Split the integral into two: [0,1] and (1, )

Size: px
Start display at page:

Download "Split the integral into two: [0,1] and (1, )"

Transcription

1 . A continuous random variable X has the iecewise df f( ) 0, 0, 0, where 0 is a ositive real number. - (a) For any real number such that 0, rove that the eected value of h( X ) X is E X. (0 ts) Solution: By definition, E[ h( X )] h( ) f ( ) d. Therefore, E X f ( ) d f ( ) d f ( ) d 0 Slit the integral into two: [0,] and (, ) d d Substitute f( ) into each 0 d d Algebra - simlify integrands 0 0 Power Rule 0 lim( b ) ( ) ( ) b F( b) F( a) [ 0] [0 ] since imlies lim( b ) 0 ( ) ( ) b ( ) ( ) Note that this = / + / when = 0. 0 Algebra The grah shows the density curve when >. The cases 0,,, and are similar in (, ), but have obvious differences in [0, ].

2 (b) Use the argument in (a) to hel confirm that f( ) is indeed a valid df. Show all work. (3 ts) Solution: First, f ( ) 0 is obvious by insection. Now, let = 0 in (a), namely f ( ) d, to obtain the identity f ( ) d. (c) Determine the median of X, and conclude that it does not deend on the value of. (Hint: Use (b) and the argument in (a). Very little calculation is necessary!) Show all work. (3 ts) Solution: The double-boed eression in (a) above,, when = 0 yields, i.e, the areas in [0, ] and (, ) are both eual to. Hence by definition, Q for any > 0. (d) Use the formula in (a) to determine the mean of X. Show all work. (Assume.) (3 ts) Solution: Let = : EX [ ]. (e) Use the formula in (a) to determine the variance of X. Show all work. (Assume,.) Algebraic simlification is not necessary. (3 ts) Solution: By definition, E X E[ X ] 4. Or, simly show that 0 f ( ) d.

3 (f) Prove that the cdf F( ) P( X ) is given by (0 ts) 0, 0, 0 F( )., Solution: Most of the integrals are just slight modifications to those in (a), with the uer limits of integration relaced by. If 0, then F( ) P( X ) f ( t) dt 0dt 0 If 0, then Thus, when =, it follows that F( ) P( X ) f ( t) dt 0 t dt t F() 0 0. Therefore, If, then F( ) P( X ) f ( t) dt t dt t ( ) - (g) Use (f) to calculate the robability that a random X falls in the interval [0.5, ], i.e., P(0.5 X ), in terms of. (3 ts) Solution: P(0.5 X ) P( X ) P( X 0.5) F() F(0.5)

4 . Two male ladybugs are sitting at oosite corners of a large window Male comosed of individual suare glass anes, as shown. At the same instant, they 0.4 start walking at the same rate along the ane edges, one edge at a time, in the hoe of eventually reaching the female sitting at the center of the window. At the start of every move along a single edge, each male randomly and indeendently selects only either the horizontal or vertical direction shown, each with the robability indicated. However, the female is only willing to wait for each male to comlete a total of n = 5 horizontal and vertical moves along the edges, before she becomes imatient and flies away. Given this information, answer each of the following Male [Hint: Let the random variable X = number of moves to the right in n = 5 indeendent moves by Male, and X = number of moves to the left in n = 5 indeendent moves by Male. ] (a) Calculate the robability of the event M = Male meets the female in n = 5 moves. Show all work. (4 ts) 5 3 P( M) P X (b) Calculate the robability of the event M = Male meets the female in n = 5 moves. Show all work. (4 ts) 5 3 P( M) P X (c) Comlete the robability chart below, including marginals. Justify all calculations. (0 ts) M M M M Part (a) yields the first column marginal robability, and likewise, art (b) yields the first row marginal robability. Moreover, via indeendence, P( M M ) P( M) P( M ) (0.3456)(0.304) = The other intersection robabilities may be similarly obtained, or more simly, by subtraction. (d) Calculate where Male is eected to be after his n = 5 moves, and indicate this osition on the diagram. Show all work. (4 ts) E[ X ] n 5(0.4) moves to the left, hence n E[ X ] n( ) 5(0.6) 3 moves uward. Therefore, combining yields the osition designated by the star symbol in the diagram. (e) With what robability will this occur? Show all work. (4 ts) 5 3 PX ( ) (0.4) (0.6)

5 In a searate scenario, the female makes n = 4 indeendent moves, each move in any direction, with the following robabilities: P (Left) 0., P (Right) 0., P (U) 0.3, P (Down) 0.4. (f) Calculate the robability that she moves in each of the four directions eactly once. Show all work. (4 ts) Multinomial distribution 4! P(Left, Right, U, Down ) (0.) (0.) (0.3) (0.4) !!!! (g) Calculate the robability that she ends u eactly where she started. Show all work. (5 ts) In addition to (f), she will also return to where she started if she moves left and right twice, or u and down twice, i.e., 4! 0 0 P(Left, Right, U 0, Down 0) (0.) (0.) (0.3) (0.4) 0.004!!0!0! 4! 0 0 P(Left 0, Right 0, U, Down ) (0.) (0.) (0.3) (0.4) !0!!! Hence, the three robabilities sum to =

