Motion Planning of Discrete time Nonholonomic Systems with Difference Equation Constraints

Size: px
Start display at page:

Download "Motion Planning of Discrete time Nonholonomic Systems with Difference Equation Constraints"

Transcription

1 Vol. 18 No. 6, pp , Motion Planning of Discrete time Nonholonomic Systems with Difference Equation Constraints Hirohiko Arai The concept of discrete time nonholonomic systems, in which the constraints cannot be represented as algebraic equations of generalized coordinates, is introduced. In particular, the constraints formulated as differece equations of generalized coordinates are considered. Such systems can be seen in the digital control of continuous time nonholonomic systems, and in mechanical systems with repetitive and discontinuous constraints. Atwo wheeled mobile robot and pivoting manipulation of a polyhedral object are described as simple examples. The k step reachable region is defined as the set of the k th state which the system can reach from the initial state, and the reachability of such systems is discussed. Amotion planning method using the Jacobian matrix of the state with regard to the input series is proposed. Key Words: Nonholonomic System, Discrete Time System, Difference Equation, Nonlinear System, Step Reachability, Motion Planning 1. [1] [2] Mechanical Engineering Laboratory, AIST, MITI q t h(q,t)=0 1 1 q q 1 h(q, q) =0 2 u q = G(q, u) 3 2 [3]

2 824 u q under actuated 2 h(q) q = 0 4 Pfaffian q = G(q)u 5 1 [4] k q k =(q1 k,...,qn) k T M, u k =(u k 1,...,u k m) T Ω m<n 1 k h(q k,k)=0 6 q k k q k+1 = G(q k, u k ) 7 7 u k h(q k+1, q k )=0 8 n m 6 2 q k+2, q k+3, Monaco Normand Cyrot [5] [7] Chained Chained 3 q = G cont(q, u) T q(t) q k q k = q(k T ) (k =0, 1,...) k T t<(k + 1) T u(t) =u k (k+1) T q k+1 = q k + G cont(q(t), u k )dt 9 k T u k, T 2 q k u k 9 7 u(t) u k JRSJ Vol. 18 No Sept., 2000

3 q (q k+1 q k )/ T Euler q k+1 = q k + G cont(q k, u k ) T 10 Kelly Murray [8] Goodwine Burdick stratified manifold [9] [10] Fig. 1 Fig. 1 Two wheeled mobile robot (x, y) θ ω L,ω R r l ẋ = r(ω R + ω L) cos θ/2 ẏ = r(ω R + ω L) sin θ/2 11 θ = r(ω R ω L)/l ω R,ω L T ω k R,ω k L v k = r(ω k R + ω k L)/2, x k+1 = x k + T 0 y k+1 = y k + T 0 θ k+1 = θ k + T 0 u k v = v k T, ω k = r(ω k R ω k L)/l v k cos(θ k + ω k t)dt v k sin(θ k + ω k t)dt ω k dt u k ω = ω k T u k ω 0 x k+1 = x n + {sin(θ k + u k ω) sin θ k }u k v/u k ω y k+1 = y n {cos(θ k + u k ω) cos θ k }u k v/u k ω θ k+1 = θ k + u k ω u k ω = x k+1 = x k + cos θ k u k v y k+1 = y k + sin θ k u k v 14 θ k+1 = θ k 13 u k v, u k ω (x k+1 x k )(cos θ k+1 cos θ k )+ (y k+1 y k )(sin θ k+1 sin θ k )= Pfaffian q k =(x k,y k,θ k ) T u k =(u k v,u k ω) T G(q k, u k ) q k q k = u k G(q k, u k ) u k q k = u k

