Robust Bayesian Simple Linear Regression

Size: px
Start display at page:

Download "Robust Bayesian Simple Linear Regression"

Transcription

1 Robust Bayesian Simple Linear Regression October 1, 2008 Readings: GIll 4 Robust Bayesian Simple Linear Regression p.1/11

2 Body Fat Data: Intervals w/ All Data 95% confidence and prediction intervals for bodyfat.lm 60 xbar Bodyfat 30 observed fit conf int pred int xbar Abdomen Robust Bayesian Simple Linear Regression p.2/11

3 Intervals: without case 39 95% confidence and prediction intervals for bodyfat.lm2 xbar Bodyfat observed fit conf int pred int 20 0 xbar Abdomen Robust Bayesian Simple Linear Regression p.3/11

4 Interpretations For a given Abdominal circumference, our probability that the mean bodyfat percentage is in the intervals given by the dotted lines is For a new man with a given Abdominal circumference, our probability that his bodyfat percentage is in the intervals given by the dashed lines is Both have same point estimate Increased uncertainty for prediction of a new observation versus estimating the expected value. Which analysis do we use? with Case 39 or not or something different? Robust Bayesian Simple Linear Regression p.4/11

5 Options for Handling Influential Cases Are there scientific grounds for eliminating the case? Test if the case has a different mean than population Report results with and without the case Determine if transformations (Y and/or X) reduce influence Add other predictors Change error assumptions: ε i iid t(ν, 0, 1)σ Robust Regression using heavy tailed error distributions Robust Bayesian Simple Linear Regression p.5/11

6 Likelihood & Posterior L(α,β,φ) Y i ind t(ν,α + βx i, 1/φ) n i=1 Use Prior p(α,β,φ) 1/φ Posterior distribution ( φ 1/2 1 + φ(y i α βx i ) 2 ) (ν+1) 2 ν p(α,β,φ Y ) φ n/2 1 n i=1 (1 + φ(y i α βx i ) 2 ν ) (ν+1) 2 No closed formed expressions! Robust Bayesian Simple Linear Regression p.6/11

7 Scale-Mixtures of Normal Representation Z i iid t(ν, 0,σ 2 ) Z i λ i ind N(0,σ 2 /λ i ) λ i iid G(ν/2, ν/2) Integrate out latent λ s to obtain marginal distribution. Robust Bayesian Simple Linear Regression p.7/11

8 Latent Variable Model Y i α,β,φ,λ ind N(α + βx i, λ i iid G(ν/2, ν/2) p(α,β,φ) 1/φ 1 φλ i ) Joint Posterior Distribution: p((α,β,φ,λ 1,...,λ n Y ) φ n/2 1 exp { φ 2 λi (y i α βx i ) 2 } n i=1 λ ν/2 1 i exp( λ i ν/2) Robust Bayesian Simple Linear Regression p.8/11

9 Posterior Distributions First Factorization: α,β,φ λ 1,...,λ n has a Normal-Gamma distribution Marginal distribution of λ 1,...,λ n (given the data) is hard! Second Factorization: λ 1,...,λ n α,β,φ independent Gamma Marginal Distribution α,β,φ given the data is hard! Can we combine the easy (posterior) distributions??? α,β,φ λ 1,...,λ n,y λ 1,...λ n α,β,φ,y Robust Bayesian Simple Linear Regression p.9/11

10 Answer is a Qualified Yes! While the product of the two conditional distributions is not equal to the joint posterior distribution (unless they are independent), we can create a scheme to sample from the two distributions that ensures that after a sufficient number of samples that the subsequent samples represent a (dependent) sequence of draws from the joint posterior distribution! The easiest version is the single component Gibbs Sampler. Robust Bayesian Simple Linear Regression p.10/11

11 Single Component Gibbs Sampler Start with (α (0),β (0),φ (0),λ (0) 1,...,λ(0) n ) For t = 1,...,T, generate from the following sequence of Full Conditional distributions: p(α β (t 1),φ (t 1),λ (t 1) 1,...,λ (t 1) n,y ) p(β α (t),φ (t 1),λ (t 1) 1,...,λ (t 1) n,y ) p(φ α (t),β (t),φ (t 1),λ (t 1) 1,...,λ (t 1) n,y ) p(λ j α (t),β (t),φ (t),λ (t 1),Y ) for j = 1,...,n ( j) λ ( j) is the vector of λs excluding the jth component Easy to find and sample! Robust Bayesian Simple Linear Regression p.11/11

