Data Mining Concepts & Techniques

Size: px
Start display at page:

Download "Data Mining Concepts & Techniques"

Transcription

1 Data Mining Concepts & Techniques Lecture No. 05 Sequential Pattern Mining Naeem Ahmed Department of Software Engineering Mehran Univeristy of Engineering and Technology Jamshoro

2 Outline Data Mining: Sequential Pattern Mining Basic concepts BIDE+ algorithm Acknowledgements: Introduction to Data Mining Tan, Steinbach, Kumar

3 Sequence Data Certain order in which data (objects) are related Sequence Database: Timeline Object Timestamp Events A 10 2, 3, 5 A 20 6, 1 A 23 1 B 11 4, 5, 6 B 17 2 B 21 7, 8, 1, 2 B 28 1, 6 C 14 1, 8, 7 Object A: Object B: Object C: 1 7 8

4 Example: Sequence Data Sequence Database Sequence Element (Transaction) Event (Item) Customer Purchase history of a given customer A set of items bought by a customer at time t Books, diary products, CDs, etc Web Data Browsing activity of a particular Web visitor A collection of files viewed by a Web visitor after a single mouse click Home page, index page, contact info, etc Event data History of events generated by a given sensor Events triggered by a sensor at time t Types of alarms generated by sensors Genome sequences DNA sequence of a particular species An element of the DNA sequence Bases A,T,G,C Element (Transaction) Sequence E1 E2 E1 E3 E2 E2 E3 E4 Event (Item)

5 Sequence Formal Definition: A sequence is an ordered list of elements (transactions) s = < e 1 e 2 e 3 > Each element contains a collection of events (items) e i = {i 1, i 2,, i k } Each element is attributed to a specific time or location Length of a sequence, s, is given by the number of elements of the sequence A k-sequence is a sequence that contains k events (items)

6 Web sequence: Example: Sequence < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} > Sequence of initiating events causing the nuclear accident at 3-mile Island: ( < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases}> Sequence of books checked out at a library: <{Fellowship of the Ring} {The Two Towers} {Return of the King}>

7 Subsequence Formal Definition: A sequence <a 1 a 2 a n > is contained in another sequence <b 1 b 2 b m > (m n) if there exist integers i 1 < i 2 < < i n such that a 1 b i1, a 2 b i1,, a n b in Data sequence Subsequence Contain? < {2,4} {3,5,6} {8} > < {2} {3,5} > Yes < {1,2} {3,4} > < {1} {2} > No < {2,4} {2,4} {2,5} > < {2} {4} > Yes The support of a subsequence w is defined as the fraction of data sequences that contain w A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is minsup)

8 Sequential Pattern Mining Pattern: an arrangement or sequence regularly found in comparable objects or events Given: a database of sequences a user-specified minimum support threshold, minsup Task: Find all subsequences with support minsup

9 Sequential Pattern Mining: Challenge Given a sequence: <{a b} {c d e} {f} {g h i}> Examples of subsequences: <{a} {c d} {f} {g} >, < {c d e} >, < {b} {g} >, etc. How many k-subsequences can be extracted from a given n-sequence? Answer n k : 9 = 4 = 126

10 Sequential Pattern Mining: Challenge A huge number of possible sequential patterns are hidden in databases A mining algorithm should find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold be highly efficient, scalable, involving only a small number of database scans be able to incorporate various kinds of user-specific constraints

11 Sequential Pattern Mining: Example Object Timestamp Events A 1 1,2,4 A 2 2,3 A 3 5 B 1 1,2 B 2 2,3,4 C 1 1, 2 C 2 2,3,4 C 3 2,4,5 D 1 2 D 2 3, 4 D 3 4, 5 E 1 1, 3 E 2 2, 4, 5 Minsup = 50% Examples of Frequent Subsequences: < {1,2} > s=60% < {2,3} > s=60% < {2,4}> s=80% < {3} {5}> s=80% < {1} {2} > s=80% < {2} {2} > s=60% < {1} {2,3} > s=60% < {2} {2,3} > s=60% < {1,2} {2,3} > s=60%

12 Extracting Sequential Patterns Given n events: i 1, i 2, i 3,, i n Candidate 1-subsequences: <{i 1 }>, <{i 2 }>, <{i 3 }>,, <{i n }> Candidate 2-subsequences: <{i 1, i 2 }>, <{i 1, i 3 }>,, <{i 1 } {i 1 }>, <{i 1 } {i 2 }>,, <{i n-1 } {i n }> Candidate 3-subsequences: <{i 1, i 2, i 3 }>, <{i 1, i 2, i 4 }>,, <{i 1, i 2 } {i 1 }>, <{i 1, i 2 } {i 2 }>,, <{i 1 } {i 1, i 2 }>, <{i 1 } {i 1, i 3 }>,, <{i 1 } {i 1 } {i 1 }>, <{i 1 } {i 1 } {i 2 }>,

13 Sequential Pattern Mining: Algorithms Concept introduction and an initial Apriori-like algorithm Agrawal & Srikant. Mining sequential patterns, ICDE 95 Apriori-based method: GSP (Generalized Sequential Patterns: Srikant & EDBT 96) Pattern-growth methods: FreeSpan & PrefixSpan (Han et al.@kdd 00; Pei, et al.@icde 01) Vertical format-based mining: SPADE (Zaki@Machine Leanining 00) Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, Shim@VLDB 99; Pei, Han, CIKM 02) Mining closed sequential patterns: CloSpan (Yan, Han & 03)

14 Generalized Sequential Pattern (GSP) Step 1: Make the first pass over the sequence database D to yield all the 1-element frequent sequences Step 2: Repeat until no new frequent sequences are found Candidate Generation: Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items Candidate Pruning: Prune candidate k-sequences that contain infrequent (k-1)-subsequences Support Counting: Make a new pass over the sequence database D to find the support for these candidate sequences Candidate Elimination: Eliminate candidate k-sequences whose actual support is less than minsup

15 Candidate Generation Base case (k=2): Merging two frequent 1-sequences <{i 1 }> and <{i 2 }> will produce two candidate 2-sequences: <{i 1 } {i 2 }> and <{i 1 i 2 }> General case (k>2): A frequent (k-1)-sequence w 1 is merged with another frequent (k-1)-sequence w 2 to produce a candidate k-sequence if the subsequence obtained by removing the first event in w 1 is the same as the subsequence obtained by removing the last event in w 2 The resulting candidate after merging is given by the sequence w 1 extended with the last event of w 2. If the last two events in w 2 belong to the same element, then the last event in w 2 becomes part of the last element in w 1 Otherwise, the last event in w 2 becomes a separate element appended to the end of w 1

