Spring 2006: Examples: Laplace s Method; Hierarchical Models

Size: px
Start display at page:

Download "Spring 2006: Examples: Laplace s Method; Hierarchical Models"

Transcription

1 Spring 2006: Examples: Laplace s Method; Hierarchical Models Brian Junker February 13, 2006 Second-order Laplace Approximation for E[g(θ) y] An Analytic Example Hierarchical Models Example of Hierarchical Data and Modeling February 13, 2006

2 Second-order Laplace Approximation for E[g(θ) y] For non-negative g(θ), E[g(θ) y] = g(θ)p(y θ)p(θ)dθ p(y θ)p(θ)dθ = e nh (θ) dθ 1e nh(θ) dθ = I num I denom Lettingθ = argmin θ h (θ)=argmin θ [ 1/n log g(θ)p(θ)p(y θ)], and ˆθ=argmin θ h(θ)=argmin θ [ 1/n log p(θ)p(y θ)], I num = e nh (θ ) 2π 1 nh (θ ) [1+O(1/n)] I denom = e nh(ˆθ) 1 2π nh (ˆθ) [1+O(1/n)] Due to cancellation in the [1+O(1/n)] terms, we get E[g(θ) y] = 1/h (θ ) exp{ nh (θ )} 1/h (ˆθ) exp{ nh(ˆθ)} [1+O(1/n 2 )] February 13, 2006

3 An Analytic Example Suppose we have data y 1,...,y n iid Pois(θ), and priorθ Gamma(α,β). p(y θ) = θ i y i e nθ / i y i! p(θ y) Thus we already know θ ny e nθ θ α 1 e βθ = θ e ()θ Gamma(θ α+ny,) E[θ y]= α+ny, mode(θ y)=, Var (θ y)= α+ny () 2 We will examine: The basic normal approximation to the posterior; The expected rate E[1/θ y] given the data February 13, 2006

4 Normal Approximation:θ y N(ˆθ, I obs (ˆθ) 1 ) log p(θ y) 2 θ 2 ( ) () logθ ()θ = θ θ = θ 2 () Plugging in ˆθ=mode(θ y)=()/() and inverting, get so θ y N I obs (ˆθ) 1 = () 2 (, () 2 ) See R code for this lecture February 13, 2006

5 Posterior expected rate E[1/θ y] The first order Laplace approximation simply plugs in ˆθ: E[1/θ y] 1/ˆθ= The second-order Laplace approximation: E[1/θ y] h (θ ) 1/2 1/θ p(y θ )p(θ ) h (ˆθ) 1/2 p(y ˆθ)p(ˆθ) Ignoring constants that will cancel in the fraction, I denom = ˆθ ny e nˆθ ˆθ α 1 e βˆθ () 2 where ˆθ=()/(), and α+ny 2 I num = () 2 1/θ θ ny e nθ θ α 1 e βθ whereθ = (α+ny 2)/(), since log[(1/θ)p(y θ)p(θ)] logθ+() logθ ()θ February 13, 2006

6 If we observe that θ ˆθ = (α+ny 2)/() ()/() =α+ny 2 then the second order Laplace approximation yields E[1/θ y] α+ny 2 () 2 () 2 1/θ θ ny e nθ θ α 1 e βθ ˆθ ny e nˆθ ˆθ α 1 e βˆθ = 1/θ ( ) θ +1/2 e ()(θ ˆθ) ˆθ = α+ny 2 ( ) /2 α+ny 2 e February 13, 2006

7 We can compare these: First Order: E[1/θ y] Second Order: E[1/θ y] Exact Calculation: E[1/θ y] = = α+ny 2 0 ( ) /2 α+ny 2 e +1 1/θ Gamma(θ α+ny,)dθ ( () Γ() )( ) Γ(α+ny 2) () α+ny 2 = α+ny 2 See R code for today s lecture February 13, 2006