4 AB u k A, u k q k+1 = q k B AB l u k x k+1 = x k + l cos θ k l cos(u k B θ k ) y k+1 = y k + l sin θ k + l sin(u k B θ k ) 16 θ k+1 = θ k + u k A u k B q 0 =(0, 0, 0) T 7 [12] Fig. 4 u 0 =(δ, 0) T q 1 =(δ, 0, 0) T 2 u 0 =(δ, π) T, u 1 =(δ, π) T q 2 =(0, 4δ/π,0) T u 0 =(0,δ) T q 1 =(0, 0,δ) T 16 u k A, u k B u k v,u k ω x, y, θ [11] Fig. 2 [11] Fig. 3 B AB u k B A u k A 1 A x k, y k AB θ k (x k+1 x k l cos θ k ) 2 +(y k+1 y k l sin θ k ) 2 = l A B 16 q k =(x k,y k,θ k ) T u k =(u k A,u k B) T q k+1 = q k + 0 l u k q 0 =(0, 0, 0) T u 0 =(δ, δ) T, u 1 =( δ, δ) T q 2 =(2l(1 cos δ), 0, 0) T u 0 =(2δ, δ) T, u 1 =(0,δ) T q 2 =(0, 2l sin δ, 0) T u 0 =(δ, 0) q 1 =(0, 0,δ) T Fig. 5 Fig. 2 Pivoting of an object Fig. 4 Biped robot equivalent to pivoting Fig. 3 Model of planar pivoting Fig. 5 Motion in each coordinate JRSJ Vol. 18 No Sept., 2000

5 q 1 = G(q 0, u 0 ) = G 1(q 0, u 0 ) q 2 = G(q 1, u 1 ) = G 2(q 0, u 0, u 1 )... q k = G(q k 1, u k 1 ) = G k (q 0, u 0,..., u k 1 ) 18 u i u j (i j) 3 7 q 0 k q k q 0 k Λ(q 0,k) Λ(q 0,k) 19 = {q k ; q j+1 = G(q j, u j ), u j Ω, 0 j k 1} 3.2 (0, 0, 0) T 1 2 Fig l (a) 1 2 (a) (b) 4. 2 [13] Fig. 6 Step reachable region 4 7 q k M q 0 M k Λ(q 0,k) M q 0 k 1 k k 2 q 0 M q 0 Λ(q 0, 1) k j k j 18 q k = G k (q 0, u 0, u 1,..., u k 1 ) k m k U k =(u 0T,..., u k 1T ) T q 0 G k U k J k = G ( ) k Gk = U k u,..., G k 20 0 u k 1 U k = U k0 + δu k G k (q 0, U k0 )+δq k δq k = J k δu k + O( δu k 2 ) J k q k M U k M J k rank J k = dim M(= n)

6 828 U k k Λ(q 0,k) M k J k G k (q 0, U k ) 1 G(q, u) G j G(q, u) q = q q = q j G j G(q, u) u = u q = q j u = u j u = u j J k 18 G k u i q... G i+1 q G i u 22 Jakubczyk Sontag [14] [14] J k q k+1 = Aq k + Bu k J k J k =(A k 1 B,..., AB, B) 23 n n ν ν =min{k : rank(a k 1 B,..., AB, B) =n} 1 k (0, 0, 0) T 2 J 2 detj 2J2 T = l 4 {3 cos u 0 A cos(2u 0 A) + cos(u 0 A 2u 1 B) cos(2(u 0 A u 1 B)) + cos(2u 0 A u 1 B) cos u 1 B cos(2u 1 B)} u 0 A =0,u 1 B =0 J 2 3 J G j u 8 q k h(q k )=0 24 n m U k q k 24 m G k 1 u m u k 1 q k k U k 20 J k rank J k = dimω(= m) j G j+1 q G j u G j+1 u G j+1 q G j u = G j+1 u m Q j 22 G k u i q...g i+2 q...g i+2 Q j q G i+1 q G i u q G i+1 u Q i q...g i+2 u Q i+1q ir... u Q k 2...Q i+1q i 20 J k G k 1 u 3 7 j G j+1 q G j u G j+1 u 25 1 JRSJ Vol. 18 No Sept., 2000

