row Reduction and Echelon Forms 1 / 29 Key Concepts row echelon form, reduced row echelon form pivot position, pivot, pivot column basic variable, free variable general solution, parametric solution existence

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Section Gaussian Elimination

Section Gaussian Elimination Section. - Gaussian Elimination A matrix is said to be in row echelon form (REF) if it has the following properties:. The first nonzero entry in any row is a. We call this a leading one or pivot one..

More information

Linear Combination. v = a 1 v 1 + a 2 v a k v k

Linear Combination. v = a 1 v 1 + a 2 v a k v k Linear Combination Definition 1 Given a set of vectors {v 1, v 2,..., v k } in a vector space V, any vector of the form v = a 1 v 1 + a 2 v 2 +... + a k v k for some scalars a 1, a 2,..., a k, is called

More information

Week #4: Midterm 1 Review

Week #4: Midterm 1 Review Week #4: Midterm Review April 5, NAMES: TARDIS : http://math.ucsb.edu/ kgracekennedy/spring 4A.html Week : Introduction to Systems of Linear Equations Problem.. What row operations are allowed and why?...

More information

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2 MATH 5 Assignment 6 Fall 8 Due: Thursday, November [5]. For what value of c does have a solution? Is it unique? x + y + z = x + y + z = c 4x + z = Writing the system as an augmented matrix, we have c R

More information

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then 1 Sec 21 Matrix Operations Review Let A, B, and C be matrices of the same size, and let r and s be scalars Then (i) A + B = B + A (iv) r(a + B) = ra + rb (ii) (A + B) + C = A + (B + C) (v) (r + s)a = ra

More information

! " # $! % & '! , ) ( + - (. ) ( ) * + / 0 1 2 3 0 / 4 5 / 6 0 ; 8 7 < = 7 > 8 7 8 9 : Œ Š ž P P h ˆ Š ˆ Œ ˆ Š ˆ Ž Ž Ý Ü Ý Ü Ý Ž Ý ê ç è ± ¹ ¼ ¹ ä ± ¹ w ç ¹ è ¼ è Œ ¹ ± ¹ è ¹ è ä ç w ¹ ã ¼ ¹ ä ¹ ¼ ¹ ±

More information

Math 3A Winter 2016 Midterm

Math 3A Winter 2016 Midterm Math 3A Winter 016 Midterm Name Signature UCI ID # E-mail address There are 7 problems for a total of 115 points. Present your work as clearly as possible. Partial credit will be awarded, and you must

More information

5) homogeneous and nonhomogeneous systems 5a) The homogeneous matrix equation, A x = 0 is always consistent.

5) homogeneous and nonhomogeneous systems 5a) The homogeneous matrix equation, A x = 0 is always consistent. 5) homogeneous and nonhomogeneous systems 5a) The homogeneous matrix equation, A x is always consistent. 5b) If A x b is also consistent, then the solution set to A x b is a translation of the solution

More information

ETIKA V PROFESII PSYCHOLÓGA

ETIKA V PROFESII PSYCHOLÓGA P r a ž s k á v y s o k á š k o l a p s y c h o s o c i á l n í c h s t u d i í ETIKA V PROFESII PSYCHOLÓGA N a t á l i a S l o b o d n í k o v á v e d ú c i p r á c e : P h D r. M a r t i n S t r o u

More information

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce > ƒ? @ Z [ \ _ ' µ `. l 1 2 3 z Æ Ñ 6 = Ð l sl (~131 1606) rn % & +, l r s s, r 7 nr ss r r s s s, r s, r! " # $ s s ( ) r * s, / 0 s, r 4 r r 9;: < 10 r mnz, rz, r ns, 1 s ; j;k ns, q r s { } ~ l r mnz,

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS MTH 35, SPRING 2017 NIKOS APOSTOLAKIS 1. Linear independence Example 1. Recall the set S = {a i : i = 1,...,5} R 4 of the last two lectures, where a 1 = (1,1,3,1) a 2 = (2,1,2, 1) a 3 = (7,3,5, 5) a 4