16 Candidate Generation Examples Merging the sequences w 1 =<{1} {2 3} {4}> and w 2 =<{2 3} {4 5}> will produce the candidate sequence < {1} {2 3} {4 5}> because the last two events in w 2 (4 and 5) belong to the same element Merging the sequences w 1 =<{1} {2 3} {4}> and w 2 =<{2 3} {4} {5}> will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two events in w 2 (4 and 5) do not belong to the same element We do not have to merge the sequences w 1 =<{1} {2 6} {4}> and w 2 =<{1} {2} {4 5}> to produce the candidate < {1} {2 6} {4 5}> because if the latter is a viable candidate, then it can be obtained by merging w 1 with < {1} {2 6} {5}>

17 GSP Example Frequent 3-sequences < {1} {2} {3} > < {1} {2 5} > < {1} {5} {3} > < {2} {3} {4} > < {2 5} {3} > < {3} {4} {5} > < {5} {3 4} > Candidate Generation < {1} {2} {3} {4} > < {1} {2 5} {3} > < {1} {5} {3 4} > < {2} {3} {4} {5} > < {2 5} {3 4} > Candidate Pruning < {1} {2 5} {3} >

18 Finding Length-1 Sequential Patterns Examine GSP using an example Initial candidates: all singleton sequences <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h> Scan database once, count support for candidates min_sup =2 Seq. ID Sequence <(bd)cb(ac)> <(bf)(ce)b(fg)> <(ah)(bf)abf> <(be)(ce)d> <a(bd)bcb(ade)> Cand Sup <a> 3 <b> 5 <c> 4 <d> 3 <e> 3 <f> 2 <g> 1 <h> 1

19 GSP: Generating Length-2 Candidates 51 length-2 Candidates <a> <b> <c> <d> <e> <f> <a> <aa> <ab> <ac> <ad> <ae> <af> <b> <ba> <bb> <bc> <bd> <be> <bf> <c> <ca> <cb> <cc> <cd> <ce> <cf> <d> <da> <db> <dc> <dd> <de> <df> <e> <ea> <eb> <ec> <ed> <ee> <ef> <f> <fa> <fb> <fc> <fd> <fe> <ff> <a> <b> <c> <d> <e> <f> <a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)> <b> <(bc)> <(bd)> <(be)> <(bf)> <c> <(cd)> <(ce)> <(cf)> <d> <(de)> <(df)> <e> <(ef)> <f> Without Apriori property, 8*8+8*7/2=92 candidates Apriori prunes 44.57% candidates

20 THE GSP Mining Process 5 th scan: 1 cand. 1 length-5 seq. pat. 4 th scan: 8 cand. 6 length-4 seq. pat. 3 rd scan: 47 cand. 19 length-3 seq. pat. 20 cand. not in DB at all 2 nd scan: 51 cand. 19 length-2 seq. pat. 10 cand. not in DB at all 1 st scan: 8 cand. 6 length-1 seq. pat. <(bd)cba> <abba> <(bd)bc> <abb> <aab> <aba> <baa> <bab> <aa> <ab> <af> <ba> <bb> <ff> <(ab)> <(ef)> <a> <b> <c> <d> <e> <f> <g> <h> Seq. ID Cand. cannot pass sup. threshold Cand. not in DB at all Sequence min_sup = <(bd)cb(ac)> <(bf)(ce)b(fg)> <(ah)(bf)abf> <(be)(ce)d> <a(bd)bcb(ade)>

21 Candidate Generate-and-test: Drawbacks A huge set of candidate sequences generated Especially 2-item candidate sequence Multiple Scans of database needed The length of each candidate grows by one at each database scan Inefficient for mining long sequential patterns A long pattern grow up from short patterns The number of short patterns is exponential to the length of mined patterns

22 Timing Constraints (I) {A B} {C} {D E} <= x g >n g x g : max-gap n g : min-gap <= m s m s : maximum span x g = 2, n g = 0, m s = 4 Data sequence Subsequence Contain? < {2,4} {3,5,6} {4,7} {4,5} {8} > < {6} {5} > Yes < {1} {2} {3} {4} {5}> < {1} {4} > No < {1} {2,3} {3,4} {4,5}> < {2} {3} {5} > Yes < {1,2} {3} {2,3} {3,4} {2,4} {4,5}> < {1,2} {5} > No

23 Mining Sequential Patterns with Timing Constraints Approach 1: Mine sequential patterns without timing constraints Postprocess the discovered patterns Approach 2: Modify GSP to directly prune candidates that violate timing constraints Question: Does Apriori principle still hold?

24 Apriori Principle for Sequence Data Object Timestamp Events A 1 1,2,4 A 2 2,3 A 3 5 B 1 1,2 B 2 2,3,4 C 1 1, 2 C 2 2,3,4 C 3 2,4,5 D 1 2 D 2 3, 4 D 3 4, 5 E 1 1, 3 E 2 2, 4, 5 Suppose: x g = 1 (max-gap) n g = 0 (min-gap) m s = 5 (maximum span) minsup = 60% <{2} {5}> support = 40% but <{2} {3} {5}> support = 60% Problem exists because of max-gap constraint No such problem if max-gap is infinite

25 Contiguous Subsequences s is a contiguous subsequence of w = <e 1 >< e 2 > < e k > if any of the following conditions hold: 1. s is obtained from w by deleting an item from either e 1 or e k 2. s is obtained from w by deleting an item from any element e i that contains more than 2 items 3. s is a contiguous subsequence of s and s is a contiguous subsequence of w (recursive definition) Examples: s = < {1} {2} > is a contiguous subsequence of < {1} {2 3}>, < {1 2} {2} {3}>, and < {3 4} {1 2} {2 3} {4} > is not a contiguous subsequence of < {1} {3} {2}> and < {2} {1} {3} {2}>

26 Modified Candidate Pruning Step Without maxgap constraint: A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent With maxgap constraint: A candidate k-sequence is pruned if at least one of its contiguous (k-1)-subsequences is infrequent

27 Timing Constraints (II) {A B} {C} {D E} <= x g >n g <= ws <= m s x g : max-gap n g : min-gap ws: window size m s : maximum span x g = 2, n g = 0, ws = 1, m s = 5 Data sequence Subsequence Contain? < {2,4} {3,5,6} {4,7} {4,6} {8} > < {3} {5} > No < {1} {2} {3} {4} {5}> < {1,2} {3} > Yes < {1,2} {2,3} {3,4} {4,5}> < {1,2} {3,4} > Yes

28 Modified Support Counting Step Given a candidate pattern: <{a, c}> Any data sequences that contain < {a c} >, < {a} {c} > ( where time({c}) time({a}) ws) < {c} {a} > (where time({a}) time({c}) ws) will contribute to the support count of candidate pattern

