Chapter 5 Newton s Laws of Motion

Size: px
Start display at page:

Download "Chapter 5 Newton s Laws of Motion"

Transcription

1 Chapter 5 Newton s Laws of Motion

2 Newtonian Mechanics

3 Mass Mass is an intrinsic characteristic of a body The mass of a body is the characteristic that relates a force on the body to the resulting acceleration.

4 5-1 Force and Mass Mass is the measure of how hard it is to change an object s velocity. Mass can also be thought of as a measure of the quantity of matter in an object.

5 Force The force that is exerted on a standard mass of 1 kg to produce an acceleration of 1 m/s 2 has a magnitude of 1 newton (abbreviated N)

6 Force: push or pull Understanding Force Force is a vector it has magnitude and direction

7 Effect Of Friction If you stop pushing an object, does it stop moving? Only if there is friction! In the absence of any net external force, an object will keep moving at a constant speed in a straight line, or remain at rest. This is also known as the law of inertia.

8 Newton s First Law Newton s First Law: If no force acts on a body, the body s velocity cannot change; that is, the body cannot accelerate. If the body is at rest, it stays at rest. If it is moving, it continues to move with the same velocity (same magnitude and same direction).

9 5-2 Newton s First Law of Motion In order to change the velocity of an object magnitude or direction a net force is required. An inertial reference frame is one in which the first law is true. Accelerating reference frames are not inertial.

10 Force A force is measured by the acceleration it produces. Forces have both magnitudes and directions. When two or more forces act on a body, we can find their net, or resultant force, by adding the individual forces vectorially.

11 Relation Between Force And Mass Two equal weights exert twice the force of one; this can be used for calibration of a spring:

12 Relation Between Force And Acceleration Now that we have a calibrated spring, we can do more experiments. Acceleration is proportional to force:

13 Relation Between Force And Acceleration Acceleration is inversely proportional to mass:

14 5-3 Newton s Second Law of Motion Combining these two observations gives Or, more familiarly,

15 Newton s second law: The net force on a body is equal to the product of the body s mass and its acceleration. In component form, The acceleration component along a given axis is caused only by the sum of the force components along that same axis, and not by force components along any other axis.

16 5-3 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: (5-1)

17 Free-body diagrams: Free-body Diagram A free-body diagram shows every force acting on an object. Sketch the forces Isolate the object of interest Choose a convenient coordinate system Resolve the forces into components Apply Newton s second law to each coordinate direction

18 Free-body Diagrams Example of a free-body diagram:

19 Newton s second law; drawing a free-body diagram In a free-body diagram, the only body shown is the one for which we are summing forces. Each force on the body is drawn as a vector arrow with its tail on the body. A coordinate system is usually included, and the acceleration of the body is sometimes shown with a vector arrow (labeled as an acceleration). The figure here shows two horizontal forces acting on a block on a frictionless floor.

20 Some particular forces Gravitational Force: gravitational force on a body is a certain type of pull that is directed toward a second body. The weight, W, of a body is equal to the magnitude F g of the gravitational force on the body. W = mg (weight), uppose a body of mass m is in free fall with the free-fall acceleration of magnitude g. The force that the body feels as a result is: F g = m(g) or F g = mg.

21 5-6 Weight The weight of an object on the Earth s surface is the gravitational force exerted on it by the Earth.

22 Apparent weight: 5-6 Weight Your perception of your weight is based on the contact forces between your body and your surroundings. If your surroundings are accelerating, your apparent weight may be more or less than your actual weight.

23 5-7 Normal Forces The normal force is the force exerted by a surface on an object.

24 5-7 Normal Forces The normal force may be equal to, greater than, or less than the weight.

25 5-7 Normal Forces The normal force is always perpendicular to the surface.

26 Some particular forces Normal Force: hen a body presses against a surface, the surface (even a seemingly rigid one) deforms and pushes on the body with a normal force, F N, that is perpendicular to e surface. the figure, forces F g and F N and are the only two forces on the block and they are both vertical. Thus, for the block we can write Newton s second law for a positive-upward y axis, net, y= ma y ), as: A block resting on a table experiences a normal force perpendicular to the tabletop. (b) The free-body diagram for the block. for any vertical acceleration a y of the table and block

27 Some particular forces Friction f we either slide or attempt to slide a body over a surface, the motion is resisted by a bonding between the body and the surface. he resistance is considered to be single force called the frictional force, f. This force is directed along the surface, opposite the direction of the intended motion.

28 Newton s Third Law of Motion Forces always come in pairs, acting on different objects: If object 1 exerts a force F r on object 2, then object 2 exerts a force F r on object 1. These forces are called action-reaction pairs.