6 3. (a) An eeriment involving a fair deck of 5 cards is to be conducted. Cards will be randomly selected from the deck with relacement. The random variable of interest is X = Number of trials until a face card (i.e., Jack, Queen, or King) first aears. Can the resulting outcomes be considered a seuence of Bernoulli trials? Be secific! Yes! Each outcome is indeendent of the others; since this is conducted with relacement, the robability of Success (i.e., face card ) does not change! Which robability distribution is the most aroriate to model this eeriment? Determine all arameter values. That is, X ~? Geometric distribution, with P(Success) = 5. Calculate the robability that a face card will first aear on the fourth trial. Show all work A calculator-derived answer alone will not earn any credit. The mf for this distribution is 40 (4) P( X 4) ( ) P( X ) ( ), so that (b) A second eeriment involving the same deck is to be conducted. Cards will be randomly selected from the deck, but without relacement, until a face card (i.e., Jack, Queen, or King) first aears. Can the resulting outcomes be considered a seuence of Bernoulli trials? Be secific! No! Each outcome is not indeendent of the others; since this is conducted without relacement, the robability of Success (i.e., face card ) on each trial affects that of the net trial. Calculate the robability that a face card will first aear on the fourth trial. Show all work A calculator-derived answer alone will not earn any credit Now, PX ( 4) (c) Suose that in general, a oulation of finite size N units contains s Successes. Units are to randomly drawn from the oulation without relacement. It can be formally roved that the random variable X = Number of trials until the first Success aears has mf N s ( ) P( X ) for,,3,4, N s Use this formula to recalculate the robability in (b), and show agreement in your answers. In articular, how the numerical values of the numerator and denominator. (5 ts) N = 5, s =, = 4: (4) P( X 4) , which agrees with (b)

BERNOULLI TRIALS and RELATED PROBABILITY DISTRIBUTIONS

BERNOULLI TRIALS and RELATED PROBABILITY DISTRIBUTIONS BERNOULLI TRIALS and RELATED PROBABILITY DISTRIBUTIONS A BERNOULLI TRIALS Consider tossing a coin several times It is generally agreed that the following aly here ) Each time the coin is tossed there are

More information

B8.1 Martingales Through Measure Theory. Concept of independence

B8.1 Martingales Through Measure Theory. Concept of independence B8.1 Martingales Through Measure Theory Concet of indeendence Motivated by the notion of indeendent events in relims robability, we have generalized the concet of indeendence to families of σ-algebras.

More information

7.2 Inference for comparing means of two populations where the samples are independent

7.2 Inference for comparing means of two populations where the samples are independent Objectives 7.2 Inference for comaring means of two oulations where the samles are indeendent Two-samle t significance test (we give three examles) Two-samle t confidence interval htt://onlinestatbook.com/2/tests_of_means/difference_means.ht

More information

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test)

Tests for Two Proportions in a Stratified Design (Cochran/Mantel-Haenszel Test) Chater 225 Tests for Two Proortions in a Stratified Design (Cochran/Mantel-Haenszel Test) Introduction In a stratified design, the subects are selected from two or more strata which are formed from imortant

More information

Excerpt from "Intermediate Algebra" 2014 AoPS Inc.

Excerpt from Intermediate Algebra 2014 AoPS Inc. Ecert from "Intermediate Algebra" 04 AoPS Inc. www.artofroblemsolving.com for which our grah is below the -ais with the oints where the grah intersects the -ais (because the ineuality is nonstrict), we

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem Coyright c 2017 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins

More information

Department of Mathematics

Department of Mathematics Deartment of Mathematics Ma 3/03 KC Border Introduction to Probability and Statistics Winter 209 Sulement : Series fun, or some sums Comuting the mean and variance of discrete distributions often involves

More information

15-451/651: Design & Analysis of Algorithms October 23, 2018 Lecture #17: Prediction from Expert Advice last changed: October 25, 2018

15-451/651: Design & Analysis of Algorithms October 23, 2018 Lecture #17: Prediction from Expert Advice last changed: October 25, 2018 5-45/65: Design & Analysis of Algorithms October 23, 208 Lecture #7: Prediction from Exert Advice last changed: October 25, 208 Prediction with Exert Advice Today we ll study the roblem of making redictions

More information

General Linear Model Introduction, Classes of Linear models and Estimation

General Linear Model Introduction, Classes of Linear models and Estimation Stat 740 General Linear Model Introduction, Classes of Linear models and Estimation An aim of scientific enquiry: To describe or to discover relationshis among events (variables) in the controlled (laboratory)