8 Some comments Ifθ=(θ 1,...,θ d ), then the same approach yields E[g(θ) y] = Σ 1/2 exp{ nh (θ )} ˆΣ 1/2 exp{ nh(ˆθ)} [1+O(1/n 2 )] where h(θ), h (θ), ˆθ andθ are as before, and now theσ s are inverse-information (variance/covariance) matrices: [ ] ˆΣ= 2 1 [ ] h(θ) Σ 2 h 1 (θ) = θ i θ j θ i θ j θ=ˆθ If g(θ) 0 fails, can consider E[g(θ) + C y], or E[exp{sg(θ)} y]. These yield similar results (Tierney, Kass and Kadane, 1989, JASA). There is a similar approximation for marginal posterior densities p(θ 1 y) p(y θ 1,θ 2 )p(θ 1,θ 2 )dθ 2 = exp{ p(θ 1,θ 2 )}dθ 2 θ=θ Σ(θ 1 ) 1/2 exp{ p(θ 1, ˆθ 2 (θ 1 ))} [1+O(1/n 3/2 )] [ ] 1 where ˆθ 2 (θ 1 )=argmax θ2 p(θ 1,θ 2 ) and Σ= 2 p(θ 1,θ 2 ) θ 2i θ 2 j θ2 =ˆθ 2 (θ 1 ) February 13, 2006

9 Our general setup Level 1: y p(y θ) Hierarchical Models Level 2:θ p(θ) is just a way of factoring the joint density p(y,θ)= p(y θ)p(θ). In multiple parameter problems it is advantageous to factor the joint density more fully. E.g. in the Normal model with a fully conjugate prior, p(y,µ,σ 2 )= p(y µ,σ 2 )p(µ σ 2 )p(σ 2 ) Suggests 3-level hierarchy: Level 1: y p(y µ,σ 2 ) Level 2:µ p(µ σ 2 ) Level 3:σ 2 p(σ 2 )... Or more generally: Level 1: y p(y θ,τ) or just p(y θ) Level 2:θ p(θ τ) Level 3:τ p(τ) It is often useful to organize the modeling into three or more hierarchical levels. This is especially true if the data itself is naturally hierarchical February 13, 2006

10 Example of Hierarchical Data and Modeling Gelman pp. 138ff. discusses the following test coaching data (for SAT-V scores, which generally have mean=500, SD=100, and range from 200 to 800 points): School A B C D E F G H y j σ j Each y j represents the mean effect on test scores of n j students in school j. We do not know n i but we do knowσ j, the estimated SE of the effect in each school. How shall we treat this data? Estimating eight separate mean effects? Pooled and estimating a single mean effect? See additional R code for this lecture February 13, 2006

11 Estimating eight separate mean effects? 95% CI s (classical confidence intervals, or credible intervals under a flat prior: Effect CI s Schools So it seems plausible that the eight studies are estimating a common effect February 13, 2006

12 Pooled and estimating a single mean effect? The pooled mean and S E 2 are y.. = jy j /σ 2 j/ j1/σ 2 j 7.9, σ 2..= 1/ j1/σ 2 j= 17.4 and, e.g.,χ 2 7 = i(y j y.. ) 2 /σ 2 j= 4.6<7, suggesting that there is a common mean effect. However, a sample from the pooled normal distribution doesn t yield estimates as spread out as these y s: > sort(y) [1] > M < ; effects <- matrix(na,ncol=8,nrow=m) > for (m in 1:M) { effects[m,] <- sort(rnorm(8,7.9,sqrt(17.4))) } > round(apply(effects,2,mean),2) [1] > round(summary(effects[,8]),2) Min. 1st Qu. Median Mean 3rd Qu. Max February 13, 2006

Remarks on Improper Ignorance Priors

Remarks on Improper Ignorance Priors As a limit of proper priors Remarks on Improper Ignorance Priors Two caveats relating to computations with improper priors, based on their relationship with finitely-additive, but not countably-additive