29 Newton s Third Law of Motion Some action-reaction pairs:

30 Newton s Third Law of Motion Although the forces are the same, the accelerations will not be unless the objects have the same mass. Contact forces: The force exerted by one box on the other is different depending on which one you push.

31 Newton s Third Law hen two bodies interact, the forces on the bodies from each other are always equal in magnitude and opposite in direction. The minus sign means that these two forces are in opposite directions The forces between two interacting bodies are called a third-law force pair.

32 Special Instructions For Chapter 5 Chapter 5 is very important chapter for Universities and Corporate America. Homework for this chapter is extensive and will be weighed heavily in Exam II. You need to understand this chapter thoroughly before you can understand chapter 6. Exam II will be on Chapter 4, 5 and 6. Try to complete entire homework prior to next class.

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions

More information

Chapter 5. Force and Motion-I

Chapter 5. Force and Motion-I Chapter 5 Force and Motion-I 5.3 Newton s First Law Newton s First Law: If no force acts on a body, the body s velocity cannot change The purpose of Newton s First Law is to introduce the special frames

More information

2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for Lecture Outlines Chapter 5 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.

Chapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc. Chapter 5 Newton s Laws of Motion Copyright 2010 Pearson Education, Inc. Force and Mass Copyright 2010 Pearson Education, Inc. Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion

More information

Chapter 5. Force and Motion I

Chapter 5. Force and Motion I Chapter 5 Force and Motion I 5 Force and Motion I 25 October 2018 PHY101 Physics I Dr.Cem Özdoğan 2 3 5-2 Newtonian Mechanics A force is a push or pull acting on a object and causes acceleration. Mechanics

More information

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow. POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Chapter 4 DYNAMICS: FORCE AND NEWTON S LAWS OF MOTION

Chapter 4 DYNAMICS: FORCE AND NEWTON S LAWS OF MOTION Chapter 4 DYNAMICS: FORCE AND NEWTON S LAWS OF MOTION Part (a) shows an overhead view of two ice skaters pushing on a third. Forces are vectors and add like other vectors, so the total force on the third

More information

Chapter 4: Newton's Laws of Motion

Chapter 4: Newton's Laws of Motion Chapter 4 Lecture Chapter 4: Newton's Laws of Motion Goals for Chapter 4 To understand force either directly or as the net force of multiple components. To study and apply Newton's first law. To study

More information

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones Physics 22000 General Physics Lecture 3 Newtonian Mechanics Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1 and 2 In the previous lectures we learned how to describe some special types of

More information

Applying Newton s Laws

Applying Newton s Laws Applying Newton s Laws Free Body Diagrams Draw and label the forces acting on the object. Examples of forces: weight, normal force, air resistance, friction, applied forces (like a push or pull) Velocity

More information

Newton s Laws of Motion. Monday, September 26, 11

Newton s Laws of Motion. Monday, September 26, 11 Newton s Laws of Motion Introduction We ve studied motion in one, two, and three dimensions but what causes motion? This causality was first studied in the late 1600s by Sir Isaac Newton. The laws are

More information

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds? Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

Unit 5 Forces I- Newtonʼ s First & Second Law

Unit 5 Forces I- Newtonʼ s First & Second Law Unit 5 orces I- Newtonʼ s irst & Second Law Unit is the NEWTON(N) Is by definition a push or a pull Does force need a Physical contact? Can exist during physical contact(tension, riction, Applied orce)

More information

General Physics I Spring Forces and Newton s Laws of Motion

General Physics I Spring Forces and Newton s Laws of Motion General Physics I Spring 2011 Forces and Newton s Laws of Motion 1 Forces and Interactions The central concept in understanding why things move is force. If a tractor pushes or pulls a trailer, the tractor

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

INTRO VIDEO REVIEW QUIZ

INTRO VIDEO REVIEW QUIZ DEVIL PHYSICS BADDEST CLASS ON CAMPUS PRE-DP PHYSICS INTRO VIDEO Newton's Third Law of Motion REVIEW QUIZ 1. What is force? 2. Name Newton s First Law of Motion. 3. What is inertia? 4. What is the chemistry

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Force F Chapter 5 Force and Motion is the interaction between objects is a vector causes acceleration Net force: vector sum of all the forces on an object. v v N v v v v v Ftotal Fnet = Fi = F1 + F2 +

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

PH 221-3A Fall Force and Motion. Lecture 8. Chapter 5 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 221-3A Fall Force and Motion. Lecture 8. Chapter 5 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 221-3A Fall 2010 Force and Motion Lecture 8 Chapter 5 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 5 Force and Motion In chapters 2 and 4 we have studied kinematics i.e.