More information

Review Solutions for Exam 1

Review Solutions for Exam 1 Definitions Basic Theorems. Finish the definition: Review Solutions for Exam (a) A linear combination of vectors {v,..., v n } is: any vector of the form c v + c v + + c n v n (b) A set of vectors {v,...,

More information

Elementary Linear Algebra with Applications Bernard Kolman David Hill Ninth Edition

Elementary Linear Algebra with Applications Bernard Kolman David Hill Ninth Edition Elementary Linear Algebra with Applications Bernard Kolman David Hill Ninth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM JE England and Associated Companies throughout the world Visit

More information

Sections 1.5, 1.7. Ma 322 Spring Ma 322. Jan 24-28

Sections 1.5, 1.7. Ma 322 Spring Ma 322. Jan 24-28 Sections 1.5, 1.7 Ma 322 Spring 217 Ma 322 Jan 24-28 Summary ˆ Text: Solution Sets of Linear Systems (1.5),Linear Independence (1.7) ˆ Solutions of homogeneous equations AX =. ˆ Using the rank. ˆ Parametric

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

if b is a linear combination of u, v, w, i.e., if we can find scalars r, s, t so that ru + sv + tw = 0.

if b is a linear combination of u, v, w, i.e., if we can find scalars r, s, t so that ru + sv + tw = 0. Solutions Review # Math 7 Instructions: Use the following problems to study for Exam # which will be held Wednesday Sept For a set of nonzero vectors u v w} in R n use words and/or math expressions to

More information

The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items.

The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items. AMS 10: Review for the Midterm Exam The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items. Complex numbers

More information

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R Suggetion - Problem Set 3 4.2 (a) Show the dicriminant condition (1) take the form x D Ð.. Ñ. D.. D. ln ln, a deired. We then replace the quantitie. 3ß D3 by their etimate to get the proper form for thi

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.4 Solving Systems of Linear Equations 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.4. Solving Systems of Linear Equations Note. We give an algorithm for solving a system of linear equations (called

More information

Linear algebra comments. Sophie Marques

Linear algebra comments. Sophie Marques Linear algebra comments Sophie Marques Friday 9 th October, 2015 2 Of course this does not cover all the class notes and it is not enough to do the midterm. It is just a way to extract the very very important

More information

Inner Product Spaces. Another notation sometimes used is X.?

Inner Product Spaces. Another notation sometimes used is X.? Inner Product Spaces X In 8 we have an inner product? @? @?@ ÞÞÞ? 8@ 8Þ Another notation sometimes used is X? ß@? @? @? @ ÞÞÞ? @ 8 8 The inner product in?@ ß in 8 has several essential properties ( see

More information

Inverses of Square Matrices

Inverses of Square Matrices Inverses of Square Matrices A. Havens Department of Mathematics University of Massachusetts, Amherst February 23-26, 2018 Outline 1 Defining Inverses Inverses for Products and Functions Defining Inverse

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 6) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example,

Exam 2 Solutions. (a) Is W closed under addition? Why or why not? W is not closed under addition. For example, Exam 2 Solutions. Let V be the set of pairs of real numbers (x, y). Define the following operations on V : (x, y) (x, y ) = (x + x, xx + yy ) r (x, y) = (rx, y) Check if V together with and satisfy properties

More information

Math 3013 Problem Set 4

Math 3013 Problem Set 4 (e) W = {x, 3x, 4x 3, 5x 4 x i R} in R 4 Math 33 Problem Set 4 Problems from.6 (pgs. 99- of text):,3,5,7,9,,7,9,,35,37,38. (Problems,3,4,7,9 in text). Determine whether the indicated subset is a subspace