7 q 0 k qd k U k =(u 0,..., u k 1 ) qd k q 0 k k 21 k 18 U k q k d = G k (q 0, U k ) 26 Fig. 7 Motion planning algorithm 26 U k qd k 7 J k = G k / U k [15] U k q 0 q k 18 J k J k J + k = J k T (J k Jk T ) 1 U k = J + k Kp(qk d q k )+(I J + k J k)f(u k ) 27 1 q k qd k K p 2 f(u k ) 2 1 V (U k ) f(u k )= V / U k I J + k J k q k 27 U k U k + U k q k qd k q k U k Fig k = 8 2 f(u k ) = Heimann [16] Fig. 8 (K vu 0 v,k ωu 0 ω,...,k vu k 1 v Planned motion of mobile robot,k ωuω k 1 ) k 1 i=0 {Kv(ui v) 2 + K ω(u i ω) 2 } Fig. 8 (a) (0, 0, π/2) (5, 10, π/2) (b) (0, 0, 0) (0, 10, π) (c) (0, 0, π/2) (0, 10, π/2) u i v =1,u i ω =0 (i =0,...,k 1) (c) 2 (a) (a) 2 (b) Fig CPU 150 [MHz] 0.17 [sec] f(u k )= K u(u 0 A,u 0 B,...,u k 1 A,uk 1 B )

8 830 Fig. 9 Fig. 10 Error and cost function Planned motion of pivoting k 1 i=0 {(ui A) 2 +(u i B) 2 } Fig. 10 (a) (0, 0, 0) (3, 6, 0) (b) (0, 0, π/2) (0, 6, π/2) (c) (0, 0, π/2) (0, 6, π/2) l =1 u i A = u i B =0.5 (i =0,...,k 1) 6. 2 [1] 1 5 vol.11, no.4 7, 1993, vol.12, no.2, [2] vol.36, no.6, pp , [3] [ 4 ] G. Oriolo and Y. Nakamura: Free Joint Manipulators: Motion Control under Second Order Nonholonomic Constraints, Proc. IEEE/RSJ Int. Workshop on Intelligent Robots and Systems (IROS 91), pp , [ 5 ] S. Monaco and D. Normand Cyrot: An Introduction to Motion Planning Under Multirate Digital Control, Proc. 31st IEEE Conf. Decision and Control, pp , [ 6 ] A. Chelouah et al.: Digital Control of Nonholonomic Systems: Two Case Studies, Proc. 32nd IEEE Conf. Decision and Control, pp , [ 7 ] P. Di Giamberadino et al.: Piecewise Continuous Control for a Car Like Robot: Implementation and Experimental Results, Proc. 35th IEEE Conf. Decision and Control, pp , [ 8 ] S. Kelly and R. Murray: Geometric Phases and Robotic Locomotion, J. Robotic Systems, vol.12, no.6, pp , [ 9 ] B. Goodwine and J. Burdick: Trajectory Generation for Kinematic Legged Robots, Proc IEEE Int. Conf. Robotics and Automation, pp , [10] B. Goodwine and J. Burdick: Gait Controllability for Legged Robots, Proc IEEE Int. Conf. Robotics and Automation, pp , [11] vol.14, no.1, pp , [12] T. Yano, S. Numao and Y. Kitamura: Development of a Self Contained Wall Climbing Robot with Scanning Type Suction Cups, Proc. IEEE/RSJ Int. Conference on Intelligent Robots and Systems (IROS 98), pp , [13] [14] B. Jakubczyk and E. Sontag: Controllability of Nonlinear Discrete time Systems: A Lie Algebraic Approach, SIAM J. Control and Optimization, vol.28, no.1, pp.1 33, [15] Y. Nakamura, H. Hanafusa and T. Yoshikawa: Task Priority Based Redundancy Control of Robot Manipulators, Int. J. Robotics Research, vol.6, no.2, pp.3 15, [16] B. Heimann: Feedback Linearization of Underactuated Manipulation Systems, Proc. 3rd Int. Conf. Advanced Mechatronics (ICAM 98), pp , Hirohiko Arai IEEE JRSJ Vol. 18 No Sept., 2000

EN Nonlinear Control and Planning in Robotics Lecture 2: System Models January 28, 2015

EN Nonlinear Control and Planning in Robotics Lecture 2: System Models January 28, 2015 EN53.678 Nonlinear Control and Planning in Robotics Lecture 2: System Models January 28, 25 Prof: Marin Kobilarov. Constraints The configuration space of a mechanical sysetm is denoted by Q and is assumed