29 Other Formulation In some domains, we may have only one very long time series Example: monitoring network traffic events for attacks monitoring telecommunication alarm signals Goal is to find frequent sequences of events in the time series This problem is also known as frequent episode mining

30 BIDE+ Algorithm BIDE (BI-Directional Extension): Saves space Speed up Finds frequent closed sequences Closed itemset: An itemset is closed if none of its immediate supersets has the same support as the itemset

31 Frequent Closed Sequences Sequence identifier Sequence 1 CAABC 2 ABCB 3 CABC 4 ABBCA Frequent sequences A:4, AA:2, AB:4, ABB:2, ABC:4, AC:4, B:4, BB:2,BC:4, C:4, CA:3, CAB:2, CABC:2, CAC:2, CB:3, CBC:2,CC:2 Frequent closed sequences AA:2, ABB:2, ABC:4, CA:3, CABC:2,CB:3

32 Frequent Closed Sequences

33 BIDE: space usage Most of the frequent closed pattern mining algorithms need to maintain the set of already mined frequent closed patterns (or just candidates) in memory subpattern checking super-pattern checking

34 Compact Efficient BIDE: Mining Frequent Closed Sequences Costly in both runtime and space usage BI-Directional Extension mining frequent closed sequences without candidate maintenance

35 BIDE: Closure checking scheme if an n-sequence, S=e 1 e 2... e n, is non-closed e is a forward-extension event S = e 1 e 2... e n e and sup SDB (S ) = sup SDB (S) e is a backward-extension event i (1 i < n), S = e 1 e 2... e i e e i+1...e n and sup SDB (S ) = sup SDB (S) S = e e 1 e 2... e n and sup SDB (S ) = sup SDB (S)

36 BIDE: Theorem, Lemma Theorem: BI-Directional Extension closure checking If there exists no forward-extension event nor backward extension event w.r.t. a prefix sequence S p, S p must be a closed sequence; otherwise, S p must be non-closed Lemma: Forward-extension event checking For a pre-fix sequence S p, its complete set of forwardextension events is equivalent to the set of its locally frequent items whose supports are equal to SUP SDB (S p )

37 BIDE: Definitions Projected sequence of a prefix sequence the projected sequence of prefix sequence AB in sequence ABBCA is BCA Projected database of a prefix sequence the projected database of prefix sequence AB in our running example is {C, CB, C, BCA} Sequence identifier Sequence 1 CAABC 2 ABCB 3 CABC 4 ABBCA

38 BIDE: Lemma Backward-extension event checking First, we assume S p =AC:4, it is easy to find that item B appears in each of the 2nd maximum periods of S p. As a result AC:4 is not closed. let S p =ABC:4, we cannot find any backward-extension item for it. Also there is no forward-extension item for it, therefore ABC:4 is a frequent closed sequence Sequence identifier Sequence 1 CAABC 2 ABCB 3 CABC 4 ABBCA

39 BIDE: Definition First instance of a prefix sequence the first instance of the prefix sequence AB in sequence CAABC is CAAB Last instance of a prefix sequence the subsequence from the beginning of S to the last appearance of item e i in S the last instance of the prefix sequence AB in sequence ABBCA is ABB Given an input sequence S which contains a prefix i- sequence e 1 e 2... e i The i-th last-in-last appearance w.r.t. a pre-fix sequence it is the last appearance of e i in the last instance of the prefix S p in S S=CAABC and S p =AB, the 1st last-in-last appearance w.r.t. prefix S p in S is the second A in S

40 BIDE: Definition Given an input sequence S which contains a prefix i- sequence e 1 e 2... e i The i-th maximum period of a prefix sequence if 1 < i n, it is the piece of sequence between the end of the first instance of prefix e 1 e 2... e i 1 in S and the i-th last-in-last appearance w.r.t. prefix S p if i = 1, it is the piece of sequence in S locating before the 1st last-in-last appearance w.r.t. prefix S p S=ABCB and the prefix sequence S p =AB» 2nd maximum period of prefix S p in S is BC,» 1st maximum period of prefix S p in S is φ

41 BIDE: Example S=CAABCBC and S p =AB First instance of a prefix sequence CAAB Last instance of a prefix sequence CAABCB The i-th last-in-last appearance w.r.t. a pre-fix sequence 1st nd A 2nd nd B The i-th maximum period of a prefix sequence 1st ---- CA 2nd ---- ABC

42 BIDE: Definition Given an input sequence S which contains a prefix i-sequence e 1 e 2... e i The i-th last-in-first appearance w.r.t. a prefix sequence it is the last appearance of e i in the first instance of the prefix S p in S S=CAABC and S p =CA» 2nd last-in-first appearance w.r.t. prefix S p in S is the first A in S

43 BIDE: Definition Given an input sequence S which contains a prefix i-sequence e 1 e 2... e i The i-th semi-maximum period of a prefix sequence if 1 < i n, it is the piece of sequence between the end of the first instance of prefix e 1 e 2... e i 1 in S and the i-th last-in-first appearance w.r.t. prefix S p if i = 1, it is the piece of sequence in S locating before the 1st last-in-first appearance w.r.t. pre-fix S p S=ABCB and the prefix sequence S p =AC» 2nd semi-maximum period of prefix AC in S is B» 1st semi-maximum period of prefix AC in S is φ

44 BIDE: Theorem BackScan search space pruning Let the pre-fix sequence be an n-sequence, S p =e 1 e 2... e n. If i (1 i n) and there exists an item e which appears in each of the i-th semi-maximum periods of the prefix S p in SDB, we can safely stop growing prefix S p Sequence identifier Sequence 1 CAABC 2 ABCB 3 CABC 4 ABBCA

45 BIDE: ScanSkip The ScanSkip optimization technique closure checking scheme needs to scan backward a set of maximum-periods w.r.t. a certain prefix S p =ABC : 4 3rd maximum periods is {φ, φ, φ, B} skip last three 2nd maximum periods is {A, φ, φ, B} skip last two 1st maximum periods is {CA, φ, C, φ} skip last two Sequence identifier Sequence 1 CAABC 2 ABCB 3 CABC 4 ABBCA

46 BIDE Algorithm scans the database once to find the frequent 1- sequences projected database for each frequent 1- sequence BackScan pruning method backward-extension-item & forward-extension-item output S p as a frequent closed sequence grow S p to get a new prefix projected database for the new pre-fix BackScan and backward extension use the ScanSkip to speed up the mining process