Robust Bayesian Regression

Robust Bayesian Regression Readings: Hoff Chapter 9, West JRSSB 1984, Fúquene, Pérez & Pericchi 2015 Duke University November 17, 2016 Body Fat Data: Intervals w/ All Data Response % Body Fat and Predictor Waist Circumference 95%

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression Reading: Hoff Chapter 9 November 4, 2009 Problem Data: Observe pairs (Y i,x i ),i = 1,... n Response or dependent variable Y Predictor or independent variable X GOALS: Exploring

More information

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University

Motivation Scale Mixutres of Normals Finite Gaussian Mixtures Skew-Normal Models. Mixture Models. Econ 690. Purdue University Econ 690 Purdue University In virtually all of the previous lectures, our models have made use of normality assumptions. From a computational point of view, the reason for this assumption is clear: combined

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression September 24, 2008 Reading HH 8, GIll 4 Simple Linear Regression p.1/20 Problem Data: Observe pairs (Y i,x i ),i = 1,...n Response or dependent variable Y Predictor or independent

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Gibbs Sampling in Endogenous Variables Models

Gibbs Sampling in Endogenous Variables Models Gibbs Sampling in Endogenous Variables Models Econ 690 Purdue University Outline 1 Motivation 2 Identification Issues 3 Posterior Simulation #1 4 Posterior Simulation #2 Motivation In this lecture we take

More information

Bayesian Linear Models

Bayesian Linear Models Eric F. Lock UMN Division of Biostatistics, SPH elock@umn.edu 03/07/2018 Linear model For observations y 1,..., y n, the basic linear model is y i = x 1i β 1 +... + x pi β p + ɛ i, x 1i,..., x pi are predictors

More information

Lecture 16: Mixtures of Generalized Linear Models

Lecture 16: Mixtures of Generalized Linear Models Lecture 16: Mixtures of Generalized Linear Models October 26, 2006 Setting Outline Often, a single GLM may be insufficiently flexible to characterize the data Setting Often, a single GLM may be insufficiently

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent

Latent Variable Models for Binary Data. Suppose that for a given vector of explanatory variables x, the latent Latent Variable Models for Binary Data Suppose that for a given vector of explanatory variables x, the latent variable, U, has a continuous cumulative distribution function F (u; x) and that the binary

More information

Conjugate Analysis for the Linear Model

Conjugate Analysis for the Linear Model Conjugate Analysis for the Linear Model If we have good prior knowledge that can help us specify priors for β and σ 2, we can use conjugate priors. Following the procedure in Christensen, Johnson, Branscum,

More information

Gibbs Sampling in Latent Variable Models #1

Gibbs Sampling in Latent Variable Models #1 Gibbs Sampling in Latent Variable Models #1 Econ 690 Purdue University Outline 1 Data augmentation 2 Probit Model Probit Application A Panel Probit Panel Probit 3 The Tobit Model Example: Female Labor

More information

STA 216, GLM, Lecture 16. October 29, 2007

STA 216, GLM, Lecture 16. October 29, 2007 STA 216, GLM, Lecture 16 October 29, 2007 Efficient Posterior Computation in Factor Models Underlying Normal Models Generalized Latent Trait Models Formulation Genetic Epidemiology Illustration Structural

More information

Technical Appendix Detailing Estimation Procedures used in A. Flexible Approach to Modeling Ultimate Recoveries on Defaulted

Technical Appendix Detailing Estimation Procedures used in A. Flexible Approach to Modeling Ultimate Recoveries on Defaulted Technical Appendix Detailing Estimation Procedures used in A Flexible Approach to Modeling Ultimate Recoveries on Defaulted Loans and Bonds (Web Supplement) Section 1 of this Appendix provides a brief

More information

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference 1 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System. Bayesian Estimation of DSGE

More information

Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies. Abstract

Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies. Abstract Bayesian Estimation of A Distance Functional Weight Matrix Model Kazuhiko Kakamu Department of Economics Finance, Institute for Advanced Studies Abstract This paper considers the distance functional weight

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Robust and accurate inference via a mixture of Gaussian and terrors

Robust and accurate inference via a mixture of Gaussian and terrors Robust and accurate inference via a mixture of Gaussian and terrors Hyungsuk Tak ICTS/SAMSI Time Series Analysis for Synoptic Surveys and Gravitational Wave Astronomy 22 March 2017 Joint work with Justin