More information

Trigonometric Identities

Trigonometric Identities Trigonometric Identities An identity is an equation that is satis ed by all the values of the variable(s) in the equation. We have already introduced the following: (a) tan x (b) sec x (c) csc x (d) cot

More information

8 STOCHASTIC PROCESSES

8 STOCHASTIC PROCESSES 8 STOCHASTIC PROCESSES The word stochastic is derived from the Greek στoχαστικoς, meaning to aim at a target. Stochastic rocesses involve state which changes in a random way. A Markov rocess is a articular

More information

3.2 Probability Rules

3.2 Probability Rules 3.2 Probability Rules The idea of probability rests on the fact that chance behavior is predictable in the long run. In the last section, we used simulation to imitate chance behavior. Do we always need

More information

ECON 4130 Supplementary Exercises 1-4

ECON 4130 Supplementary Exercises 1-4 HG Set. 0 ECON 430 Sulementary Exercises - 4 Exercise Quantiles (ercentiles). Let X be a continuous random variable (rv.) with df f( x ) and cdf F( x ). For 0< < we define -th quantile (or 00-th ercentile),

More information

MATH 361: NUMBER THEORY EIGHTH LECTURE

MATH 361: NUMBER THEORY EIGHTH LECTURE MATH 361: NUMBER THEORY EIGHTH LECTURE 1. Quadratic Recirocity: Introduction Quadratic recirocity is the first result of modern number theory. Lagrange conjectured it in the late 1700 s, but it was first

More information

Chapter 7 Sampling and Sampling Distributions. Introduction. Selecting a Sample. Introduction. Sampling from a Finite Population

Chapter 7 Sampling and Sampling Distributions. Introduction. Selecting a Sample. Introduction. Sampling from a Finite Population Chater 7 and s Selecting a Samle Point Estimation Introduction to s of Proerties of Point Estimators Other Methods Introduction An element is the entity on which data are collected. A oulation is a collection

More information

4. Score normalization technical details We now discuss the technical details of the score normalization method.

4. Score normalization technical details We now discuss the technical details of the score normalization method. SMT SCORING SYSTEM This document describes the scoring system for the Stanford Math Tournament We begin by giving an overview of the changes to scoring and a non-technical descrition of the scoring rules

More information

Worksheet on Derivatives. Dave L. Renfro Drake University November 1, 1999

Worksheet on Derivatives. Dave L. Renfro Drake University November 1, 1999 Worksheet on Derivatives Dave L. Renfro Drake University November, 999 A. Fun With d d (n ) = n n : Find y In case you re interested, the rimary urose of these roblems (Section A) is to review roerties

More information

Conditioning and Independence

Conditioning and Independence Discrete Random Variables: Joint PMFs Conditioning and Indeendence Berlin Chen Deartment of Comuter Science & Information ngineering National Taiwan Normal Universit Reference: - D. P. Bertsekas J. N.

More information

Pseudorandom Sequence Generation

Pseudorandom Sequence Generation YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Crytograhy and Comuter Security Handout #21 Professor M. J. Fischer November 29, 2005 Pseudorandom Seuence Generation 1 Distinguishability and

More information

1 Probability Spaces and Random Variables

1 Probability Spaces and Random Variables 1 Probability Saces and Random Variables 1.1 Probability saces Ω: samle sace consisting of elementary events (or samle oints). F : the set of events P: robability 1.2 Kolmogorov s axioms Definition 1.2.1

More information

1 Extremum Estimators

1 Extremum Estimators FINC 9311-21 Financial Econometrics Handout Jialin Yu 1 Extremum Estimators Let θ 0 be a vector of k 1 unknown arameters. Extremum estimators: estimators obtained by maximizing or minimizing some objective

More information

1 Random Experiments from Random Experiments

1 Random Experiments from Random Experiments Random Exeriments from Random Exeriments. Bernoulli Trials The simlest tye of random exeriment is called a Bernoulli trial. A Bernoulli trial is a random exeriment that has only two ossible outcomes: success

More information

Chapter 7 Rational and Irrational Numbers

Chapter 7 Rational and Irrational Numbers Chater 7 Rational and Irrational Numbers In this chater we first review the real line model for numbers, as discussed in Chater 2 of seventh grade, by recalling how the integers and then the rational numbers

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z,

Random Variable And Probability Distribution. Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, Random Variable And Probability Distribution Introduction Random Variable ( r.v. ) Is defined as a real valued function defined on the sample space S. We denote it as X, Y, Z, T, and denote the assumed

More information

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0.