47 BIDE: Frequent Closed Sequences

48

Sequential Pattern Mining

Sequential Pattern Mining Sequential Pattern Mining Lecture Notes for Chapter 7 Introduction to Data Mining Tan, Steinbach, Kumar From itemsets to sequences Frequent itemsets and association rules focus on transactions and the

More information

DATA MINING - 1DL105, 1DL111

DATA MINING - 1DL105, 1DL111 1 DATA MINING - 1DL105, 1DL111 Fall 2007 An introductory class in data mining http://user.it.uu.se/~udbl/dut-ht2007/ alt. http://www.it.uu.se/edu/course/homepage/infoutv/ht07 Kjell Orsborn Uppsala Database

More information

Handling a Concept Hierarchy

Handling a Concept Hierarchy Food Electronics Handling a Concept Hierarchy Bread Milk Computers Home Wheat White Skim 2% Desktop Laptop Accessory TV DVD Foremost Kemps Printer Scanner Data Mining: Association Rules 5 Why should we

More information

COMP 5331: Knowledge Discovery and Data Mining

COMP 5331: Knowledge Discovery and Data Mining COMP 5331: Knowledge Discovery and Data Mining Acknowledgement: Slides modified by Dr. Lei Chen based on the slides provided by Tan, Steinbach, Kumar And Jiawei Han, Micheline Kamber, and Jian Pei 1 10

More information

Data mining, 4 cu Lecture 7:

Data mining, 4 cu Lecture 7: 582364 Data mining, 4 cu Lecture 7: Sequential Patterns Spring 2010 Lecturer: Juho Rousu Teaching assistant: Taru Itäpelto Sequential Patterns In many data mining tasks the order and timing of events contains

More information

Association Rules Information Retrieval and Data Mining. Prof. Matteo Matteucci

Association Rules Information Retrieval and Data Mining. Prof. Matteo Matteucci Association Rules Information Retrieval and Data Mining Prof. Matteo Matteucci Learning Unsupervised Rules!?! 2 Market-Basket Transactions 3 Bread Peanuts Milk Fruit Jam Bread Jam Soda Chips Milk Fruit

More information

FP-growth and PrefixSpan

FP-growth and PrefixSpan FP-growth and PrefixSpan n Challenges of Frequent Pattern Mining n Improving Apriori n Fp-growth n Fp-tree n Mining frequent patterns with FP-tree n PrefixSpan Challenges of Frequent Pattern Mining n Challenges

More information

Data Mining Concepts & Techniques

Data Mining Concepts & Techniques Data Mining Concepts & Techniques Lecture No. 04 Association Analysis Naeem Ahmed Email: naeemmahoto@gmail.com Department of Software Engineering Mehran Univeristy of Engineering and Technology Jamshoro

More information

Data Warehousing & Data Mining

Data Warehousing & Data Mining Data Warehousing & Data Mining Wolf-Tilo Balke Kinda El Maarry Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de Summary Association Rule Mining Apriori algorithm,

More information

Mining Temporal Patterns for Interval-Based and Point-Based Events

Mining Temporal Patterns for Interval-Based and Point-Based Events International Journal of Computational Engineering Research Vol, 03 Issue, 4 Mining Temporal Patterns for Interval-Based and Point-Based Events 1, S.Kalaivani, 2, M.Gomathi, 3, R.Sethukkarasi 1,2,3, Department

More information

Data Warehousing & Data Mining

Data Warehousing & Data Mining Summary Data Warehousing & Data Mining Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de Association Rule Mining Apriori

More information

Mining Strong Positive and Negative Sequential Patterns

Mining Strong Positive and Negative Sequential Patterns Mining Strong Positive and Negative Sequential Patter NANCY P. LIN, HUNG-JEN CHEN, WEI-HUA HAO, HAO-EN CHUEH, CHUNG-I CHANG Department of Computer Science and Information Engineering Tamang University,

More information

Data Mining Association Rules: Advanced Concepts and Algorithms. Lecture Notes for Chapter 7. Introduction to Data Mining

Data Mining Association Rules: Advanced Concepts and Algorithms. Lecture Notes for Chapter 7. Introduction to Data Mining Data Mining Association Rules: Advanced Concets and Algorithms Lecture Notes for Chater 7 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/24 1

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 6

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 6 Data Mining: Concepts and Techniques (3 rd ed.) Chapter 6 Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University 2013 Han, Kamber & Pei. All rights

More information

Association Rule. Lecturer: Dr. Bo Yuan. LOGO

Association Rule. Lecturer: Dr. Bo Yuan. LOGO Association Rule Lecturer: Dr. Bo Yuan LOGO E-mail: yuanb@sz.tsinghua.edu.cn Overview Frequent Itemsets Association Rules Sequential Patterns 2 A Real Example 3 Market-Based Problems Finding associations

More information

CS 484 Data Mining. Association Rule Mining 2

CS 484 Data Mining. Association Rule Mining 2 CS 484 Data Mining Association Rule Mining 2 Review: Reducing Number of Candidates Apriori principle: If an itemset is frequent, then all of its subsets must also be frequent Apriori principle holds due

More information

D B M G Data Base and Data Mining Group of Politecnico di Torino

D B M G Data Base and Data Mining Group of Politecnico di Torino Data Base and Data Mining Group of Politecnico di Torino Politecnico di Torino Association rules Objective extraction of frequent correlations or pattern from a transactional database Tickets at a supermarket

More information

Association Rules. Acknowledgements. Some parts of these slides are modified from. n C. Clifton & W. Aref, Purdue University

Association Rules. Acknowledgements. Some parts of these slides are modified from. n C. Clifton & W. Aref, Purdue University Association Rules CS 5331 by Rattikorn Hewett Texas Tech University 1 Acknowledgements Some parts of these slides are modified from n C. Clifton & W. Aref, Purdue University 2 1 Outline n Association Rule

More information

Association Rules. Fundamentals

Association Rules. Fundamentals Politecnico di Torino Politecnico di Torino 1 Association rules Objective extraction of frequent correlations or pattern from a transactional database Tickets at a supermarket counter Association rule

More information

A B CDE F B FD D A C AF DC A F

A B CDE F B FD D A C AF DC A F International Journal of Arts & Sciences, CD-ROM. ISSN: 1944-6934 :: 4(20):121 131 (2011) Copyright c 2011 by InternationalJournal.org A B CDE F B FD D A C A BC D EF C CE C A D ABC DEF B B C A E E C A

More information

D B M G. Association Rules. Fundamentals. Fundamentals. Elena Baralis, Silvia Chiusano. Politecnico di Torino 1. Definitions.