More information

Bayesian Inference in a Normal Population

Bayesian Inference in a Normal Population Bayesian Inference in a Normal Population September 17, 2008 Gill Chapter 3. Sections 1-4, 7-8 Bayesian Inference in a Normal Population p.1/18 Normal Model IID observations Y = (Y 1,Y 2,...Y n ) Y i N(µ,σ

More information

November 2002 STA Random Effects Selection in Linear Mixed Models

November 2002 STA Random Effects Selection in Linear Mixed Models November 2002 STA216 1 Random Effects Selection in Linear Mixed Models November 2002 STA216 2 Introduction It is common practice in many applications to collect multiple measurements on a subject. Linear

More information

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y

INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y INTRODUCING LINEAR REGRESSION MODELS Response or Dependent variable y Predictor or Independent variable x Model with error: for i = 1,..., n, y i = α + βx i + ε i ε i : independent errors (sampling, measurement,

More information

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017 Bayesian inference Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 10, 2017 1 / 22 Outline for today A genetic example Bayes theorem Examples Priors Posterior summaries

More information

Prelim Examination. Friday August 11, Time limit: 150 minutes

Prelim Examination. Friday August 11, Time limit: 150 minutes University of Pennsylvania Economics 706, Fall 2017 Prelim Prelim Examination Friday August 11, 2017. Time limit: 150 minutes Instructions: (i) The total number of points is 80, the number of points for

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 Suggested Projects: www.cs.ubc.ca/~arnaud/projects.html First assignement on the web this afternoon: capture/recapture.

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

(a) (3 points) Construct a 95% confidence interval for β 2 in Equation 1.

(a) (3 points) Construct a 95% confidence interval for β 2 in Equation 1. Problem 1 (21 points) An economist runs the regression y i = β 0 + x 1i β 1 + x 2i β 2 + x 3i β 3 + ε i (1) The results are summarized in the following table: Equation 1. Variable Coefficient Std. Error

More information

Luminosity Functions

Luminosity Functions Department of Statistics, Harvard University May 15th, 2012 Introduction: What is a Luminosity Function? Figure: A galaxy cluster. Introduction: Project Goal The Luminosity Function specifies the relative

More information

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior The plan Estimate simple regression model using Bayesian methods

More information

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

A Fully Nonparametric Modeling Approach to. BNP Binary Regression A Fully Nonparametric Modeling Approach to Binary Regression Maria Department of Applied Mathematics and Statistics University of California, Santa Cruz SBIES, April 27-28, 2012 Outline 1 2 3 Simulation

More information

Module 11: Linear Regression. Rebecca C. Steorts

Module 11: Linear Regression. Rebecca C. Steorts Module 11: Linear Regression Rebecca C. Steorts Announcements Today is the last class Homework 7 has been extended to Thursday, April 20, 11 PM. There will be no lab tomorrow. There will be office hours

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

Plausible Values for Latent Variables Using Mplus

Plausible Values for Latent Variables Using Mplus Plausible Values for Latent Variables Using Mplus Tihomir Asparouhov and Bengt Muthén August 21, 2010 1 1 Introduction Plausible values are imputed values for latent variables. All latent variables can

More information

Lecture 4: Dynamic models

Lecture 4: Dynamic models linear s Lecture 4: s Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

Hierarchical Linear Models

Hierarchical Linear Models Hierarchical Linear Models Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin The linear regression model Hierarchical Linear Models y N(Xβ, Σ y ) β σ 2 p(β σ 2 ) σ 2 p(σ 2 ) can be extended

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Bayesian Inference in a Normal Population

Bayesian Inference in a Normal Population Bayesian Inference in a Normal Population September 20, 2007 Casella & Berger Chapter 7, Gelman, Carlin, Stern, Rubin Sec 2.6, 2.8, Chapter 3. Bayesian Inference in a Normal Population p. 1/16 Normal Model

More information

Bayesian Model Averaging

Bayesian Model Averaging Bayesian Model Averaging Hoff Chapter 9, Hoeting et al 1999, Clyde & George 2004, Liang et al 2008 October 24, 2017 Bayesian Model Choice Models for the variable selection problem are based on a subset

More information

Bayesian Inference. Chapter 9. Linear models and regression

Bayesian Inference. Chapter 9. Linear models and regression Bayesian Inference Chapter 9. Linear models and regression M. Concepcion Ausin Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master in Mathematical Engineering

More information

Advances and Applications in Perfect Sampling

Advances and Applications in Perfect Sampling and Applications in Perfect Sampling Ph.D. Dissertation Defense Ulrike Schneider advisor: Jem Corcoran May 8, 2003 Department of Applied Mathematics University of Colorado Outline Introduction (1) MCMC