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Newton s third law Examples Isaac Newton s work represents one of the greatest contributions to science ever made by an individual.

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapter 5 Force and Motion Chapter Goal: To establish a connection between force and motion. Slide 5-2 Chapter 5 Preview Slide 5-3 Chapter 5 Preview Slide 5-4 Chapter 5 Preview Slide 5-5 Chapter 5 Preview

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Newton s Laws Forces Mass and Weight Serway and Jewett 5.1 to 5.6 Practice: Chapter 5, Objective Questions 2, 11 Conceptual Questions 7, 9, 19, 21 Problems 2, 3, 7, 13 Newton s

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

Physics for Scientists and Engineers. Chapter 5 Force and Motion

Physics for Scientists and Engineers. Chapter 5 Force and Motion Physics for Scientists and Engineers Chapter 5 Force and Motion Spring, 2008 Ho Jung Paik Force Forces are what cause any change in the velocity of an object The net force is the vector sum of all the

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 4 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Chapter 4: Newton s Laws of Motion [A Tale of Force, Friction and Tension] 4.1. Newton s Laws of Motion

Chapter 4: Newton s Laws of Motion [A Tale of Force, Friction and Tension] 4.1. Newton s Laws of Motion Chapter 4: Newton s Laws of Motion [A Tale of Force, Friction and Tension] 4.1. Newton s Laws of Motion Force is a push or pull. Force Force is a vector it has magnitude and direction. Newton s First Law

More information

Physics 221, January 24

Physics 221, January 24 Key Concepts: Newton s 1 st law Newton s 2 nd law Weight Newton s 3 rd law Physics 221, January 24 Please find a seat. Keep all walkways free for safety reasons and to comply with the fire code. Matter

More information

Unit 5 Forces I- Newton s First & Second Law

Unit 5 Forces I- Newton s First & Second Law Unit 5 Forces I- Newton s First & Second Law Unit is the NEWTON(N) Is by definition a push or a pull Does force need a Physical contact? Can exist during physical contact(tension, Friction, Applied Force)

More information

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 4 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 4 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction. Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why?

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why? AP Physics 1 Lesson 4.a Nature of Forces Outcomes Define force. State and explain Newton s first Law of Motion. Describe inertia and describe its relationship to mass. Draw free-body diagrams to represent

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force

More information

4.2. The Normal Force, Apparent Weight and Hooke s Law

4.2. The Normal Force, Apparent Weight and Hooke s Law 4.2. The Normal Force, Apparent Weight and Hooke s Law Weight The weight of an object on the Earth s surface is the gravitational force exerted on it by the Earth. When you weigh yourself, the scale gives

More information

Chapter 3 The Laws of motion. The Laws of motion

Chapter 3 The Laws of motion. The Laws of motion Chapter 3 The Laws of motion The Laws of motion The Concept of Force. Newton s First Law. Newton s Second Law. Newton s Third Law. Some Applications of Newton s Laws. 1 5.1 The Concept of Force Force:

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

Physics 111. Lecture 9 (Walker: 5.1-4) Newton s 2 nd Law: F = ma Newton s 3 rd Law. February 16, 2009

Physics 111. Lecture 9 (Walker: 5.1-4) Newton s 2 nd Law: F = ma Newton s 3 rd Law. February 16, 2009 Physics 111 Lecture 9 (Walker: 5.1-4) Newton s nd Law: F = ma Newton s 3 rd Law February 16, 009 Lecture 9 1/3 Force Force: push or pull. Symbol F (also W and N ) Force is a vector it has magnitude and

More information

Chapter 5 Newton s Laws of Motion. What determines acceleration on objects?

Chapter 5 Newton s Laws of Motion. What determines acceleration on objects? Chapter 5 Newton s Laws of Motion What determines acceleration on objects? 1 Units of Chapter 5 Force and Mass Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

for any object. Note that we use letter, m g, meaning gravitational

for any object. Note that we use letter, m g, meaning gravitational Lecture 4. orces, Newton's Second Law Last time we have started our discussion of Newtonian Mechanics and formulated Newton s laws. Today we shall closely look at the statement of the second law and consider

More information

Physics B Newton s Laws AP Review Packet

Physics B Newton s Laws AP Review Packet Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

More information

Chapter 4: Newton s Laws of Motion

Chapter 4: Newton s Laws of Motion Chapter 4: Newton s Laws of Motion We will study classical motion: No quantum mechanics No relativity We introduce the concept of force and define it in terms of the acceleration of a standard d body Intuitively,

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

Physics Mechanics. Lecture 11 Newton s Laws - part 2

Physics Mechanics. Lecture 11 Newton s Laws - part 2 Physics 170 - Mechanics Lecture 11 Newton s Laws - part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

Newton s 3 Laws. Explain Newton s 3 Laws of Motion. Cite observed evidence for each law of motion.