D B M G. Association Rules. Fundamentals. Fundamentals. Elena Baralis, Silvia Chiusano. Politecnico di Torino 1. Definitions. Definitions Data Base and Data Mining Group of Politecnico di Torino Politecnico di Torino Itemset is a set including one or more items Example: {Beer, Diapers} k-itemset is an itemset that contains k

More information

D B M G. Association Rules. Fundamentals. Fundamentals. Association rules. Association rule mining. Definitions. Rule quality metrics: example

D B M G. Association Rules. Fundamentals. Fundamentals. Association rules. Association rule mining. Definitions. Rule quality metrics: example Association rules Data Base and Data Mining Group of Politecnico di Torino Politecnico di Torino Objective extraction of frequent correlations or pattern from a transactional database Tickets at a supermarket

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Mining Frequent Patterns and Associations: Basic Concepts (Chapter 6) Huan Sun, CSE@The Ohio State University Slides adapted from Prof. Jiawei Han @UIUC, Prof. Srinivasan

More information

Chapter 6. Frequent Pattern Mining: Concepts and Apriori. Meng Jiang CSE 40647/60647 Data Science Fall 2017 Introduction to Data Mining

Chapter 6. Frequent Pattern Mining: Concepts and Apriori. Meng Jiang CSE 40647/60647 Data Science Fall 2017 Introduction to Data Mining Chapter 6. Frequent Pattern Mining: Concepts and Apriori Meng Jiang CSE 40647/60647 Data Science Fall 2017 Introduction to Data Mining Pattern Discovery: Definition What are patterns? Patterns: A set of

More information

COMP 5331: Knowledge Discovery and Data Mining

COMP 5331: Knowledge Discovery and Data Mining COMP 5331: Knowledge Discovery and Data Mining Acknowledgement: Slides modified by Dr. Lei Chen based on the slides provided by Jiawei Han, Micheline Kamber, and Jian Pei And slides provide by Raymond

More information

DATA MINING LECTURE 3. Frequent Itemsets Association Rules

DATA MINING LECTURE 3. Frequent Itemsets Association Rules DATA MINING LECTURE 3 Frequent Itemsets Association Rules This is how it all started Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association Rules between Sets of Items in Large Databases.

More information

732A61/TDDD41 Data Mining - Clustering and Association Analysis

732A61/TDDD41 Data Mining - Clustering and Association Analysis 732A61/TDDD41 Data Mining - Clustering and Association Analysis Lecture 6: Association Analysis I Jose M. Peña IDA, Linköping University, Sweden 1/14 Outline Content Association Rules Frequent Itemsets

More information

DATA MINING - 1DL360

DATA MINING - 1DL360 DATA MINING - 1DL36 Fall 212" An introductory class in data mining http://www.it.uu.se/edu/course/homepage/infoutv/ht12 Kjell Orsborn Uppsala Database Laboratory Department of Information Technology, Uppsala

More information

ASSOCIATION ANALYSIS FREQUENT ITEMSETS MINING. Alexandre Termier, LIG

ASSOCIATION ANALYSIS FREQUENT ITEMSETS MINING. Alexandre Termier, LIG ASSOCIATION ANALYSIS FREQUENT ITEMSETS MINING, LIG M2 SIF DMV course 207/208 Market basket analysis Analyse supermarket s transaction data Transaction = «market basket» of a customer Find which items are

More information

Machine Learning: Pattern Mining

Machine Learning: Pattern Mining Machine Learning: Pattern Mining Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim Wintersemester 2007 / 2008 Pattern Mining Overview Itemsets Task Naive Algorithm Apriori Algorithm

More information

DATA MINING LECTURE 4. Frequent Itemsets, Association Rules Evaluation Alternative Algorithms

DATA MINING LECTURE 4. Frequent Itemsets, Association Rules Evaluation Alternative Algorithms DATA MINING LECTURE 4 Frequent Itemsets, Association Rules Evaluation Alternative Algorithms RECAP Mining Frequent Itemsets Itemset A collection of one or more items Example: {Milk, Bread, Diaper} k-itemset

More information

Lecture Notes for Chapter 6. Introduction to Data Mining

Lecture Notes for Chapter 6. Introduction to Data Mining Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

More information

The Advanced Encryption Standard

The Advanced Encryption Standard Lecturers: Mark D. Ryan and David Galindo. Cryptography 2017. Slide: 48 The Advanced Encryption Standard Successor of DES DES considered insecure; 3DES considered too slow. NIST competition in 1997 15

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Mining Frequent Patterns and Associations: Basic Concepts (Chapter 6) Huan Sun, CSE@The Ohio State University 10/17/2017 Slides adapted from Prof. Jiawei Han @UIUC, Prof.

More information

Data Mining. Dr. Raed Ibraheem Hamed. University of Human Development, College of Science and Technology Department of Computer Science

Data Mining. Dr. Raed Ibraheem Hamed. University of Human Development, College of Science and Technology Department of Computer Science Data Mining Dr. Raed Ibraheem Hamed University of Human Development, College of Science and Technology Department of Computer Science 2016 2017 Road map The Apriori algorithm Step 1: Mining all frequent

More information

Encyclopedia of Machine Learning Chapter Number Book CopyRight - Year 2010 Frequent Pattern. Given Name Hannu Family Name Toivonen

Encyclopedia of Machine Learning Chapter Number Book CopyRight - Year 2010 Frequent Pattern. Given Name Hannu Family Name Toivonen Book Title Encyclopedia of Machine Learning Chapter Number 00403 Book CopyRight - Year 2010 Title Frequent Pattern Author Particle Given Name Hannu Family Name Toivonen Suffix Email hannu.toivonen@cs.helsinki.fi

More information

DATA MINING - 1DL360

DATA MINING - 1DL360 DATA MINING - DL360 Fall 200 An introductory class in data mining http://www.it.uu.se/edu/course/homepage/infoutv/ht0 Kjell Orsborn Uppsala Database Laboratory Department of Information Technology, Uppsala

More information

Frequent Itemset Mining

Frequent Itemset Mining ì 1 Frequent Itemset Mining Nadjib LAZAAR LIRMM- UM COCONUT Team (PART I) IMAGINA 17/18 Webpage: http://www.lirmm.fr/~lazaar/teaching.html Email: lazaar@lirmm.fr 2 Data Mining ì Data Mining (DM) or Knowledge

More information

Association Analysis Part 2. FP Growth (Pei et al 2000)

Association Analysis Part 2. FP Growth (Pei et al 2000) Association Analysis art 2 Sanjay Ranka rofessor Computer and Information Science and Engineering University of Florida F Growth ei et al 2 Use a compressed representation of the database using an F-tree

More information

Chapters 6 & 7, Frequent Pattern Mining

Chapters 6 & 7, Frequent Pattern Mining CSI 4352, Introduction to Data Mining Chapters 6 & 7, Frequent Pattern Mining Young-Rae Cho Associate Professor Department of Computer Science Baylor University CSI 4352, Introduction to Data Mining Chapters

More information

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES

Cristina Nita-Rotaru. CS355: Cryptography. Lecture 9: Encryption modes. AES CS355: Cryptography Lecture 9: Encryption modes. AES Encryption modes: ECB } Message is broken into independent blocks of block_size bits; } Electronic Code Book (ECB): each block encrypted separately.