More information

Conjugate Priors for Normal Data

Conjugate Priors for Normal Data Conjugate Priors for Normal Data September 22, 2008 Gill Chapter 3. Sections 4, 7-8 Conjugate Priors for Normal Data p.1/17 Normal Model IID observations Y = (Y 1,Y 2,...Y n ) Y i N(µ,σ 2 ) unknown parameters

More information

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution

Outline. Binomial, Multinomial, Normal, Beta, Dirichlet. Posterior mean, MAP, credible interval, posterior distribution Outline A short review on Bayesian analysis. Binomial, Multinomial, Normal, Beta, Dirichlet Posterior mean, MAP, credible interval, posterior distribution Gibbs sampling Revisit the Gaussian mixture model

More information

ST 740: Linear Models and Multivariate Normal Inference

ST 740: Linear Models and Multivariate Normal Inference ST 740: Linear Models and Multivariate Normal Inference Alyson Wilson Department of Statistics North Carolina State University November 4, 2013 A. Wilson (NCSU STAT) Linear Models November 4, 2013 1 /

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Introduction to Markov chain Monte Carlo The Gibbs Sampler Examples Overview of the Lecture

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Hierarchical Modeling for Univariate Spatial Data

Hierarchical Modeling for Univariate Spatial Data Hierarchical Modeling for Univariate Spatial Data Geography 890, Hierarchical Bayesian Models for Environmental Spatial Data Analysis February 15, 2011 1 Spatial Domain 2 Geography 890 Spatial Domain This

More information

Problem 1 (20) Log-normal. f(x) Cauchy

Problem 1 (20) Log-normal. f(x) Cauchy ORF 245. Rigollet Date: 11/21/2008 Problem 1 (20) f(x) f(x) 0.0 0.1 0.2 0.3 0.4 0.0 0.2 0.4 0.6 0.8 4 2 0 2 4 Normal (with mean -1) 4 2 0 2 4 Negative-exponential x x f(x) f(x) 0.0 0.1 0.2 0.3 0.4 0.5

More information

Bayesian Semiparametric GARCH Models

Bayesian Semiparametric GARCH Models Bayesian Semiparametric GARCH Models Xibin (Bill) Zhang and Maxwell L. King Department of Econometrics and Business Statistics Faculty of Business and Economics xibin.zhang@monash.edu Quantitative Methods

More information

Bayesian Semiparametric GARCH Models

Bayesian Semiparametric GARCH Models Bayesian Semiparametric GARCH Models Xibin (Bill) Zhang and Maxwell L. King Department of Econometrics and Business Statistics Faculty of Business and Economics xibin.zhang@monash.edu Quantitative Methods

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Cross-Validation, Information Criteria, Expected Utilities and the Effective Number of Parameters Aki Vehtari and Jouko Lampinen Laboratory of Computational Engineering Introduction Expected utility -

More information

The Logit Model: Estimation, Testing and Interpretation

The Logit Model: Estimation, Testing and Interpretation The Logit Model: Estimation, Testing and Interpretation Herman J. Bierens October 25, 2008 1 Introduction to maximum likelihood estimation 1.1 The likelihood function Consider a random sample Y 1,...,

More information

ACCOUNTING FOR INPUT-MODEL AND INPUT-PARAMETER UNCERTAINTIES IN SIMULATION. <www.ie.ncsu.edu/jwilson> May 22, 2006

ACCOUNTING FOR INPUT-MODEL AND INPUT-PARAMETER UNCERTAINTIES IN SIMULATION. <www.ie.ncsu.edu/jwilson> May 22, 2006 ACCOUNTING FOR INPUT-MODEL AND INPUT-PARAMETER UNCERTAINTIES IN SIMULATION Slide 1 Faker Zouaoui Sabre Holdings James R. Wilson NC State University May, 006 Slide From American

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

Bayesian shrinkage approach in variable selection for mixed

Bayesian shrinkage approach in variable selection for mixed Bayesian shrinkage approach in variable selection for mixed effects s GGI Statistics Conference, Florence, 2015 Bayesian Variable Selection June 22-26, 2015 Outline 1 Introduction 2 3 4 Outline Introduction

More information

Introduction to Markov Chain Monte Carlo & Gibbs Sampling

Introduction to Markov Chain Monte Carlo & Gibbs Sampling Introduction to Markov Chain Monte Carlo & Gibbs Sampling Prof. Nicholas Zabaras Sibley School of Mechanical and Aerospace Engineering 101 Frank H. T. Rhodes Hall Ithaca, NY 14853-3801 Email: zabaras@cornell.edu