F(p) y + 3y + 2y = δ(t a) y(0) = 0 and y (0) = 0. Page 5- Chater 5: Lalace Transforms The Lalace Transform is a useful tool that is used to solve many mathematical and alied roblems. In articular, the Lalace transform is a technique that can be used to

More information

Random Variables Example:

Random Variables Example: Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5 s in the 6 rolls. Let X = number of 5 s. Then X could be 0, 1, 2, 3, 4, 5, 6. X = 0 corresponds to the

More information

THE 2D CASE OF THE BOURGAIN-DEMETER-GUTH ARGUMENT

THE 2D CASE OF THE BOURGAIN-DEMETER-GUTH ARGUMENT THE 2D CASE OF THE BOURGAIN-DEMETER-GUTH ARGUMENT ZANE LI Let e(z) := e 2πiz and for g : [0, ] C and J [0, ], define the extension oerator E J g(x) := g(t)e(tx + t 2 x 2 ) dt. J For a ositive weight ν

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

Problem Set 2 Solution

Problem Set 2 Solution Problem Set 2 Solution Aril 22nd, 29 by Yang. More Generalized Slutsky heorem [Simle and Abstract] su L n γ, β n Lγ, β = su L n γ, β n Lγ, β n + Lγ, β n Lγ, β su L n γ, β n Lγ, β n + su Lγ, β n Lγ, β su

More information

Lecture: Condorcet s Theorem

Lecture: Condorcet s Theorem Social Networs and Social Choice Lecture Date: August 3, 00 Lecture: Condorcet s Theorem Lecturer: Elchanan Mossel Scribes: J. Neeman, N. Truong, and S. Troxler Condorcet s theorem, the most basic jury

More information

Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model

Random variables. Lecture 5 - Discrete Distributions. Discrete Probability distributions. Example - Discrete probability model Random Variables Random variables Lecture 5 - Discrete Distributions Sta02 / BME02 Colin Rundel Setember 8, 204 A random variable is a numeric uantity whose value deends on the outcome of a random event

More information

Biostat Methods STAT 5500/6500 Handout #12: Methods and Issues in (Binary Response) Logistic Regression

Biostat Methods STAT 5500/6500 Handout #12: Methods and Issues in (Binary Response) Logistic Regression Biostat Methods STAT 5500/6500 Handout #12: Methods and Issues in (Binary Resonse) Logistic Regression Recall general χ 2 test setu: Y 0 1 Trt 0 a b Trt 1 c d I. Basic logistic regression Previously (Handout

More information

Use of Transformations and the Repeated Statement in PROC GLM in SAS Ed Stanek

Use of Transformations and the Repeated Statement in PROC GLM in SAS Ed Stanek Use of Transformations and the Reeated Statement in PROC GLM in SAS Ed Stanek Introduction We describe how the Reeated Statement in PROC GLM in SAS transforms the data to rovide tests of hyotheses of interest.

More information

San Francisco State University ECON 851 Summer Problem Set 1

San Francisco State University ECON 851 Summer Problem Set 1 San Francisco State University Michael Bar ECON 85 Summer 05 Problem Set. Suose that the wea reference relation % on L is transitive. Prove that the strict reference relation is transitive. Let A; B; C

More information

V-0. Review of Probability

V-0. Review of Probability V-0. Review of Probabilit Random Variable! Definition Numerical characterization of outcome of a random event!eamles Number on a rolled die or dice Temerature at secified time of da 3 Stock Market at close

More information

Probability- the good parts version. I. Random variables and their distributions; continuous random variables.

Probability- the good parts version. I. Random variables and their distributions; continuous random variables. Probability- the good arts version I. Random variables and their distributions; continuous random variables. A random variable (r.v) X is continuous if its distribution is given by a robability density

More information

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit

CHAPTER 5 STATISTICAL INFERENCE. 1.0 Hypothesis Testing. 2.0 Decision Errors. 3.0 How a Hypothesis is Tested. 4.0 Test for Goodness of Fit Chater 5 Statistical Inference 69 CHAPTER 5 STATISTICAL INFERENCE.0 Hyothesis Testing.0 Decision Errors 3.0 How a Hyothesis is Tested 4.0 Test for Goodness of Fit 5.0 Inferences about Two Means It ain't

More information

Advanced Calculus I. Part A, for both Section 200 and Section 501

Advanced Calculus I. Part A, for both Section 200 and Section 501 Sring 2 Instructions Please write your solutions on your own aer. These roblems should be treated as essay questions. A roblem that says give an examle requires a suorting exlanation. In all roblems, you

More information

Uniform Law on the Unit Sphere of a Banach Space

Uniform Law on the Unit Sphere of a Banach Space Uniform Law on the Unit Shere of a Banach Sace by Bernard Beauzamy Société de Calcul Mathématique SA Faubourg Saint Honoré 75008 Paris France Setember 008 Abstract We investigate the construction of a

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

BEST POSSIBLE DENSITIES OF DICKSON m-tuples, AS A CONSEQUENCE OF ZHANG-MAYNARD-TAO

BEST POSSIBLE DENSITIES OF DICKSON m-tuples, AS A CONSEQUENCE OF ZHANG-MAYNARD-TAO BEST POSSIBLE DENSITIES OF DICKSON m-tuples, AS A CONSEQUENCE OF ZHANG-MAYNARD-TAO ANDREW GRANVILLE, DANIEL M. KANE, DIMITRIS KOUKOULOPOULOS, AND ROBERT J. LEMKE OLIVER Abstract. We determine for what