More information

Robotics, Geometry and Control - A Preview

Robotics, Geometry and Control - A Preview Robotics, Geometry and Control - A Preview Ravi Banavar 1 1 Systems and Control Engineering IIT Bombay HYCON-EECI Graduate School - Spring 2008 Broad areas Types of manipulators - articulated mechanisms,

More information

Limit Cycle Walking on Ice

Limit Cycle Walking on Ice 3 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 3. Tokyo, Japan Limit Cycle Walking on Ice Fumihiko Asano, Yasunori Kikuchi and Masahiro Shibata Abstract This

More information

Nonholonomic Constraints Examples

Nonholonomic Constraints Examples Nonholonomic Constraints Examples Basilio Bona DAUIN Politecnico di Torino July 2009 B. Bona (DAUIN) Examples July 2009 1 / 34 Example 1 Given q T = [ x y ] T check that the constraint φ(q) = (2x + siny

More information

CONTROL OF THE NONHOLONOMIC INTEGRATOR

CONTROL OF THE NONHOLONOMIC INTEGRATOR June 6, 25 CONTROL OF THE NONHOLONOMIC INTEGRATOR R. N. Banavar (Work done with V. Sankaranarayanan) Systems & Control Engg. Indian Institute of Technology, Bombay Mumbai -INDIA. banavar@iitb.ac.in Outline

More information

On mechanical control systems with nonholonomic constraints and symmetries

On mechanical control systems with nonholonomic constraints and symmetries ICRA 2002, To appear On mechanical control systems with nonholonomic constraints and symmetries Francesco Bullo Coordinated Science Laboratory University of Illinois at Urbana-Champaign 1308 W. Main St,

More information

Nonholonomic Behavior in Robotic Systems

Nonholonomic Behavior in Robotic Systems Chapter 7 Nonholonomic Behavior in Robotic Systems In this chapter, we study the effect of nonholonomic constraints on the behavior of robotic systems. These constraints arise in systems such as multifingered

More information

Figure : Lagrangian coordinates for the sphere: x, y, u, v,. reference frame xed to the oor; if denotes the inner mass orientation, we get _x = cos u

Figure : Lagrangian coordinates for the sphere: x, y, u, v,. reference frame xed to the oor; if denotes the inner mass orientation, we get _x = cos u Nonholonomic Kinematics and Dynamics of the Sphericle Carlo Camicia Fabio Conticelli Antonio Bicchi Centro \E. Piaggio" University of Pisa Abstract In this paper we consider a complete dynamic model for

More information

Control of Redundant Robots under End-Effector Commands: A Case Study in Underactuated Systems

Control of Redundant Robots under End-Effector Commands: A Case Study in Underactuated Systems to appear in the Journal of Applied Mathematics and Computer Science special issue on Recent Developments in Robotics Control of Redundant Robots under End-Effector Commands: A Case Study in Underactuated

More information

Case Study: The Pelican Prototype Robot

Case Study: The Pelican Prototype Robot 5 Case Study: The Pelican Prototype Robot The purpose of this chapter is twofold: first, to present in detail the model of the experimental robot arm of the Robotics lab. from the CICESE Research Center,

More information

Controllability, Observability & Local Decompositions

Controllability, Observability & Local Decompositions ontrollability, Observability & Local Decompositions Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Lie Bracket Distributions ontrollability ontrollability Distributions

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 3 3.4 Differential Algebraic Systems 3.5 Integration of Differential Equations 1 Outline 3.4 Differential Algebraic Systems 3.4.1 Constrained Dynamics 3.4.2 First and Second

More information

A motion planner for nonholonomic mobile robots

A motion planner for nonholonomic mobile robots A motion planner for nonholonomic mobile robots Miguel Vargas Material taken form: J. P. Laumond, P. E. Jacobs, M. Taix, R. M. Murray. A motion planner for nonholonomic mobile robots. IEEE Transactions

More information

Extremal Trajectories for Bounded Velocity Differential Drive Robots

Extremal Trajectories for Bounded Velocity Differential Drive Robots Extremal Trajectories for Bounded Velocity Differential Drive Robots Devin J. Balkcom Matthew T. Mason Robotics Institute and Computer Science Department Carnegie Mellon University Pittsburgh PA 523 Abstract