More information

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 15-7th March Arnaud Doucet

Stat 535 C - Statistical Computing & Monte Carlo Methods. Lecture 15-7th March Arnaud Doucet Stat 535 C - Statistical Computing & Monte Carlo Methods Lecture 15-7th March 2006 Arnaud Doucet Email: arnaud@cs.ubc.ca 1 1.1 Outline Mixture and composition of kernels. Hybrid algorithms. Examples Overview

More information

Bayesian Model Comparison:

Bayesian Model Comparison: Bayesian Model Comparison: Modeling Petrobrás log-returns Hedibert Freitas Lopes February 2014 Log price: y t = log p t Time span: 12/29/2000-12/31/2013 (n = 3268 days) LOG PRICE 1 2 3 4 0 500 1000 1500

More information

Unsupervised Regressive Learning in High-dimensional Space

Unsupervised Regressive Learning in High-dimensional Space Unsupervised Regressive Learning in High-dimensional Space University of Kent ATRC Leicester 31st July, 2018 Outline Data Linkage Analysis High dimensionality and variable screening Variable screening

More information

DAG models and Markov Chain Monte Carlo methods a short overview

DAG models and Markov Chain Monte Carlo methods a short overview DAG models and Markov Chain Monte Carlo methods a short overview Søren Højsgaard Institute of Genetics and Biotechnology University of Aarhus August 18, 2008 Printed: August 18, 2008 File: DAGMC-Lecture.tex

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Bayesian Econometrics

Bayesian Econometrics Bayesian Econometrics Christopher A. Sims Princeton University sims@princeton.edu September 20, 2016 Outline I. The difference between Bayesian and non-bayesian inference. II. Confidence sets and confidence

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

A Bayesian perspective on GMM and IV

A Bayesian perspective on GMM and IV A Bayesian perspective on GMM and IV Christopher A. Sims Princeton University sims@princeton.edu November 26, 2013 What is a Bayesian perspective? A Bayesian perspective on scientific reporting views all

More information

Time Delay Estimation: Microlensing

Time Delay Estimation: Microlensing Time Delay Estimation: Microlensing Hyungsuk Tak Stat310 15 Sep 2015 Joint work with Kaisey Mandel, David A. van Dyk, Vinay L. Kashyap, Xiao-Li Meng, and Aneta Siemiginowska Introduction Image Credit:

More information

Study Notes on the Latent Dirichlet Allocation

Study Notes on the Latent Dirichlet Allocation Study Notes on the Latent Dirichlet Allocation Xugang Ye 1. Model Framework A word is an element of dictionary {1,,}. A document is represented by a sequence of words: =(,, ), {1,,}. A corpus is a collection

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Bayesian course - problem set 5 (lecture 6)

Bayesian course - problem set 5 (lecture 6) Bayesian course - problem set 5 (lecture 6) Ben Lambert November 30, 2016 1 Stan entry level: discoveries data The file prob5 discoveries.csv contains data on the numbers of great inventions and scientific

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Multivariate Normal & Wishart

Multivariate Normal & Wishart Multivariate Normal & Wishart Hoff Chapter 7 October 21, 2010 Reading Comprehesion Example Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

More information

Lasso & Bayesian Lasso

Lasso & Bayesian Lasso Readings Chapter 15 Christensen Merlise Clyde October 6, 2015 Lasso Tibshirani (JRSS B 1996) proposed estimating coefficients through L 1 constrained least squares Least Absolute Shrinkage and Selection

More information

Eco517 Fall 2004 C. Sims MIDTERM EXAM

Eco517 Fall 2004 C. Sims MIDTERM EXAM Eco517 Fall 2004 C. Sims MIDTERM EXAM Answer all four questions. Each is worth 23 points. Do not devote disproportionate time to any one question unless you have answered all the others. (1) We are considering

More information

1 Elements of Markov Chain Structure and Convergence

1 Elements of Markov Chain Structure and Convergence 1 Elements of Markov Chain Structure and Convergence 1.1 Definition Random quantities x in a p dimensional state space χ are generated sequentially according to a conditional or transition distribution

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

Lecture 14 Simple Linear Regression

Lecture 14 Simple Linear Regression Lecture 4 Simple Linear Regression Ordinary Least Squares (OLS) Consider the following simple linear regression model where, for each unit i, Y i is the dependent variable (response). X i is the independent