More information

Final Exam Review. Name: Class: Date: Short Answer

Final Exam Review. Name: Class: Date: Short Answer Name: Class: Date: ID: A Final Exam Review Short Answer. Use x, 2, 0,, 2 to graph the function f( x) 2 x. Then graph its inverse. Describe the domain and range of the inverse function. 2. Graph the inverse

More information

Solution: (Course X071570: Stochastic Processes)

Solution: (Course X071570: Stochastic Processes) Solution I (Course X071570: Stochastic Processes) October 24, 2013 Exercise 1.1: Find all functions f from the integers to the real numbers satisfying f(n) = 1 2 f(n + 1) + 1 f(n 1) 1. 2 A secial solution

More information

Mathematics. Class 12th. CBSE Examination Paper 2015 (All India Set) (Detailed Solutions)

Mathematics. Class 12th. CBSE Examination Paper 2015 (All India Set) (Detailed Solutions) CBSE Eamination Paer (All India Set) (Detailed Solutions) Mathematics Class th z z. We have, z On aling R R R, we get z z z z (/) Taking common ( z) from R common from R, we get ( z)( ) z ( z)( ) [ R R

More information

Hotelling s Two- Sample T 2

Hotelling s Two- Sample T 2 Chater 600 Hotelling s Two- Samle T Introduction This module calculates ower for the Hotelling s two-grou, T-squared (T) test statistic. Hotelling s T is an extension of the univariate two-samle t-test

More information

HARMONIC EXTENSION ON NETWORKS

HARMONIC EXTENSION ON NETWORKS HARMONIC EXTENSION ON NETWORKS MING X. LI Abstract. We study the imlication of geometric roerties of the grah of a network in the extendibility of all γ-harmonic germs at an interior node. We rove that

More information

Discrete Structures Homework 1

Discrete Structures Homework 1 Discrete Structures Homework 1 Due: June 15. Section 1.1 16 Determine whether these biconditionals are true or false. a) 2 + 2 = 4 if and only if 1 + 1 = 2 b) 1 + 1 = 2 if and only if 2 + 3 = 4 c) 1 +

More information

Math 3 Proportion & Probability Part 2 Sequences, Patterns, Frequency Tables & Venn Diagrams

Math 3 Proportion & Probability Part 2 Sequences, Patterns, Frequency Tables & Venn Diagrams Math 3 Proportion & Probability Part 2 Sequences, Patterns, Frequency Tables & Venn Diagrams 1 MATH 2 REVIEW ARITHMETIC SEQUENCES In an Arithmetic Sequence the difference between one term and the next

More information

Panos Kouvelis Olin School of Business Washington University

Panos Kouvelis Olin School of Business Washington University Quality-Based Cometition, Profitability, and Variable Costs Chester Chambers Co Shool of Business Dallas, TX 7575 hamber@mailosmuedu -768-35 Panos Kouvelis Olin Shool of Business Washington University

More information

Generating Swerling Random Sequences

Generating Swerling Random Sequences Generating Swerling Random Sequences Mark A. Richards January 1, 1999 Revised December 15, 8 1 BACKGROUND The Swerling models are models of the robability function (df) and time correlation roerties of

More information

1. Exercise on Page 8: 2. Exercise on Page 8: (b)c 1 (C 2 C 3 ) and (C 1 C 2 ) (C 1 C 3 ) (C 1 C 2 ) (C 2 C 3 ) Problem Set 1 Fall 2017

1. Exercise on Page 8: 2. Exercise on Page 8: (b)c 1 (C 2 C 3 ) and (C 1 C 2 ) (C 1 C 3 ) (C 1 C 2 ) (C 2 C 3 ) Problem Set 1 Fall 2017 . Exercise.2. on Page 8: Find the union C C 2 and the intersection C C 2 of the two sets C and C 2, where (a) C = {0,, 2}, C 2 = {2, 3, 4} Answer(a): C C 2 = {0,, 2, 3, 4}, C C 2 = {2} (b) C = {x : 0

More information

Discrete Distributions

Discrete Distributions A simplest example of random experiment is a coin-tossing, formally called Bernoulli trial. It happens to be the case that many useful distributions are built upon this simplest form of experiment, whose

More information

arxiv:cond-mat/ v2 25 Sep 2002

arxiv:cond-mat/ v2 25 Sep 2002 Energy fluctuations at the multicritical oint in two-dimensional sin glasses arxiv:cond-mat/0207694 v2 25 Se 2002 1. Introduction Hidetoshi Nishimori, Cyril Falvo and Yukiyasu Ozeki Deartment of Physics,

More information

Final Exam Review - DO NOT WRITE ON THIS

Final Exam Review - DO NOT WRITE ON THIS Name: Class: Date: Final Exam Review - DO NOT WRITE ON THIS Short Answer. Use x =,, 0,, to graph the function f( x) = x. Then graph its inverse. Describe the domain and range of the inverse function..