More information

Gait Controllability for Legged Robots

Gait Controllability for Legged Robots ill Goodwine and Joel urdick Gait ontrollability for Legged Robots ill Goodwine Notre Dame May 8, 998 Joel urdick altech Outline:. Introduction and ackground 2. Mathematical Preliminaries, tratified ystems

More information

DISCRETE-TIME TIME-VARYING ROBUST STABILIZATION FOR SYSTEMS IN POWER FORM. Dina Shona Laila and Alessandro Astolfi

DISCRETE-TIME TIME-VARYING ROBUST STABILIZATION FOR SYSTEMS IN POWER FORM. Dina Shona Laila and Alessandro Astolfi DISCRETE-TIME TIME-VARYING ROBUST STABILIZATION FOR SYSTEMS IN POWER FORM Dina Shona Laila and Alessandro Astolfi Electrical and Electronic Engineering Department Imperial College, Exhibition Road, London

More information

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics DIFFERENTIAL KINEMATICS relationship between joint velocities and end-effector velocities Geometric Jacobian Analytical Jacobian Kinematic singularities Kinematic redundancy Inverse differential kinematics

More information

REDUCING the torque needed to execute a given robot

REDUCING the torque needed to execute a given robot IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 29 Stable Torque Optimization for Redundant Robots using a Short Preview Khaled Al Khudir Gaute Halvorsen Leonardo Lanari Alessandro

More information

Closed Loop Control of a Gravity-assisted Underactuated Snake Robot with Application to Aircraft Wing-Box Assembly

Closed Loop Control of a Gravity-assisted Underactuated Snake Robot with Application to Aircraft Wing-Box Assembly Robotics: Science and Systems 2007 Atlanta, GA, USA, June 27-30, 2007 Closed Loop Control of a Gravity-assisted Underactuated Snake Robot with Application to Aircraft Wing-Box Assembly Binayak Roy and

More information

An Introduction to Differential Flatness. Will Burgoyne May 7, 2007 ME598 Geometric Mechanics

An Introduction to Differential Flatness. Will Burgoyne May 7, 2007 ME598 Geometric Mechanics An Introduction to Differential Flatness Will Burgoyne May 7, 2007 ME598 Geometric Mechanics Definitions Underdetermined System a system of m ODEs with n dependent variables where m

More information

Real-time Motion Control of a Nonholonomic Mobile Robot with Unknown Dynamics

Real-time Motion Control of a Nonholonomic Mobile Robot with Unknown Dynamics Real-time Motion Control of a Nonholonomic Mobile Robot with Unknown Dynamics TIEMIN HU and SIMON X. YANG ARIS (Advanced Robotics & Intelligent Systems) Lab School of Engineering, University of Guelph

More information

KALMAN S CONTROLLABILITY RANK CONDITION: FROM LINEAR TO NONLINEAR

KALMAN S CONTROLLABILITY RANK CONDITION: FROM LINEAR TO NONLINEAR KALMAN S CONTROLLABILITY RANK CONDITION: FROM LINEAR TO NONLINEAR Eduardo D. Sontag SYCON - Rutgers Center for Systems and Control Department of Mathematics, Rutgers University, New Brunswick, NJ 08903

More information

Control of two-steering-wheels vehicles with the Transverse Function approach

Control of two-steering-wheels vehicles with the Transverse Function approach Control of two-steering-wheels vehicles the Transverse Function approach Pascal Morin and Claude Samson INRIA 24, Route des Lucioles 692 Sophia-Antipolis Cedex, France E-mail address: Pascal.Morin@inria.fr,

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Lecture Notes (CS327A) Advanced Robotic Manipulation Oussama Khatib Stanford University Spring 2005 ii c 2005 by Oussama Khatib Contents 1 Spatial Descriptions 1 1.1 Rigid Body Configuration.................