More information

u x + u y = x u . u(x, 0) = e x2 The characteristics satisfy dx dt = 1, dy dt = 1

u x + u y = x u . u(x, 0) = e x2 The characteristics satisfy dx dt = 1, dy dt = 1 Õ 83-25 Þ ÛÐ Þ Ð ÚÔÜØ Þ ÝÒ Þ Ô ÜÞØ ¹ 3 Ñ Ð ÜÞ u x + u y = x u u(x, 0) = e x2 ÝÒ Þ Ü ÞØ º½ dt =, dt = x = t + c, y = t + c 2 We can choose c to be zero without loss of generality Note that each characteristic

More information

3.4 Elementary Matrices and Matrix Inverse

3.4 Elementary Matrices and Matrix Inverse Math 220: Summer 2015 3.4 Elementary Matrices and Matrix Inverse A n n elementary matrix is a matrix which is obtained from the n n identity matrix I n n by a single elementary row operation. Elementary

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 7) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

Chapter 1: Systems of Linear Equations

Chapter 1: Systems of Linear Equations Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where

More information

Example Let VœÖÐBßCÑ À b-, CœB - ( see the example above). Explain why

Example Let VœÖÐBßCÑ À b-, CœB - ( see the example above). Explain why Definition If V is a relation from E to F, then a) the domain of V œ dom ÐVÑ œ Ö+ E À b, F such that Ð+ß,Ñ V b) the range of V œ ran( VÑ œ Ö, F À b+ E such that Ð+ß,Ñ V " c) the inverse relation of V œ

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v 1,, v p } in n is said to be linearly independent if the vector equation x x x

More information

Math 51, Homework-2 Solutions

Math 51, Homework-2 Solutions SSEA Summer 27 Math 5, Homework-2 Solutions Write the parametric equation of the plane that contains the following point and line: 3 2, 4 2 + t 3 t R 5 4 By substituting t = and t =, we get two points

More information

Kernel and range. Definition: A homogeneous linear equation is an equation of the form A v = 0

Kernel and range. Definition: A homogeneous linear equation is an equation of the form A v = 0 Kernel and range Definition: The kernel (or null-space) of A is ker A { v V : A v = 0 ( U)}. Theorem 5.3. ker A is a subspace of V. (In particular, it always contains 0 V.) Definition: A is one-to-one

More information

Vectors. Teaching Learning Point. Ç, where OP. l m n

Vectors. Teaching Learning Point. Ç, where OP. l m n Vectors 9 Teaching Learning Point l A quantity that has magnitude as well as direction is called is called a vector. l A directed line segment represents a vector and is denoted y AB Å or a Æ. l Position

More information

Linear Algebra: Sample Questions for Exam 2

Linear Algebra: Sample Questions for Exam 2 Linear Algebra: Sample Questions for Exam 2 Instructions: This is not a comprehensive review: there are concepts you need to know that are not included. Be sure you study all the sections of the book and

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

Sections 1.5, 1.7. Ma 322 Fall Ma 322. Sept

Sections 1.5, 1.7. Ma 322 Fall Ma 322. Sept Sections 1.5, 1.7 Ma 322 Fall 213 Ma 322 Sept. 9-13 Summary ˆ Solutions of homogeneous equations AX =. ˆ Using the rank. ˆ Parametric solution of AX = B. ˆ Linear dependence and independence of vectors

More information

Math 54. Selected Solutions for Week 5

Math 54. Selected Solutions for Week 5 Math 54. Selected Solutions for Week 5 Section 4. (Page 94) 8. Consider the following two systems of equations: 5x + x 3x 3 = 5x + x 3x 3 = 9x + x + 5x 3 = 4x + x 6x 3 = 9 9x + x + 5x 3 = 5 4x + x 6x 3

More information

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis Math 24 4.3 Linear Independence; Bases A. DeCelles Overview Main ideas:. definitions of linear independence linear dependence dependence relation basis 2. characterization of linearly dependent set using

More information

Gene expression experiments. Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces

Gene expression experiments. Infinite Dimensional Vector Spaces. 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces MA 751 Part 3 Gene expression experiments Infinite Dimensional Vector Spaces 1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces Gene expression experiments Question: Gene

More information

Linear Algebra Handout

Linear Algebra Handout Linear Algebra Handout References Some material and suggested problems are taken from Fundamentals of Matrix Algebra by Gregory Hartman, which can be found here: http://www.vmi.edu/content.aspx?id=779979.