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 32 Lecture 14 : Variational Bayes

More information

Spring 2006: Introduction to Markov Chain Monte Carlo (MCMC)

Spring 2006: Introduction to Markov Chain Monte Carlo (MCMC) 36-724 Spring 2006: Introduction to Marov Chain Monte Carlo (MCMC) Brian Juner February 16, 2006 Hierarchical Normal Model Direct Simulation An Alternative Approach: MCMC Complete Conditionals for Hierarchical

More information

Bayesian Methods. David S. Rosenberg. New York University. March 20, 2018

Bayesian Methods. David S. Rosenberg. New York University. March 20, 2018 Bayesian Methods David S. Rosenberg New York University March 20, 2018 David S. Rosenberg (New York University) DS-GA 1003 / CSCI-GA 2567 March 20, 2018 1 / 38 Contents 1 Classical Statistics 2 Bayesian

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 1. General Background 2. Constructing Prior Distributions 3. Properties of Bayes Estimators and Tests 4. Bayesian Analysis of the Multiple Regression Model 5. Bayesian

More information

θ 1 θ 2 θ n y i1 y i2 y in Hierarchical models (chapter 5) Hierarchical model Introduction to hierarchical models - sometimes called multilevel model

θ 1 θ 2 θ n y i1 y i2 y in Hierarchical models (chapter 5) Hierarchical model Introduction to hierarchical models - sometimes called multilevel model Hierarchical models (chapter 5) Introduction to hierarchical models - sometimes called multilevel model Exchangeability Slide 1 Hierarchical model Example: heart surgery in hospitals - in hospital j survival

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 1) Fall 2017 1 / 10 Lecture 7: Prior Types Subjective

More information

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution.

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution. The binomial model Example. After suspicious performance in the weekly soccer match, 37 mathematical sciences students, staff, and faculty were tested for the use of performance enhancing analytics. Let

More information

INTRODUCTION TO BAYESIAN STATISTICS

INTRODUCTION TO BAYESIAN STATISTICS INTRODUCTION TO BAYESIAN STATISTICS Sarat C. Dass Department of Statistics & Probability Department of Computer Science & Engineering Michigan State University TOPICS The Bayesian Framework Different Types

More information

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31

Hierarchical models. Dr. Jarad Niemi. August 31, Iowa State University. Jarad Niemi (Iowa State) Hierarchical models August 31, / 31 Hierarchical models Dr. Jarad Niemi Iowa State University August 31, 2017 Jarad Niemi (Iowa State) Hierarchical models August 31, 2017 1 / 31 Normal hierarchical model Let Y ig N(θ g, σ 2 ) for i = 1,...,

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 8: Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk Based on slides by Sharon Goldwater October 14, 2016 Frank Keller Computational

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

CS281A/Stat241A Lecture 22

CS281A/Stat241A Lecture 22 CS281A/Stat241A Lecture 22 p. 1/4 CS281A/Stat241A Lecture 22 Monte Carlo Methods Peter Bartlett CS281A/Stat241A Lecture 22 p. 2/4 Key ideas of this lecture Sampling in Bayesian methods: Predictive distribution

More information

Lecture 3. Univariate Bayesian inference: conjugate analysis

Lecture 3. Univariate Bayesian inference: conjugate analysis Summary Lecture 3. Univariate Bayesian inference: conjugate analysis 1. Posterior predictive distributions 2. Conjugate analysis for proportions 3. Posterior predictions for proportions 4. Conjugate analysis

More information

Introduction to Bayesian Computation

Introduction to Bayesian Computation Introduction to Bayesian Computation Dr. Jarad Niemi STAT 544 - Iowa State University March 20, 2018 Jarad Niemi (STAT544@ISU) Introduction to Bayesian Computation March 20, 2018 1 / 30 Bayesian computation