More information

Robotics 2 Robots with kinematic redundancy

Robotics 2 Robots with kinematic redundancy Robotics 2 Robots with kinematic redundancy Prof. Alessandro De Luca Redundant robots! direct kinematics of the task r = f(q) f: Q! R joint space (dim Q = N) task space (dim R = M)! a robot is (kinematically)

More information

The Effect of Semicircular Feet on Energy Dissipation by Heel-strike in Dynamic Biped Locomotion

The Effect of Semicircular Feet on Energy Dissipation by Heel-strike in Dynamic Biped Locomotion 7 IEEE International Conference on Robotics and Automation Roma, Italy, 1-14 April 7 FrC3.3 The Effect of Semicircular Feet on Energy Dissipation by Heel-strike in Dynamic Biped Locomotion Fumihiko Asano

More information

Robotics & Automation. Lecture 17. Manipulability Ellipsoid, Singularities of Serial Arm. John T. Wen. October 14, 2008

Robotics & Automation. Lecture 17. Manipulability Ellipsoid, Singularities of Serial Arm. John T. Wen. October 14, 2008 Robotics & Automation Lecture 17 Manipulability Ellipsoid, Singularities of Serial Arm John T. Wen October 14, 2008 Jacobian Singularity rank(j) = dimension of manipulability ellipsoid = # of independent

More information

Posture regulation for unicycle-like robots with. prescribed performance guarantees

Posture regulation for unicycle-like robots with. prescribed performance guarantees Posture regulation for unicycle-like robots with prescribed performance guarantees Martina Zambelli, Yiannis Karayiannidis 2 and Dimos V. Dimarogonas ACCESS Linnaeus Center and Centre for Autonomous Systems,

More information

The Jacobian. Jesse van den Kieboom

The Jacobian. Jesse van den Kieboom The Jacobian Jesse van den Kieboom jesse.vandenkieboom@epfl.ch 1 Introduction 1 1 Introduction The Jacobian is an important concept in robotics. Although the general concept of the Jacobian in robotics

More information

Variational Collision Integrators and Optimal Control

Variational Collision Integrators and Optimal Control Variational Collision Integrators and Optimal Control David Pekarek, and Jerrold Marsden 1 Abstract This paper presents a methodology for generating locally optimal control policies for mechanical systems

More information

Dynamic Reconfiguration Manipulability Analyses of Redundant Robot and Humanoid Walking

Dynamic Reconfiguration Manipulability Analyses of Redundant Robot and Humanoid Walking Dynamic Reconfiguration Manipulability Analyses of Redundant Robot and Humanoid Walking Yosuke Kobayashi, Mamoru Minami, Akira Yanou and Tomohide Maeba Abstract In this paper, we propose a new index of

More information

Dynamic Manipulation With a One Joint Robot

Dynamic Manipulation With a One Joint Robot 1997 IEEE International Conference on Roboticsand Automat ion Dynamic Manipulation With a One Joint Robot Kevin M. Lynch 1 Biorobotics Division Mechanical Engineering Laboratory Namiki 1-2, Tsukuba, 305

More information

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems ELEC4631 s Lecture 2: Dynamic Control Systems 7 March 2011 Overview of dynamic control systems Goals of Controller design Autonomous dynamic systems Linear Multi-input multi-output (MIMO) systems Bat flight

More information

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization)

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization) Anton Shiriaev 1,2, Leonid Freidovich 1, Sergey Gusev 3 1 Department

More information

Operational Space Control of Constrained and Underactuated Systems

Operational Space Control of Constrained and Underactuated Systems Robotics: Science and Systems 2 Los Angeles, CA, USA, June 27-3, 2 Operational Space Control of Constrained and Underactuated Systems Michael Mistry Disney Research Pittsburgh 472 Forbes Ave., Suite Pittsburgh,

More information

Differential Kinematics

Differential Kinematics Differential Kinematics Relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space) Instantaneous velocity mappings can be obtained through

More information

Planar Bipedal Robot with Impulsive Foot Action

Planar Bipedal Robot with Impulsive Foot Action Planar Bipedal Robot with Impulsive Foot Action Jun Ho Choi and J. W. Grizzle Abstract A planar bipedal robot with an impulsive actuator at each foot is considered. The analysis extends previous work on