More information

THE ERDÖS - MORDELL THEOREM IN THE EXTERIOR DOMAIN

THE ERDÖS - MORDELL THEOREM IN THE EXTERIOR DOMAIN INTERNATIONAL JOURNAL OF GEOMETRY Vol. 5 (2016), No. 1, 31-38 THE ERDÖS - MORDELL THEOREM IN THE EXTERIOR DOMAIN PETER WALKER Abstract. We show that in the Erd½os-Mordell theorem, the art of the region

More information

Extension of Minimax to Infinite Matrices

Extension of Minimax to Infinite Matrices Extension of Minimax to Infinite Matrices Chris Calabro June 21, 2004 Abstract Von Neumann s minimax theorem is tyically alied to a finite ayoff matrix A R m n. Here we show that (i) if m, n are both inite,

More information

What is Probability? Probability. Sample Spaces and Events. Simple Event

What is Probability? Probability. Sample Spaces and Events. Simple Event What is Probability? Probability Peter Lo Probability is the numerical measure of likelihood that the event will occur. Simple Event Joint Event Compound Event Lies between 0 & 1 Sum of events is 1 1.5

More information

Improvement on the Decay of Crossing Numbers

Improvement on the Decay of Crossing Numbers Grahs and Combinatorics 2013) 29:365 371 DOI 10.1007/s00373-012-1137-3 ORIGINAL PAPER Imrovement on the Decay of Crossing Numbers Jakub Černý Jan Kynčl Géza Tóth Received: 24 Aril 2007 / Revised: 1 November

More information

Math 701: Secant Method

Math 701: Secant Method Math 701: Secant Method The secant method aroximates solutions to f(x = 0 using an iterative scheme similar to Newton s method in which the derivative has been relace by This results in the two-term recurrence

More information

Functions of a Complex Variable

Functions of a Complex Variable MIT OenCourseWare htt://ocw.mit.edu 8. Functions of a Comle Variable Fall 8 For information about citing these materials or our Terms of Use, visit: htt://ocw.mit.edu/terms. Lecture and : The Prime Number

More information

HENSEL S LEMMA KEITH CONRAD

HENSEL S LEMMA KEITH CONRAD HENSEL S LEMMA KEITH CONRAD 1. Introduction In the -adic integers, congruences are aroximations: for a and b in Z, a b mod n is the same as a b 1/ n. Turning information modulo one ower of into similar

More information

A Model for Randomly Correlated Deposition

A Model for Randomly Correlated Deposition A Model for Randomly Correlated Deosition B. Karadjov and A. Proykova Faculty of Physics, University of Sofia, 5 J. Bourchier Blvd. Sofia-116, Bulgaria ana@hys.uni-sofia.bg Abstract: A simle, discrete,

More information

f(x) p(x) =p(b)... d. A function can have two different horizontal asymptotes...

f(x) p(x) =p(b)... d. A function can have two different horizontal asymptotes... Math Final Eam, Fall. ( ts.) Mark each statement as either true [T] or false [F]. f() a. If lim f() =and lim g() =, then lim does not eist......................!5!5!5 g() b. If is a olynomial, then lim!b

More information

Statistics for Economists. Lectures 3 & 4

Statistics for Economists. Lectures 3 & 4 Statistics for Economists Lectures 3 & 4 Asrat Temesgen Stockholm University 1 CHAPTER 2- Discrete Distributions 2.1. Random variables of the Discrete Type Definition 2.1.1: Given a random experiment with

More information

Math 99 Review for Exam 3

Math 99 Review for Exam 3 age 1 1. Simlify each of the following eressions. (a) ab a b + 1 b 1 a 1 b + 1 Solution: We will factor both numerator and denominator and then cancel. The numerator can be factored by grouing ab {z a

More information

Classical AI and ML research ignored this phenomena Another example

Classical AI and ML research ignored this phenomena Another example Wat is tis? Classical AI and ML researc ignored tis enomena Anoter eamle you want to catc a fligt at 0:00am from Pitt to SF, can I make it if I leave at 8am and take a Marta at Gatec? artial observability

More information

Homework Solution 4 for APPM4/5560 Markov Processes

Homework Solution 4 for APPM4/5560 Markov Processes Homework Solution 4 for APPM4/556 Markov Processes 9.Reflecting random walk on the line. Consider the oints,,, 4 to be marked on a straight line. Let X n be a Markov chain that moves to the right with

More information

Math 143 Final Review - Version B page 1

Math 143 Final Review - Version B page 1 Math Final Review - Version B age. Simlif each of the following. cos a) + sin cos (log = log ) c) log (log ) log d) log log log e) cos sin cos f) sin cos + cos sin g) log sin h) sin tan i) + tan log j)