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Mining Frequent Patterns and Associations and Advanced Frequent Pattern Mining (Chapter 6 & 7) Huan Sun, CSE@The Ohio State University 10/26/2017 Slides adapted from Prof.

More information

CS 584 Data Mining. Association Rule Mining 2

CS 584 Data Mining. Association Rule Mining 2 CS 584 Data Mining Association Rule Mining 2 Recall from last time: Frequent Itemset Generation Strategies Reduce the number of candidates (M) Complete search: M=2 d Use pruning techniques to reduce M

More information

Architecture and development methodology for Location Based Services

Architecture and development methodology for Location Based Services The ITB Journal Volume 5 Issue 1 Article 13 2004 Architecture and development methodology for Location Based Services Aaron Hand School of Science, Institute of Technology at Tallaght, Dublin 24., aaron.hand@itnet.ie

More information

New Coding System of Grid Squares in the Republic of Indonesia

New Coding System of Grid Squares in the Republic of Indonesia September14, 2006 New Coding System of Grid Squares in the Republic of Indonesia Current coding system of grid squares in the Republic of Indonesia is based on similar

More information

Knowledge Discovery and Data Mining I

Knowledge Discovery and Data Mining I Ludwig-Maximilians-Universität München Lehrstuhl für Datenbanksysteme und Data Mining Prof. Dr. Thomas Seidl Knowledge Discovery and Data Mining I Winter Semester 2018/19 Agenda 1. Introduction 2. Basics

More information

Profiling the International New Venture -A literature review of the empirical evidence

Profiling the International New Venture -A literature review of the empirical evidence The ITB Journal Volume 5 Issue 1 Article 11 2004 Profiling the International New Venture -A literature review of the empirical evidence Natasha Evers School ofbusiness & Humanities Institute of Technology,

More information

Unit II Association Rules

Unit II Association Rules Unit II Association Rules Basic Concepts Frequent Pattern Analysis Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set Frequent Itemset

More information

Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Data Mining Chapter 5 Association Analysis: Basic Concepts Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar 2/3/28 Introduction to Data Mining Association Rule Mining Given

More information

Association Analysis: Basic Concepts. and Algorithms. Lecture Notes for Chapter 6. Introduction to Data Mining

Association Analysis: Basic Concepts. and Algorithms. Lecture Notes for Chapter 6. Introduction to Data Mining Association Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 Association

More information

Association Rule Mining on Web

Association Rule Mining on Web Association Rule Mining on Web What Is Association Rule Mining? Association rule mining: Finding interesting relationships among items (or objects, events) in a given data set. Example: Basket data analysis

More information

MetroCount Traffic Executive Individual Vehicles

MetroCount Traffic Executive Individual Vehicles Individual-34 Page 1 MetroCount Traffic Executive Individual Vehicles Individual-34 -- English (ENA) Datasets: Site: [00001] Old Coast Rd 4km N of Od Bunbury Rd Direction: 5 - South bound A>B, North bound

More information

Outline. Fast Algorithms for Mining Association Rules. Applications of Data Mining. Data Mining. Association Rule. Discussion

Outline. Fast Algorithms for Mining Association Rules. Applications of Data Mining. Data Mining. Association Rule. Discussion Outline Fast Algorithms for Mining Association Rules Rakesh Agrawal Ramakrishnan Srikant Introduction Algorithm Apriori Algorithm AprioriTid Comparison of Algorithms Conclusion Presenter: Dan Li Discussion:

More information

Discovering Threshold-based Frequent Closed Itemsets over Probabilistic Data

Discovering Threshold-based Frequent Closed Itemsets over Probabilistic Data Discovering Threshold-based Frequent Closed Itemsets over Probabilistic Data Yongxin Tong #1, Lei Chen #, Bolin Ding *3 # Department of Computer Science and Engineering, Hong Kong Univeristy of Science

More information

Frequent Itemset Mining

Frequent Itemset Mining ì 1 Frequent Itemset Mining Nadjib LAZAAR LIRMM- UM COCONUT Team IMAGINA 16/17 Webpage: h;p://www.lirmm.fr/~lazaar/teaching.html Email: lazaar@lirmm.fr 2 Data Mining ì Data Mining (DM) or Knowledge Discovery

More information

Formal Concept Analysis

Formal Concept Analysis Formal Concept Analysis 2 Closure Systems and Implications 4 Closure Systems Concept intents as closed sets c e b 2 a 1 3 1 2 3 a b c e 20.06.2005 2 Next-Closure was developed by B. Ganter (1984). Itcanbeused

More information

Developing a Distributed Java-based Speech Recognition Engine

Developing a Distributed Java-based Speech Recognition Engine The ITB Journal Volume 5 Issue 1 Article 2 2004 Developing a Distributed Java-based Speech Recognition Engine Tony Ayers Institute of Technology Blanchardstown, tony.ayers@itb.ie Brian Nolan Institute

More information

Maintaining Frequent Itemsets over High-Speed Data Streams

Maintaining Frequent Itemsets over High-Speed Data Streams Maintaining Frequent Itemsets over High-Speed Data Streams James Cheng, Yiping Ke, and Wilfred Ng Department of Computer Science Hong Kong University of Science and Technology Clear Water Bay, Kowloon,

More information

A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables M. Hamdi, R. Rhouma, S. Belghith

A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables M. Hamdi, R. Rhouma, S. Belghith A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables M. Hamdi, R. Rhouma, S. Belghith Abstract Generating random numbers are mainly used to create secret keys or random

More information

Secret Key Systems (block encoding) Encrypting a small block of text (say 64 bits) General considerations for cipher design:

Secret Key Systems (block encoding) Encrypting a small block of text (say 64 bits) General considerations for cipher design: Secret Key Systems (block encoding) Encrypting a small block of text (say 64 bits) General considerations for cipher design: Secret Key Systems Encrypting a small block of text (say 64 bits) General considerations