More information

1-DOF Dynamic Pitching Robot that Independently Controls Velocity, Angular Velocity, and Direction of a Ball

1-DOF Dynamic Pitching Robot that Independently Controls Velocity, Angular Velocity, and Direction of a Ball 1-DOF Dynamic Pitching Robot that Independently Controls Velocity, Angular Velocity, and Direction of a Ball Wataru Mori, Jun Ueda +, Tsukasa Ogasawara Graduate School of Information Science, Nara Institute

More information

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18 Dynamics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2016-17 B. Bona (DAUIN) Dynamics Semester 1, 2016-17 1 / 18 Dynamics Dynamics studies the relations between the 3D space generalized forces

More information

Optimal Control Using Nonholonomic Integrators

Optimal Control Using Nonholonomic Integrators 7 IEEE International Conference on Robotics and Automation Roma, Italy, 1-1 April 7 ThA6.3 Optimal Control Using onholonomic Integrators Marin Kobilarov and Gaurav Suatme Robotic Embedded Systems Laboratory

More information

Trajectory Planning and Control of an Underactuated Dynamically Stable Single Spherical Wheeled Mobile Robot

Trajectory Planning and Control of an Underactuated Dynamically Stable Single Spherical Wheeled Mobile Robot Trajectory Planning and Control of an Underactuated Dynamically Stable Single Spherical Wheeled Mobile Robot Umashankar Nagarajan, George Kantor and Ralph L. Hollis Abstract The ballbot is a dynamically

More information

Kinematic and Dynamic Models

Kinematic and Dynamic Models Kinematic and Dynamic Models b Advanced Robotics: Navigation and Perception 3/29/2011 1 Reasoning about mobility is important. Image: RedTeamRacing.com 2 ecture Outline Nomenclature Kinematic Constraints

More information

Introduction to Dynamic Path Inversion

Introduction to Dynamic Path Inversion Dipartimento di ingegneria dell Informazione Università di Parma Dottorato di Ricerca in Tecnologie dell Informazione a.a. 2005/2006 Introduction to Dynamic Path Aurelio PIAZZI DII, Università di Parma

More information

Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models

Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models 104 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE 006 Adaptive Jacobian Tracking Control of Robots With Uncertainties in Kinematic, Dynamic and Actuator Models C. C. Cheah, C. Liu, and J.

More information

Reconstructing Null-space Policies Subject to Dynamic Task Constraints in Redundant Manipulators

Reconstructing Null-space Policies Subject to Dynamic Task Constraints in Redundant Manipulators Reconstructing Null-space Policies Subject to Dynamic Task Constraints in Redundant Manipulators Matthew Howard Sethu Vijayakumar September, 7 Abstract We consider the problem of direct policy learning

More information

An Introduction to Mobility of Cooperating Robots with Unactuated Joints and Closed-Chain Mechanisms

An Introduction to Mobility of Cooperating Robots with Unactuated Joints and Closed-Chain Mechanisms An Introduction to Mobility of Cooperating Robots with Unactuated Joints and Closed-Chain Mechanisms Daniele Genovesi danigeno@hotmail.com Interdepartmental Research Center "E.Piaggio" Faculty of Automation

More information

ARTIFICIAL POTENTIAL FIELDS FOR TRAILER-LIKE SYSTEMS 1. T.A. Vidal-Calleja,2 M. Velasco-Villa E. Aranda-Bricaire,3

ARTIFICIAL POTENTIAL FIELDS FOR TRAILER-LIKE SYSTEMS 1. T.A. Vidal-Calleja,2 M. Velasco-Villa E. Aranda-Bricaire,3 ARTIFICIAL POTENTIAL FIELDS FOR TRAILER-LIKE SYSTEMS T.A. Vidal-Calleja, M. Velasco-Villa E. Aranda-Bricaire,3 Departamento de Ingeniería Eléctrica, Sección de Mecatrónica, CINVESTAV-IPĺN, A.P.4 74, 7,