Newton s 3 Laws. Explain Newton s 3 Laws of Motion. Cite observed evidence for each law of motion. Name: Date: 1/16 Period: Unit 3 Newton s 3 Laws Essential Questions: How do forces affect motion? What can you conclude about net force on an object when you don t observe it accelerate? When a mosquito

More information

Ch. 2 The Laws of Motion

Ch. 2 The Laws of Motion Ch. 2 The Laws of Motion Lesson 1 Gravity and Friction Force - A push or pull we pull on a locker handle push a soccer ball or on the computer keys Contact force - push or pull on one object by another

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

Introduction to Dynamics: Forces and Newton's Laws What causes an object's motion to change? What is a Force? What are Newton's 3 Laws of Motion?

Introduction to Dynamics: Forces and Newton's Laws What causes an object's motion to change? What is a Force? What are Newton's 3 Laws of Motion? Introduction to Dynamics: Forces and Newton's Laws What causes an object's motion to change? What is a Force? What are Newton's 3 Laws of Motion? Physics 1 a When I drop a tennis ball, it accelerates downwards.

More information

Chapter 5 Lecture. Pearson Physics. Newton's Laws of Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 5 Lecture. Pearson Physics. Newton's Laws of Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 5 Lecture Pearson Physics Newton's Laws of Motion Prepared by Chris Chiaverina Chapter Contents Newton's Laws of Motion Applying Newton's Laws Friction Newton's Laws of Motion Two of the most important

More information

Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity

Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity Chapter 4 Physics Notes Changes in Motion Force a push or a pull exerted on some object the cause of an acceleration, or the change in an objects velocity Forces cause changes in velocity Causes a stationary

More information

I. AXN/RXN W.S. In the example below, the action-reaction pair is shown by the arrows (vectors), and the action-reaction described in words.

I. AXN/RXN W.S. In the example below, the action-reaction pair is shown by the arrows (vectors), and the action-reaction described in words. I. AXN/RXN W.S. In the example below, the action-reaction pair is shown by the arrows (vectors), and the action-reaction described in words. 1. For the remaining situations, discuss with your neighbor

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a

More information

Lecture 6. > Forces. > Newton's Laws. > Normal Force, Weight. (Source: Serway; Giancoli) Villacorta-DLSUM-BIOPHY1-L Term01

Lecture 6. > Forces. > Newton's Laws. > Normal Force, Weight. (Source: Serway; Giancoli) Villacorta-DLSUM-BIOPHY1-L Term01 Lecture 6 > Forces > Newton's Laws > Normal Force, Weight (Source: Serway; Giancoli) 1 Dynamics > Knowing the initial conditions of moving objects can predict the future motion of the said objects. > In

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Newton s Laws of Motion and Gravitation

Newton s Laws of Motion and Gravitation Newton s Laws of Motion and Gravitation Introduction: In Newton s first law we have discussed the equilibrium condition for a particle and seen that when the resultant force acting on the particle is zero,

More information

Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively

Be on time Switch off mobile phones. Put away laptops. Being present = Participating actively A couple of house rules Be on time Switch off mobile phones Put away laptops Being present = Participating actively http://www.phys.tue.nl/nfcmr/natuur/collegenatuur.html Chapter 4 Newton s Laws of Motion

More information

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move Chapter 4 Dynamics: Newton s Laws of Motion That is, describing why objects move orces Newton s 1 st Law Newton s 2 nd Law Newton s 3 rd Law Examples of orces: Weight, Normal orce, Tension, riction ree-body

More information

Section 1 Changes in Motion. Chapter 4. Preview. Objectives Force Force Diagrams

Section 1 Changes in Motion. Chapter 4. Preview. Objectives Force Force Diagrams Section 1 Changes in Motion Preview Objectives Force Force Diagrams Section 1 Changes in Motion Objectives Describe how force affects the motion of an object. Interpret and construct free body diagrams.

More information

Newton s Laws of Motion

Newton s Laws of Motion Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 4 To understand the meaning

More information

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli Lecture PowerPoints Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

Chapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue.

Chapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue. Chapter 5: Forces in Two Dimensions Click the mouse or press the spacebar to continue. Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically.