More information

D EFB B E B EAB ABC DEF C A F C D C DEF C AD C AEC D D E C D EF B ABC AB CD A EFD AD D E

D EFB B E B EAB ABC DEF C A F C D C DEF C AD C AEC D D E C D EF B ABC AB CD A EFD AD D E D EFB B E BEAB ABC DEF C A F C D C DEF C AD C AEC D D E A B C D EF B ABC AB CD A EFD AD D E FFF A B FBC AE BC D AD A D F D F D F D D B D A D A ED D D DD F D D D D A A DA ADD D F AD AD C A DD D D F D A

More information

AURORA: A Cryptographic Hash Algorithm Family

AURORA: A Cryptographic Hash Algorithm Family AURORA: A Cryptographic Hash Algorithm Family Submitters: Sony Corporation 1 and Nagoya University 2 Algorithm Designers: Tetsu Iwata 2, Kyoji Shibutani 1, Taizo Shirai 1, Shiho Moriai 1, Toru Akishita

More information

Frequent Itemset Mining

Frequent Itemset Mining 1 Frequent Itemset Mining Nadjib LAZAAR LIRMM- UM IMAGINA 15/16 2 Frequent Itemset Mining: Motivations Frequent Itemset Mining is a method for market basket analysis. It aims at finding regulariges in

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Syllabus Fri. 21.10. (1) 0. Introduction A. Supervised Learning: Linear Models & Fundamentals Fri. 27.10. (2) A.1 Linear Regression Fri. 3.11. (3) A.2 Linear Classification Fri. 10.11. (4) A.3 Regularization

More information

NACC Uniform Data Set (UDS) FTLD Module

NACC Uniform Data Set (UDS) FTLD Module NACC Uniform Data Set (UDS) FTLD Module Data Template For FOLLOW-UP Visit Packet Version 2.0, January 2012 Copyright 2013 University of Washington Created and published by the FTLD work group of the ADC

More information

Lecture Notes for Chapter 6. Introduction to Data Mining. (modified by Predrag Radivojac, 2017)

Lecture Notes for Chapter 6. Introduction to Data Mining. (modified by Predrag Radivojac, 2017) Lecture Notes for Chapter 6 Introduction to Data Mining by Tan, Steinbach, Kumar (modified by Predrag Radivojac, 27) Association Rule Mining Given a set of transactions, find rules that will predict the

More information

CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT

CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT 82 CHAPTER 5 A BLOCK CIPHER INVOLVING A KEY APPLIED ON BOTH THE SIDES OF THE PLAINTEXT 83 5.1 Introduction In a pioneering paper, Hill [5] developed a block cipher by using the modular arithmetic inverse

More information

NACC Uniform Data Set (UDS) FTLD Module

NACC Uniform Data Set (UDS) FTLD Module NACC Uniform Data Set (UDS) FTLD Module Data Template For Initial Visit Packet Version 2.0, January 2012 Copyright 2013 University of Washington Created and published by the FTLD work group of the ADC

More information

CS533 Fall 2017 HW5 Solutions. CS533 Information Retrieval Fall HW5 Solutions

CS533 Fall 2017 HW5 Solutions. CS533 Information Retrieval Fall HW5 Solutions CS533 Information Retrieval Fall 2017 HW5 Solutions Q1 a) For λ = 1, we select documents based on similarity Thus, d 1> d 2> d 4> d 3 Start with d 1, S = {d1} R\S = { d 2, d 4, d 3} MMR(d 2) = 0.7 Maximum.

More information

Efficient Mining of Closed Repetitive Gapped Subsequences from a Sequence Database

Efficient Mining of Closed Repetitive Gapped Subsequences from a Sequence Database Efficient Mining of Repetitive Gapped Subsequences from a Sequence Database Bolin Ding #1,DavidLo & 2,JiaweiHan #3, and Siau-Cheng Khoo 4 # Department of Computer Science, University of Illinois at Urbana-Champaign

More information

Meelis Kull Autumn Meelis Kull - Autumn MTAT Data Mining - Lecture 05

Meelis Kull Autumn Meelis Kull - Autumn MTAT Data Mining - Lecture 05 Meelis Kull meelis.kull@ut.ee Autumn 2017 1 Sample vs population Example task with red and black cards Statistical terminology Permutation test and hypergeometric test Histogram on a sample vs population

More information

Density-Based Clustering

Density-Based Clustering Density-Based Clustering idea: Clusters are dense regions in feature space F. density: objects volume ε here: volume: ε-neighborhood for object o w.r.t. distance measure dist(x,y) dense region: ε-neighborhood

More information

Apriori algorithm. Seminar of Popular Algorithms in Data Mining and Machine Learning, TKK. Presentation Lauri Lahti

Apriori algorithm. Seminar of Popular Algorithms in Data Mining and Machine Learning, TKK. Presentation Lauri Lahti Apriori algorithm Seminar of Popular Algorithms in Data Mining and Machine Learning, TKK Presentation 12.3.2008 Lauri Lahti Association rules Techniques for data mining and knowledge discovery in databases

More information

Positive Borders or Negative Borders: How to Make Lossless Generator Based Representations Concise

Positive Borders or Negative Borders: How to Make Lossless Generator Based Representations Concise Positive Borders or Negative Borders: How to Make Lossless Generator Based Representations Concise Guimei Liu 1,2 Jinyan Li 1 Limsoon Wong 2 Wynne Hsu 2 1 Institute for Infocomm Research, Singapore 2 School

More information

Justification of Investment in IT systems

Justification of Investment in IT systems The ITB Journal Volume 5 Issue 1 Article 12 2004 Justification of Investment in IT systems Aidan Farrell School of Computing, Dublin Institute of Technology, Kevin Street, Dublin 8., aidan.farrell@dit.ie

More information

WAM-Miner: In the Search of Web Access Motifs from Historical Web Log Data

WAM-Miner: In the Search of Web Access Motifs from Historical Web Log Data WAM-Miner: In the Search of Web Access Motifs from Historical Web Log Data Qiankun Zhao a, Sourav S Bhowmick a and Le Gruenwald b a School of Computer Engineering, Division of Information Systems, Nanyang

More information

Homework 3/ Solutions

Homework 3/ Solutions MTH 310-3 Abstract Algebra I and Number Theory S17 Homework 3/ Solutions Exercise 1. Prove the following Theorem: Theorem Let R and S be rings. Define an addition and multiplication on R S by for all r,

More information

Ranking Sequential Patterns with Respect to Significance

Ranking Sequential Patterns with Respect to Significance Ranking Sequential Patterns with Respect to Significance Robert Gwadera, Fabio Crestani Universita della Svizzera Italiana Lugano, Switzerland Abstract. We present a reliable universal method for ranking

More information

Example. Addition, subtraction, and multiplication in Z are binary operations; division in Z is not ( Z).