More information

Econometrica Supplementary Material

Econometrica Supplementary Material Econometrica Sulementary Material SUPPLEMENT TO PARTIAL IDENTIFICATION IN TRIANGULAR SYSTEMS OF EQUATIONS WITH BINARY DEPENDENT VARIABLES : APPENDIX Econometrica, Vol. 79, No. 3, May 2011, 949 955) BY

More information

Intermediate Math Circles November 8, 2017 Probability II

Intermediate Math Circles November 8, 2017 Probability II Intersection of Events and Independence Consider two groups of pairs of events Intermediate Math Circles November 8, 017 Probability II Group 1 (Dependent Events) A = {a sales associate has training} B

More information

Discrete Distributions

Discrete Distributions Discrete Distributions STA 281 Fall 2011 1 Introduction Previously we defined a random variable to be an experiment with numerical outcomes. Often different random variables are related in that they have

More information

Errata List for the Second Printing

Errata List for the Second Printing Errata List for the Second Printing The Second Revised Edition has had two printings, and it also exists on the web. The second printing can be distinguished from the first printing by the fact that on

More information

The Longest Run of Heads

The Longest Run of Heads The Longest Run of Heads Review by Amarioarei Alexandru This aer is a review of older and recent results concerning the distribution of the longest head run in a coin tossing sequence, roblem that arise

More information

Chapter 7: Special Distributions

Chapter 7: Special Distributions This chater first resents some imortant distributions, and then develos the largesamle distribution theory which is crucial in estimation and statistical inference Discrete distributions The Bernoulli

More information

CERIAS Tech Report The period of the Bell numbers modulo a prime by Peter Montgomery, Sangil Nahm, Samuel Wagstaff Jr Center for Education

CERIAS Tech Report The period of the Bell numbers modulo a prime by Peter Montgomery, Sangil Nahm, Samuel Wagstaff Jr Center for Education CERIAS Tech Reort 2010-01 The eriod of the Bell numbers modulo a rime by Peter Montgomery, Sangil Nahm, Samuel Wagstaff Jr Center for Education and Research Information Assurance and Security Purdue University,

More information

A note on the random greedy triangle-packing algorithm

A note on the random greedy triangle-packing algorithm A note on the random greedy triangle-acking algorithm Tom Bohman Alan Frieze Eyal Lubetzky Abstract The random greedy algorithm for constructing a large artial Steiner-Trile-System is defined as follows.

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

LIVE: FINAL EXAM PREPARATION PAPER 1 30 OCTOBER 2014

LIVE: FINAL EXAM PREPARATION PAPER 1 30 OCTOBER 2014 LIVE: FINAL EXAM PREPARATION PAPER 0 OCTOBER 04 Lesson Descrition In this lesson we: Work through uestions from various Paer aers. Challenge Question Phili is designing large fish troughs in the shae of

More information

The Euler Phi Function

The Euler Phi Function The Euler Phi Function 7-3-2006 An arithmetic function takes ositive integers as inuts and roduces real or comlex numbers as oututs. If f is an arithmetic function, the divisor sum Dfn) is the sum of the

More information

Statics and dynamics: some elementary concepts

Statics and dynamics: some elementary concepts 1 Statics and dynamics: some elementary concets Dynamics is the study of the movement through time of variables such as heartbeat, temerature, secies oulation, voltage, roduction, emloyment, rices and

More information

6.041/6.431 Fall 2010 Final Exam Solutions Wednesday, December 15, 9:00AM - 12:00noon.

6.041/6.431 Fall 2010 Final Exam Solutions Wednesday, December 15, 9:00AM - 12:00noon. 604/643 Fall 200 Final Exam Solutions Wednesday, December 5, 9:00AM - 2:00noon Problem (32 points) Consider a Markov chain {X n ; n 0,, }, specified by the following transition diagram 06 05 09 04 03 2

More information

The one-sample t test for a population mean

The one-sample t test for a population mean Objectives Constructing and assessing hyotheses The t-statistic and the P-value Statistical significance The one-samle t test for a oulation mean One-sided versus two-sided tests Further reading: OS3,

More information

Measuring center and spread for density curves. Calculating probabilities using the standard Normal Table (CIS Chapter 8, p 105 mainly p114)

Measuring center and spread for density curves. Calculating probabilities using the standard Normal Table (CIS Chapter 8, p 105 mainly p114) Objectives Density curves Measuring center and sread for density curves Normal distributions The 68-95-99.7 (Emirical) rule Standardizing observations Calculating robabilities using the standard Normal

More information

#A37 INTEGERS 15 (2015) NOTE ON A RESULT OF CHUNG ON WEIL TYPE SUMS

#A37 INTEGERS 15 (2015) NOTE ON A RESULT OF CHUNG ON WEIL TYPE SUMS #A37 INTEGERS 15 (2015) NOTE ON A RESULT OF CHUNG ON WEIL TYPE SUMS Norbert Hegyvári ELTE TTK, Eötvös University, Institute of Mathematics, Budaest, Hungary hegyvari@elte.hu François Hennecart Université