More information

Chapter 5. Bayesian Statistics

Chapter 5. Bayesian Statistics Chapter 5. Bayesian Statistics Principles of Bayesian Statistics Anything unknown is given a probability distribution, representing degrees of belief [subjective probability]. Degrees of belief [subjective

More information

Chapter 3: Maximum Likelihood Theory

Chapter 3: Maximum Likelihood Theory Chapter 3: Maximum Likelihood Theory Florian Pelgrin HEC September-December, 2010 Florian Pelgrin (HEC) Maximum Likelihood Theory September-December, 2010 1 / 40 1 Introduction Example 2 Maximum likelihood

More information

Lecture 2: Priors and Conjugacy

Lecture 2: Priors and Conjugacy Lecture 2: Priors and Conjugacy Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 6, 2014 Some nice courses Fred A. Hamprecht (Heidelberg U.) https://www.youtube.com/watch?v=j66rrnzzkow Michael I.

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Integrated Non-Factorized Variational Inference

Integrated Non-Factorized Variational Inference Integrated Non-Factorized Variational Inference Shaobo Han, Xuejun Liao and Lawrence Carin Duke University February 27, 2014 S. Han et al. Integrated Non-Factorized Variational Inference February 27, 2014

More information

Prior Choice, Summarizing the Posterior

Prior Choice, Summarizing the Posterior Prior Choice, Summarizing the Posterior Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Informative Priors Binomial Model: y π Bin(n, π) π is the success probability. Need prior p(π) Bayes

More information

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework

Bayesian Learning. HT2015: SC4 Statistical Data Mining and Machine Learning. Maximum Likelihood Principle. The Bayesian Learning Framework HT5: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Maximum Likelihood Principle A generative model for

More information

g-priors for Linear Regression

g-priors for Linear Regression Stat60: Bayesian Modeling and Inference Lecture Date: March 15, 010 g-priors for Linear Regression Lecturer: Michael I. Jordan Scribe: Andrew H. Chan 1 Linear regression and g-priors In the last lecture,

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

Bayesian Ingredients. Hedibert Freitas Lopes

Bayesian Ingredients. Hedibert Freitas Lopes Normal Prior s Ingredients Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes hlopes@chicagobooth.edu

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions

Lecture 4: Probabilistic Learning. Estimation Theory. Classification with Probability Distributions DD2431 Autumn, 2014 1 2 3 Classification with Probability Distributions Estimation Theory Classification in the last lecture we assumed we new: P(y) Prior P(x y) Lielihood x2 x features y {ω 1,..., ω K

More information

Introduction. Start with a probability distribution f(y θ) for the data. where η is a vector of hyperparameters

Introduction. Start with a probability distribution f(y θ) for the data. where η is a vector of hyperparameters Introduction Start with a probability distribution f(y θ) for the data y = (y 1,...,y n ) given a vector of unknown parameters θ = (θ 1,...,θ K ), and add a prior distribution p(θ η), where η is a vector

More information

36-720: The Rasch Model

36-720: The Rasch Model 36-720: The Rasch Model Brian Junker October 15, 2007 Multivariate Binary Response Data Rasch Model Rasch Marginal Likelihood as a GLMM Rasch Marginal Likelihood as a Log-Linear Model Example For more

More information

EXERCISES FOR SECTION 1 AND 2

EXERCISES FOR SECTION 1 AND 2 EXERCISES FOR SECTION AND Exercise. (Conditional probability). Suppose that if θ, then y has a normal distribution with mean and standard deviation σ, and if θ, then y has a normal distribution with mean

More information

Bayesian Inference. STA 121: Regression Analysis Artin Armagan

Bayesian Inference. STA 121: Regression Analysis Artin Armagan Bayesian Inference STA 121: Regression Analysis Artin Armagan Bayes Rule...s! Reverend Thomas Bayes Posterior Prior p(θ y) = p(y θ)p(θ)/p(y) Likelihood - Sampling Distribution Normalizing Constant: p(y