More information

Topic: Force PHYSICS 231

Topic: Force PHYSICS 231 Topic: Force PHYSICS 231 Current Assignments Homework Set 2 due this Thursday, Jan 27, 11 pm Reading for next week: Chapters 10.1-6,10.10,8.3 2/1/11 Physics 231 Spring 2011 2 Key Concepts: Force Free body

More information

Newton s First Law. Newton s Second Law 9/29/11

Newton s First Law. Newton s Second Law 9/29/11 Newton s First Law Any object remains at constant velocity unless acted upon by a net force. AND In order for an object to accelerate, there must be a net force acting on it. Constant velocity could mean

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Book page 44-47 NETON S LAS OF MOTION INERTIA Moving objects have inertia a property of all objects to resist a change in motion Mass: a measure of a body s inertia Two types of mass: - inertial mass m

More information

Lecture 5. (sections )

Lecture 5. (sections ) Lecture 5 PHYSICS 201 (sections 521-525) Instructor: Hans Schuessler Temporary: Alexandre e Kolomenski o http://sibor.physics.tamu.edu/teaching/phys201/ Projectile Motion The horizontal and vertical parts

More information

CHAPTER 4 TEST REVIEW -- Answer Key

CHAPTER 4 TEST REVIEW -- Answer Key AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST

More information

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14 Agenda Today: Homework Quiz, Chapter 4 (Newton s Laws) Thursday: Applying Newton s Laws Start reading Chapter 5 Chapter 3, Problem 28 A ball with a horizontal speed of 1.25 m/s rolls off a bench 1.00 m

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law

UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES Objectives To understand and be able to apply Newton s Third Law To be able to determine the object that is exerting a particular force To understand

More information

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017

Prof. Dr. I. Nasser T171 Chapter5_I 12/10/2017 Prof. Dr. I. Nasser T171 Chapter5_I 1/10/017 Chapter 5 Force and Motion I 5-1 NEWTON S FIRST AND SECOND LAWS Newton s Three Laws Newton s 3 laws define some of the most fundamental things in physics including:

More information

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics)

Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Fraser Heights Secondary Physics 11 Mr. Wu Practice Test (Dynamics) Instructions: Pick the best answer available for Part A. Show all your work for each question in Part B Part A: Multiple-Choice 1. Inertia

More information

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #. Ph Introductory Physics, Sp-0 Page of -A. A 7 kg block moves in a straight line under the influence of a force that varies with position as shown in the figure at the right. If the force is

More information

Forces. Brought to you by:

Forces. Brought to you by: Forces Brought to you by: Objects have force because of their mass and inertia Mass is a measure of the amount of matter/particles in a substance. Mass is traditionally measured with a balance. Inertia

More information

A force is a push or a pull.

A force is a push or a pull. A force is a push or a pull. Contact forces arise from physical contact. Action at adistance forces do not require contact and include gravity and electrical forces. 1 Force is a vector [F]=[Newton]=[N]

More information

UNIT XX: DYNAMICS AND NEWTON S LAWS. DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies

UNIT XX: DYNAMICS AND NEWTON S LAWS. DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies I. Definition of FORCE UNIT XX: DYNAMICS AND NEWTON S LAWS DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies FORCE is a quantitative interaction between two (or

More information

The magnitude of this force is a scalar quantity called weight.

The magnitude of this force is a scalar quantity called weight. Everyday Forces has direction The gravitational force (F g ) exerted on the ball by Earth is a vector directed toward the center of the earth. The magnitude of this force is a scalar quantity called weight.

More information

Chapter 5. Forces in Two Dimensions

Chapter 5. Forces in Two Dimensions Chapter 5 Forces in Two Dimensions Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically. Use Newton s laws to analyze motion when

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems. Force & Motion I PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

More information

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

Physics 2A Chapter 4: Forces and Newton s Laws of Motion Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in There was no consideration of what might influence that motion. Two main factors need to be addressed to answer questions

More information

5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously.

5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously. 5. REASONING AND SOLUTION An object will not necessarily accelerate when two or more forces are applied to the object simultaneously. The applied forces may cancel so the net force is zero; in such a case,

More information

Name Period Date. 75 kg. Horizontal, frictionless surface. Label a coordinate system, write the formula, substitute and solve.

Name Period Date. 75 kg. Horizontal, frictionless surface. Label a coordinate system, write the formula, substitute and solve. Example Problems 5.3 Net Force E1. Two horizontal forces, 225 N and 165 N, are exerted in the same direction on a 75 kg crate as shown below. Find the net force and the acceleration of the crate. 165 N

More information