More information

Econ 113. Lecture Module 2

Econ 113. Lecture Module 2 Econ 113 Lecture Module 2 Contents 1. Experiments and definitions 2. Events and probabilities 3. Assigning probabilities 4. Probability of complements 5. Conditional probability 6. Statistical independence

More information

Elementary Analysis in Q p

Elementary Analysis in Q p Elementary Analysis in Q Hannah Hutter, May Szedlák, Phili Wirth November 17, 2011 This reort follows very closely the book of Svetlana Katok 1. 1 Sequences and Series In this section we will see some

More information

ISOSCELES TRIANGLES IN Q 3. Matt Noble Department of Mathematics, Middle Georgia State University, Macon, Georgia

ISOSCELES TRIANGLES IN Q 3. Matt Noble Department of Mathematics, Middle Georgia State University, Macon, Georgia #A9 INTEGERS 18 (2018) ISOSCELES TRIANGLES IN Q Matt Noble Deartment of Mathematics, Middle Georgia State University, Macon, Georgia matthew.noble@mga.edu Received: 7/2/17, Acceted: 2//18, Published: 2/19/18

More information

A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS. 1. Abstract

A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS. 1. Abstract A CONCRETE EXAMPLE OF PRIME BEHAVIOR IN QUADRATIC FIELDS CASEY BRUCK 1. Abstract The goal of this aer is to rovide a concise way for undergraduate mathematics students to learn about how rime numbers behave

More information

Availability and Maintainability. Piero Baraldi

Availability and Maintainability. Piero Baraldi Availability and Maintainability 1 Introduction: reliability and availability System tyes Non maintained systems: they cannot be reaired after a failure (a telecommunication satellite, a F1 engine, a vessel

More information

8.7 Associated and Non-associated Flow Rules

8.7 Associated and Non-associated Flow Rules 8.7 Associated and Non-associated Flow Rules Recall the Levy-Mises flow rule, Eqn. 8.4., d ds (8.7.) The lastic multilier can be determined from the hardening rule. Given the hardening rule one can more

More information

Introduction to Probability for Graphical Models

Introduction to Probability for Graphical Models Introduction to Probability for Grahical Models CSC 4 Kaustav Kundu Thursday January 4, 06 *Most slides based on Kevin Swersky s slides, Inmar Givoni s slides, Danny Tarlow s slides, Jaser Snoek s slides,

More information

Page Max. Possible Points Total 100

Page Max. Possible Points Total 100 Math 3215 Exam 2 Summer 2014 Instructor: Sal Barone Name: GT username: 1. No books or notes are allowed. 2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic

More information

success and failure independent from one trial to the next?

success and failure independent from one trial to the next? , section 8.4 The Binomial Distribution Notes by Tim Pilachowski Definition of Bernoulli trials which make up a binomial experiment: The number of trials in an experiment is fixed. There are exactly two

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)...

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 4. (a) (b) (c) (d) (e)... Math 020, Exam II October, 206 The Honor Code is in effect for this examination. All work is to be your own. You may use a calculator. The exam lasts for hour 5 minutes. Be sure that your name is on every

More information

MATH 151, FINAL EXAM Winter Quarter, 21 March, 2014

MATH 151, FINAL EXAM Winter Quarter, 21 March, 2014 Time: 3 hours, 8:3-11:3 Instructions: MATH 151, FINAL EXAM Winter Quarter, 21 March, 214 (1) Write your name in blue-book provided and sign that you agree to abide by the honor code. (2) The exam consists

More information

STAT 311 Practice Exam 2 Key Spring 2016 INSTRUCTIONS

STAT 311 Practice Exam 2 Key Spring 2016 INSTRUCTIONS STAT 311 Practice Exam 2 Key Spring 2016 Name: Key INSTRUCTIONS 1. Nonprogrammable calculators (or a programmable calculator cleared in front of the professor before class) are allowed. Exam is closed

More information

CS 237: Probability in Computing

CS 237: Probability in Computing CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 11: Geometric Distribution Poisson Process Poisson Distribution Geometric Distribution The Geometric

More information

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers.

9/6/2016. Section 5.1 Probability. Equally Likely Model. The Division Rule: P(A)=#(A)/#(S) Some Popular Randomizers. Chapter 5: Probability and Discrete Probability Distribution Learn. Probability Binomial Distribution Poisson Distribution Some Popular Randomizers Rolling dice Spinning a wheel Flipping a coin Drawing

More information

Real Analysis 1 Fall Homework 3. a n.

Real Analysis 1 Fall Homework 3. a n. eal Analysis Fall 06 Homework 3. Let and consider the measure sace N, P, µ, where µ is counting measure. That is, if N, then µ equals the number of elements in if is finite; µ = otherwise. One usually

More information