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

STAT 730 Chapter 4: Estimation

STAT 730 Chapter 4: Estimation STAT 730 Chapter 4: Estimation Timothy Hanson Department of Statistics, University of South Carolina Stat 730: Multivariate Analysis 1 / 23 The likelihood We have iid data, at least initially. Each datum

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee and Andrew O. Finley 2 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Predictive Hypothesis Identification

Predictive Hypothesis Identification Marcus Hutter - 1 - Predictive Hypothesis Identification Predictive Hypothesis Identification Marcus Hutter Canberra, ACT, 0200, Australia http://www.hutter1.net/ ANU RSISE NICTA Marcus Hutter - 2 - Predictive

More information

21.1 Lower bounds on minimax risk for functional estimation

21.1 Lower bounds on minimax risk for functional estimation ECE598: Information-theoretic methods in high-dimensional statistics Spring 016 Lecture 1: Functional estimation & testing Lecturer: Yihong Wu Scribe: Ashok Vardhan, Apr 14, 016 In this chapter, we will

More information

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference 1 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System. Bayesian Estimation of DSGE

More information

Bayesian Inference: Concept and Practice

Bayesian Inference: Concept and Practice Inference: Concept and Practice fundamentals Johan A. Elkink School of Politics & International Relations University College Dublin 5 June 2017 1 2 3 Bayes theorem In order to estimate the parameters of

More information

CS540 Machine learning L9 Bayesian statistics

CS540 Machine learning L9 Bayesian statistics CS540 Machine learning L9 Bayesian statistics 1 Last time Naïve Bayes Beta-Bernoulli 2 Outline Bayesian concept learning Beta-Bernoulli model (review) Dirichlet-multinomial model Credible intervals 3 Bayesian

More information

CS540 Machine learning L8

CS540 Machine learning L8 CS540 Machine learning L8 Announcements Linear algebra tutorial by Mark Schmidt, 5:30 to 6:30 pm today, in the CS X-wing 8th floor lounge (X836). Move midterm from Tue Oct 14 to Thu Oct 16? Hw3sol handed

More information

One-parameter models

One-parameter models One-parameter models Patrick Breheny January 22 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/17 Introduction Binomial data is not the only example in which Bayesian solutions can be worked

More information

ECE531 Lecture 10b: Maximum Likelihood Estimation

ECE531 Lecture 10b: Maximum Likelihood Estimation ECE531 Lecture 10b: Maximum Likelihood Estimation D. Richard Brown III Worcester Polytechnic Institute 05-Apr-2011 Worcester Polytechnic Institute D. Richard Brown III 05-Apr-2011 1 / 23 Introduction So

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

Data Analysis and Uncertainty Part 2: Estimation

Data Analysis and Uncertainty Part 2: Estimation Data Analysis and Uncertainty Part 2: Estimation Instructor: Sargur N. University at Buffalo The State University of New York srihari@cedar.buffalo.edu 1 Topics in Estimation 1. Estimation 2. Desirable

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 10 Alternatives to Monte Carlo Computation Since about 1990, Markov chain Monte Carlo has been the dominant

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/~brewer/ Emphasis I will try to emphasise the underlying ideas of the methods. I will not be teaching specific software

More information

Time Series and Dynamic Models

Time Series and Dynamic Models Time Series and Dynamic Models Section 1 Intro to Bayesian Inference Carlos M. Carvalho The University of Texas at Austin 1 Outline 1 1. Foundations of Bayesian Statistics 2. Bayesian Estimation 3. The

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 5. Bayesian Computation Historically, the computational "cost" of Bayesian methods greatly limited their application. For instance, by Bayes' Theorem: p(θ y) = p(θ)p(y

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

Hierarchical Models & Bayesian Model Selection

Hierarchical Models & Bayesian Model Selection Hierarchical Models & Bayesian Model Selection Geoffrey Roeder Departments of Computer Science and Statistics University of British Columbia Jan. 20, 2016 Contact information Please report any typos or