More information

MATH 1553, SPRING 2018 SAMPLE MIDTERM 1: THROUGH SECTION 1.5

MATH 1553, SPRING 2018 SAMPLE MIDTERM 1: THROUGH SECTION 1.5 MATH 553, SPRING 28 SAMPLE MIDTERM : THROUGH SECTION 5 Name Section Please read all instructions carefully before beginning You have 5 minutes to complete this exam There are no aids of any kind (calculators,

More information

Math 205, Summer I, Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b. Chapter 4, [Sections 7], 8 and 9

Math 205, Summer I, Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b. Chapter 4, [Sections 7], 8 and 9 Math 205, Summer I, 2016 Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b Chapter 4, [Sections 7], 8 and 9 4.5 Linear Dependence, Linear Independence 4.6 Bases and Dimension 4.7 Change of Basis,

More information

MAT 1302B Mathematical Methods II

MAT 1302B Mathematical Methods II MAT 1302B Mathematical Methods II Alistair Savage Mathematics and Statistics University of Ottawa Winter 2015 Lecture 6 These are partial slides for following along in class. Full versions of these slides

More information

The Gauss-Jordan Elimination Algorithm

The Gauss-Jordan Elimination Algorithm The Gauss-Jordan Elimination Algorithm Solving Systems of Real Linear Equations A. Havens Department of Mathematics University of Massachusetts, Amherst January 24, 2018 Outline 1 Definitions Echelon Forms

More information

Announcements Monday, September 18

Announcements Monday, September 18 Announcements Monday, September 18 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5. About

More information

2018 Fall 2210Q Section 013 Midterm Exam I Solution

2018 Fall 2210Q Section 013 Midterm Exam I Solution 8 Fall Q Section 3 Midterm Exam I Solution True or False questions ( points = points) () An example of a linear combination of vectors v, v is the vector v. True. We can write v as v + v. () If two matrices

More information

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance.

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance. 4.2. Linear Combinations and Linear Independence If we know that the vectors v 1, v 2,..., v k are are in a subspace W, then the Subspace Test gives us more vectors which must also be in W ; for instance,

More information

Math 301 Test I. M. Randall Holmes. September 8, 2008

Math 301 Test I. M. Randall Holmes. September 8, 2008 Math 0 Test I M. Randall Holmes September 8, 008 This exam will begin at 9:40 am and end at 0:5 am. You may use your writing instrument, a calculator, and your test paper; books, notes and neighbors to

More information

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain

Column 3 is fine, so it remains to add Row 2 multiplied by 2 to Row 1. We obtain Section Exercise : We are given the following augumented matrix 3 7 6 3 We have to bring it to the diagonal form The entries below the diagonal are already zero, so we work from bottom to top Adding the

More information

Rank, Homogenous Systems, Linear Independence

Rank, Homogenous Systems, Linear Independence Sept 11,1 Rank, Homogenous Systems, Linear Independence If (A B) is a linear system represented as an augmented matrix then A is called the COEFFICIENT MATRIX and B is (usually) called the RIGHT HAND SIDE

More information

QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, Examiners: Drs. K. M. Ramachandran and G. S. Ladde

QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, Examiners: Drs. K. M. Ramachandran and G. S. Ladde QUALIFYING EXAMINATION II IN MATHEMATICAL STATISTICS SATURDAY, MAY 9, 2015 Examiners: Drs. K. M. Ramachandran and G. S. Ladde INSTRUCTIONS: a. The quality is more important than the quantity. b. Attempt