More information

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics

Mathematics Qualifying Examination January 2015 STAT Mathematical Statistics Mathematics Qualifying Examination January 2015 STAT 52800 - Mathematical Statistics NOTE: Answer all questions completely and justify your derivations and steps. A calculator and statistical tables (normal,

More information

MCMC 2: Lecture 2 Coding and output. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

MCMC 2: Lecture 2 Coding and output. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham MCMC 2: Lecture 2 Coding and output Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham Contents 1. General (Markov) epidemic model 2. Non-Markov epidemic model 3. Debugging

More information

Bayesian data analysis in practice: Three simple examples

Bayesian data analysis in practice: Three simple examples Bayesian data analysis in practice: Three simple examples Martin P. Tingley Introduction These notes cover three examples I presented at Climatea on 5 October 0. Matlab code is available by request to

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

Non-gaussian spatiotemporal modeling

Non-gaussian spatiotemporal modeling Dec, 2008 1/ 37 Non-gaussian spatiotemporal modeling Thais C O da Fonseca Joint work with Prof Mark F J Steel Department of Statistics University of Warwick Dec, 2008 Dec, 2008 2/ 37 1 Introduction Motivation

More information

Lecturer: David Blei Lecture #3 Scribes: Jordan Boyd-Graber and Francisco Pereira October 1, 2007

Lecturer: David Blei Lecture #3 Scribes: Jordan Boyd-Graber and Francisco Pereira October 1, 2007 COS 597C: Bayesian Nonparametrics Lecturer: David Blei Lecture # Scribes: Jordan Boyd-Graber and Francisco Pereira October, 7 Gibbs Sampling with a DP First, let s recapitulate the model that we re using.

More information

SIMPLEX REGRESSION MARK FISHER

SIMPLEX REGRESSION MARK FISHER SIMPLEX REGRESSION MARK FISHER Abstract. This note characterizes a class of regression models where the set of coefficients is restricted to the simplex (i.e., the coefficients are nonnegative and sum

More information

A Bayesian Mixture Model with Application to Typhoon Rainfall Predictions in Taipei, Taiwan 1

A Bayesian Mixture Model with Application to Typhoon Rainfall Predictions in Taipei, Taiwan 1 Int. J. Contemp. Math. Sci., Vol. 2, 2007, no. 13, 639-648 A Bayesian Mixture Model with Application to Typhoon Rainfall Predictions in Taipei, Taiwan 1 Tsai-Hung Fan Graduate Institute of Statistics National

More information

Bayesian Sparse Linear Regression with Unknown Symmetric Error

Bayesian Sparse Linear Regression with Unknown Symmetric Error Bayesian Sparse Linear Regression with Unknown Symmetric Error Minwoo Chae 1 Joint work with Lizhen Lin 2 David B. Dunson 3 1 Department of Mathematics, The University of Texas at Austin 2 Department of

More information

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix

Labor-Supply Shifts and Economic Fluctuations. Technical Appendix Labor-Supply Shifts and Economic Fluctuations Technical Appendix Yongsung Chang Department of Economics University of Pennsylvania Frank Schorfheide Department of Economics University of Pennsylvania January

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 1. General Background 2. Constructing Prior Distributions 3. Properties of Bayes Estimators and Tests 4. Bayesian Analysis of the Multiple Regression Model 5. Bayesian

More information

Paul: Do you know enough about Mixing Models to present it to the class?

Paul: Do you know enough about Mixing Models to present it to the class? Paul: Do you know enough about Mixing Models to present it to the class? yes Paul: Good. Paul: Do you know enough about Mixing Models to present it to the class? no Paul: Well, time to learn. yes Paul:

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 8. The Metropolis-Hastings Algorithm W. Keith Hastings, 1930 - Ph.D., U of T (1962) UVic Math. & Stats., 1971-1992 (Nicholas Metropolis, 1915 1999) 1 A generalization

More information

Eco517 Fall 2014 C. Sims FINAL EXAM

Eco517 Fall 2014 C. Sims FINAL EXAM Eco517 Fall 2014 C. Sims FINAL EXAM This is a three hour exam. You may refer to books, notes, or computer equipment during the exam. You may not communicate, either electronically or in any other way,

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

variability of the model, represented by σ 2 and not accounted for by Xβ

variability of the model, represented by σ 2 and not accounted for by Xβ Posterior Predictive Distribution Suppose we have observed a new set of explanatory variables X and we want to predict the outcomes ỹ using the regression model. Components of uncertainty in p(ỹ y) variability

More information