More information

Part 4: Multi-parameter and normal models

Part 4: Multi-parameter and normal models Part 4: Multi-parameter and normal models 1 The normal model Perhaps the most useful (or utilized) probability model for data analysis is the normal distribution There are several reasons for this, e.g.,

More information

Approximating mixture distributions using finite numbers of components

Approximating mixture distributions using finite numbers of components Approximating mixture distributions using finite numbers of components Christian Röver and Tim Friede Department of Medical Statistics University Medical Center Göttingen March 17, 2016 This project has

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

BAYESIAN MODEL CRITICISM

BAYESIAN MODEL CRITICISM Monte via Chib s BAYESIAN MODEL CRITICM Hedibert Freitas Lopes The University of Chicago Booth School of Business 5807 South Woodlawn Avenue, Chicago, IL 60637 http://faculty.chicagobooth.edu/hedibert.lopes

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 9: Bayesian Estimation Chris Lucas (Slides adapted from Frank Keller s) School of Informatics University of Edinburgh clucas2@inf.ed.ac.uk 17 October, 2017 1 / 28

More information

Multivariate Normal & Wishart

Multivariate Normal & Wishart Multivariate Normal & Wishart Hoff Chapter 7 October 21, 2010 Reading Comprehesion Example Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

ECE531 Homework Assignment Number 6 Solution

ECE531 Homework Assignment Number 6 Solution ECE53 Homework Assignment Number 6 Solution Due by 8:5pm on Wednesday 3-Mar- Make sure your reasoning and work are clear to receive full credit for each problem.. 6 points. Suppose you have a scalar random

More information

Learning Bayesian network : Given structure and completely observed data

Learning Bayesian network : Given structure and completely observed data Learning Bayesian network : Given structure and completely observed data Probabilistic Graphical Models Sharif University of Technology Spring 2017 Soleymani Learning problem Target: true distribution

More information

STAT J535: Chapter 5: Classes of Bayesian Priors

STAT J535: Chapter 5: Classes of Bayesian Priors STAT J535: Chapter 5: Classes of Bayesian Priors David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Spring 2012 The Bayesian Prior A prior distribution must be specified in a Bayesian analysis. The choice

More information

Bayesian Asymptotics

Bayesian Asymptotics BS2 Statistical Inference, Lecture 8, Hilary Term 2008 May 7, 2008 The univariate case The multivariate case For large λ we have the approximation I = b a e λg(y) h(y) dy = e λg(y ) h(y ) 2π λg (y ) {

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Monte Carlo Composition Inversion Acceptance/Rejection Sampling. Direct Simulation. Econ 690. Purdue University

Monte Carlo Composition Inversion Acceptance/Rejection Sampling. Direct Simulation. Econ 690. Purdue University Methods Econ 690 Purdue University Outline 1 Monte Carlo Integration 2 The Method of Composition 3 The Method of Inversion 4 Acceptance/Rejection Sampling Monte Carlo Integration Suppose you wish to calculate

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

Lecture 4. Generative Models for Discrete Data - Part 3. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza.

Lecture 4. Generative Models for Discrete Data - Part 3. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. Lecture 4 Generative Models for Discrete Data - Part 3 Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza October 6, 2017 Luigi Freda ( La Sapienza University) Lecture 4 October 6, 2017 1 / 46 Outline

More information

Bayesian model selection: methodology, computation and applications

Bayesian model selection: methodology, computation and applications Bayesian model selection: methodology, computation and applications David Nott Department of Statistics and Applied Probability National University of Singapore Statistical Genomics Summer School Program

More information

Lecture 1 Bayesian inference

Lecture 1 Bayesian inference Lecture 1 Bayesian inference olivier.francois@imag.fr April 2011 Outline of Lecture 1 Principles of Bayesian inference Classical inference problems (frequency, mean, variance) Basic simulation algorithms