More information

T ((x 1, x 2,..., x n )) = + x x 3. , x 1. x 3. Each of the four coordinates in the range is a linear combination of the three variables x 1

T ((x 1, x 2,..., x n )) = + x x 3. , x 1. x 3. Each of the four coordinates in the range is a linear combination of the three variables x 1 MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

is injective because f(a) = f(b) only when a = b. On the other hand, 1

is injective because f(a) = f(b) only when a = b. On the other hand, 1 2.. Injective maps, Kernel, and Linear Independence In this section, we introduce the concept of injectivity for maps. Being injective is a very important property for maps and it appears everywhere in

More information

Math 24 Spring 2012 Questions (mostly) from the Textbook

Math 24 Spring 2012 Questions (mostly) from the Textbook Math 24 Spring 2012 Questions (mostly) from the Textbook 1. TRUE OR FALSE? (a) The zero vector space has no basis. (F) (b) Every vector space that is generated by a finite set has a basis. (c) Every vector

More information

MATH10212 Linear Algebra B Homework 6. Be prepared to answer the following oral questions if asked in the supervision class:

MATH10212 Linear Algebra B Homework 6. Be prepared to answer the following oral questions if asked in the supervision class: MATH0 Linear Algebra B Homework 6 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra its Applications Pearson, 006 (or other editions) Normally, homework assignments

More information

An Example file... log.txt

An Example file... log.txt # ' ' Start of fie & %$ " 1 - : 5? ;., B - ( * * B - ( * * F I / 0. )- +, * ( ) 8 8 7 /. 6 )- +, 5 5 3 2( 7 7 +, 6 6 9( 3 5( ) 7-0 +, => - +< ( ) )- +, 7 / +, 5 9 (. 6 )- 0 * D>. C )- +, (A :, C 0 )- +,

More information

Optimal Control of PDEs

Optimal Control of PDEs Optimal Control of PDEs Suzanne Lenhart University of Tennessee, Knoville Department of Mathematics Lecture1 p.1/36 Outline 1. Idea of diffusion PDE 2. Motivating Eample 3. Big picture of optimal control

More information

Definition Suppose M is a collection (set) of sets. M is called inductive if

Definition Suppose M is a collection (set) of sets. M is called inductive if Definition Suppose M is a collection (set) of sets. M is called inductive if a) g M, and b) if B Mß then B MÞ Then we ask: are there any inductive sets? Informally, it certainly looks like there are. For

More information

Problems for M 10/12:

Problems for M 10/12: Math 30, Lesieutre Problem set #8 October, 05 Problems for M 0/: 4.3.3 Determine whether these vectors are a basis for R 3 by checking whether the vectors span R 3, and whether the vectors are linearly

More information

Matrices and RRE Form

Matrices and RRE Form Matrices and RRE Form Notation R is the real numbers, C is the complex numbers (we will only consider complex numbers towards the end of the course) is read as an element of For instance, x R means that

More information

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns Linear Equation: a x + a 2 x 2 +... + a n x n = b. x, x 2,..., x n : variables or unknowns a, a 2,..., a n : coefficients b: constant term Examples: x + 4 2 y + (2 5)z = is linear. x 2 + y + yz = 2 is

More information

(c)

(c) 1. Find the reduced echelon form of the matrix 1 1 5 1 8 5. 1 1 1 (a) 3 1 3 0 1 3 1 (b) 0 0 1 (c) 3 0 0 1 0 (d) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (e) 1 0 5 0 0 1 3 0 0 0 0 Solution. 1 1 1 1 1 1 1 1

More information

Linear Algebra (wi1403lr) Lecture no.3

Linear Algebra (wi1403lr) Lecture no.3 Linear Algebra (wi1403lr) Lecture no.3 EWI / DIAM / Numerical Analysis group Matthias Möller 25/04/2014 M. Möller (EWI/NA group) LA (wi1403lr) 25/04/2014 1 / 18 Review of lecture no.2 1.3 Vector Equations

More information