Example. Addition, subtraction, and multiplication in Z are binary operations; division in Z is not ( Z). CHAPTER 2 Groups Definition (Binary Operation). Let G be a set. A binary operation on G is a function that assigns each ordered pair of elements of G an element of G. Note. This condition of assigning

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

4.3 Analog Value Representation

4.3 Analog Value Representation 4.3 Analog Value Representation Introduction This section describes the analog values for all the measuring ranges and output ranges which you can use with the analog modules. Converting analog values

More information

Association Analysis. Part 1

Association Analysis. Part 1 Association Analysis Part 1 1 Market-basket analysis DATA: A large set of items: e.g., products sold in a supermarket A large set of baskets: e.g., each basket represents what a customer bought in one

More information

DATA MINING LECTURE 4. Frequent Itemsets and Association Rules

DATA MINING LECTURE 4. Frequent Itemsets and Association Rules DATA MINING LECTURE 4 Frequent Itemsets and Association Rules This is how it all started Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association Rules between Sets of Items in Large Databases.

More information

Frequent Itemsets and Association Rule Mining. Vinay Setty Slides credit:

Frequent Itemsets and Association Rule Mining. Vinay Setty Slides credit: Frequent Itemsets and Association Rule Mining Vinay Setty vinay.j.setty@uis.no Slides credit: http://www.mmds.org/ Association Rule Discovery Supermarket shelf management Market-basket model: Goal: Identify

More information

Unit 3. Digital encoding

Unit 3. Digital encoding Unit 3. Digital encoding Digital Electronic Circuits (Circuitos Electrónicos Digitales) E.T.S.I. Informática Universidad de Sevilla 9/2012 Jorge Juan 2010, 2011, 2012 You are free to

More information

Temporal Data Mining

Temporal Data Mining Temporal Data Mining Christian Moewes cmoewes@ovgu.de Otto-von-Guericke University of Magdeburg Faculty of Computer Science Department of Knowledge Processing and Language Engineering Zittau Fuzzy Colloquium

More information

Introduction. CSC/ECE 574 Computer and Network Security. Outline. Introductory Remarks Feistel Cipher DES AES

Introduction. CSC/ECE 574 Computer and Network Security. Outline. Introductory Remarks Feistel Cipher DES AES CSC/ECE 574 Computer and Network Security Topic 3.1 Secret Key Cryptography Algorithms CSC/ECE 574 Dr. Peng Ning 1 Outline Introductory Remarks Feistel Cipher DES AES CSC/ECE 574 Dr. Peng Ning 2 Introduction

More information

Data Analytics Beyond OLAP. Prof. Yanlei Diao

Data Analytics Beyond OLAP. Prof. Yanlei Diao Data Analytics Beyond OLAP Prof. Yanlei Diao OPERATIONAL DBs DB 1 DB 2 DB 3 EXTRACT TRANSFORM LOAD (ETL) METADATA STORE DATA WAREHOUSE SUPPORTS OLAP DATA MINING INTERACTIVE DATA EXPLORATION Overview of

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #12: Frequent Itemsets Seoul National University 1 In This Lecture Motivation of association rule mining Important concepts of association rules Naïve approaches for

More information

Consistency of Academic Performance in Higher Education: A Study of an Irish Business Degree Programme

Consistency of Academic Performance in Higher Education: A Study of an Irish Business Degree Programme The ITB Journal Volume 5 Issue 1 Article 5 2004 Consistency of Academic Performance in Higher Education: A Study of an Irish Business Degree Programme Julie Byrne Lecturer, School of Business and Humanities,

More information

Improved S-Box Construction from Binomial Power Functions

Improved S-Box Construction from Binomial Power Functions Malaysian Journal of Mathematical Sciences 9(S) June: 21-35 (2015) Special Issue: The 4 th International Cryptology and Information Security Conference 2014 (Cryptology 2014) MALAYSIAN JOURNAL OF MATHEMATICAL

More information

Combinatorial Electrosynthesis in Microtiter Plate Wells with Ionic Liquid Electrolytes

Combinatorial Electrosynthesis in Microtiter Plate Wells with Ionic Liquid Electrolytes Combinatorial Electrosynthesis in Microtiter Plate Wells with Ionic Liquid Electrolytes Markus Schwarz and Bernd Speiser Institut für rganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D

More information

Reductionist View: A Priori Algorithm and Vector-Space Text Retrieval. Sargur Srihari University at Buffalo The State University of New York

Reductionist View: A Priori Algorithm and Vector-Space Text Retrieval. Sargur Srihari University at Buffalo The State University of New York Reductionist View: A Priori Algorithm and Vector-Space Text Retrieval Sargur Srihari University at Buffalo The State University of New York 1 A Priori Algorithm for Association Rule Learning Association

More information

CiA Draft Standard Proposal 447

CiA Draft Standard Proposal 447 CiA Draft Standard Proposal 447 Application profile for special-purpose car add-on devices Part 4: Pre-defined s and This DSP is for CiA members only and may be changed without notification. Version: 1.0

More information

ACCRS/QUALITY CORE CORRELATION DOCUMENT: ALGEBRA I

ACCRS/QUALITY CORE CORRELATION DOCUMENT: ALGEBRA I ACCRS/QUALITY CORE CORRELATION DOCUMENT: ALGEBRA I Revised March 25, 2013 Extend the properties of exponents to rational exponents. 1. [N-RN1] Explain how the definition of the meaning of rational exponents

More information

Abel-Grassmann s bands. 1. Introduction

Abel-Grassmann s bands. 1. Introduction Quasigroups and Related Systems 11 (2004), 95 101 Abel-Grassmann s bands Petar V. Protić and Nebojša Stevanović Abstract Abel-Grassmann s groupoids or shortly AG-groupoids have been considered in a number

More information

CS 412 Intro. to Data Mining

CS 412 Intro. to Data Mining CS 412 Intro. to Data Mining Chapter 6. Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods Jiawei Han, Computer Science, Univ. Illinois at Urbana -Champaign, 2017 1 2 3

More information

GS trapezoids in GS quasigroups

GS trapezoids in GS quasigroups Mathematical Communications 7(2002), 143-158 143 GS trapezoids in GS quasigroups Vladimir Volenec and Zdenka Kolar Abstract. In this paper the concept of a GS trapezoid in a GS quasigroup is defined and

More information

Basic Data Structures and Algorithms for Data Profiling Felix Naumann

Basic Data Structures and Algorithms for Data Profiling Felix Naumann Basic Data Structures and Algorithms for 8.5.2017 Overview 1. The lattice 2. Apriori lattice traversal 3. Position List Indices 4. Bloom filters Slides with Thorsten Papenbrock 2 Definitions Lattice Partially

More information