More information

Statistical Theory MT 2006 Problems 4: Solution sketches

Statistical Theory MT 2006 Problems 4: Solution sketches Statistical Theory MT 006 Problems 4: Solution sketches 1. Suppose that X has a Poisson distribution with unknown mean θ. Determine the conjugate prior, and associate posterior distribution, for θ. Determine

More information

2016 SISG Module 17: Bayesian Statistics for Genetics Lecture 3: Binomial Sampling

2016 SISG Module 17: Bayesian Statistics for Genetics Lecture 3: Binomial Sampling 2016 SISG Module 17: Bayesian Statistics for Genetics Lecture 3: Binomial Sampling Jon Wakefield Departments of Statistics and Biostatistics University of Washington Outline Introduction and Motivating

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

Model Checking and Improvement

Model Checking and Improvement Model Checking and Improvement Statistics 220 Spring 2005 Copyright c 2005 by Mark E. Irwin Model Checking All models are wrong but some models are useful George E. P. Box So far we have looked at a number

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayes: All uncertainty is described using probability.

Bayes: All uncertainty is described using probability. Bayes: All uncertainty is described using probability. Let w be the data and θ be any unknown quantities. Likelihood. The probability model π(w θ) has θ fixed and w varying. The likelihood L(θ; w) is π(w

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Generative Models Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

Accounting for Complex Sample Designs via Mixture Models

Accounting for Complex Sample Designs via Mixture Models Accounting for Complex Sample Designs via Finite Normal Mixture Models 1 1 University of Michigan School of Public Health August 2009 Talk Outline 1 2 Accommodating Sampling Weights in Mixture Models 3

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

Bayesian statistics, simulation and software

Bayesian statistics, simulation and software Module 4: Normal model, improper and conjugate priors Department of Mathematical Sciences Aalborg University 1/25 Another example: normal sample with known precision Heights of some Copenhageners in 1995:

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Empirical Bayes, Hierarchical Bayes Mark Schmidt University of British Columbia Winter 2017 Admin Assignment 5: Due April 10. Project description on Piazza. Final details coming

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

ML estimation: Random-intercepts logistic model. and z

ML estimation: Random-intercepts logistic model. and z ML estimation: Random-intercepts logistic model log p ij 1 p = x ijβ + υ i with υ i N(0, συ) 2 ij Standardizing the random effect, θ i = υ i /σ υ, yields log p ij 1 p = x ij β + σ υθ i with θ i N(0, 1)

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

Statistical Theory MT 2007 Problems 4: Solution sketches

Statistical Theory MT 2007 Problems 4: Solution sketches Statistical Theory MT 007 Problems 4: Solution sketches 1. Consider a 1-parameter exponential family model with density f(x θ) = f(x)g(θ)exp{cφ(θ)h(x)}, x X. Suppose that the prior distribution has the

More information

6.1 Approximating the posterior by calculating on a grid

6.1 Approximating the posterior by calculating on a grid Chapter 6 Approximations 6.1 Approximating the posterior by calculating on a grid When one is confronted with a low-dimensional problem with a continuous parameter, then it is usually feasible to approximate

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3 Hypothesis Testing CB: chapter 8; section 0.3 Hypothesis: statement about an unknown population parameter Examples: The average age of males in Sweden is 7. (statement about population mean) The lowest

More information

System Identification, Lecture 4

System Identification, Lecture 4 System Identification, Lecture 4 Kristiaan Pelckmans (IT/UU, 2338) Course code: 1RT880, Report code: 61800 - Spring 2016 F, FRI Uppsala University, Information Technology 13 April 2016 SI-2016 K. Pelckmans

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

Fall 2003: Maximum Likelihood II

Fall 2003: Maximum Likelihood II 36-711 Fall 2003: Maximum Likelihood II Brian Junker November 18, 2003 Slide 1 Newton s Method and Scoring for MLE s Aside on WLS/GLS Application to Exponential Families Application to Generalized Linear

More information