More information

A General Formulation of Under-Actuated Manipulator Systems

A General Formulation of Under-Actuated Manipulator Systems A General Formulation of Under-Actuated Manipulator Systems Kazuya Yoshida and Dragomir N. Nenchev Dept. of Aeronautics and Space Engineering, Tohoku University Aobayama campus, Sendai 98-77 (Japan) yoshida@astro.mech.tohoku.ac.jp

More information

Coordinated Path Following for Mobile Robots

Coordinated Path Following for Mobile Robots Coordinated Path Following for Mobile Robots Kiattisin Kanjanawanishkul, Marius Hofmeister, and Andreas Zell University of Tübingen, Department of Computer Science, Sand 1, 7276 Tübingen Abstract. A control

More information

Modelling and Control of Mechanical Systems: A Geometric Approach

Modelling and Control of Mechanical Systems: A Geometric Approach Motivation Mathematical preliminaries Submanifolds Optional Modelling and Control of Mechanical Systems: A Geometric Approach Ravi N Banavar banavar@iitb.ac.in 1 1 Systems and Control Engineering, IIT

More information

Introduction to Robotics

Introduction to Robotics J. Zhang, L. Einig 277 / 307 MIN Faculty Department of Informatics Lecture 8 Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de University of Hamburg Faculty of Mathematics, Informatics

More information

Emulation of an Animal Limb with Two Degrees of Freedom using HIL

Emulation of an Animal Limb with Two Degrees of Freedom using HIL Emulation of an Animal Limb with Two Degrees of Freedom using HIL Iván Bautista Gutiérrez, Fabián González Téllez, Dario Amaya H. Abstract The Bio-inspired robotic systems have been a focus of great interest

More information

Fundamental properties of snake robot locomotion

Fundamental properties of snake robot locomotion The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Fundamental properties of snake robot locomotion Pål Liljebäck, Kristin Y. Pettersen, Øyvind

More information

Repetitive jumping control for biped robots via force distribution and energy regulation

Repetitive jumping control for biped robots via force distribution and energy regulation Repetitive jumping control for biped robots via force distribution and energy regulation Gianluca Garofalo and Christian Ott German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Münchner

More information

WE propose the tracking trajectory control of a tricycle

WE propose the tracking trajectory control of a tricycle Proceedings of the International MultiConference of Engineers and Computer Scientists 7 Vol I, IMECS 7, March - 7, 7, Hong Kong Trajectory Tracking Controller Design for A Tricycle Robot Using Piecewise

More information

Lecture 2: Controllability of nonlinear systems

Lecture 2: Controllability of nonlinear systems DISC Systems and Control Theory of Nonlinear Systems 1 Lecture 2: Controllability of nonlinear systems Nonlinear Dynamical Control Systems, Chapter 3 See www.math.rug.nl/ arjan (under teaching) for info

More information

Tracking control strategy for the standard N-trailer mobile robot geometrically motivated approach

Tracking control strategy for the standard N-trailer mobile robot geometrically motivated approach Tracking control strategy for the standard N-trailer mobile robot geometrically motivated approach The paper presented during 8 th International Workshop RoMoCo, Bukowy Dworek, Poland, June 5-7, Maciej

More information

Merits concerning energy-consumption and trajectory-tracking accuracy derived from elbow-bracing robot

Merits concerning energy-consumption and trajectory-tracking accuracy derived from elbow-bracing robot Bulletin of the JSME Journal of Advanced Mechanical Design, Systems, and Manufacturing Vol.11, No.5, 217 Merits concerning energy-consumption and trajectory-tracking accuracy derived from elbow-bracing

More information

Trajectory Planning and Control for Planar Robots with Passive Last Joint

Trajectory Planning and Control for Planar Robots with Passive Last Joint Alessandro De Luca Giuseppe Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Via Eudossiana 8, 84 Roma, Italy deluca@dis.uniroma.it oriolo@dis.uniroma.it Trajectory Planning

More information

Robotics. Path Planning. Marc Toussaint U Stuttgart

Robotics. Path Planning. Marc Toussaint U Stuttgart Robotics Path Planning Path finding vs. trajectory optimization, local vs. global, Dijkstra, Probabilistic Roadmaps, Rapidly Exploring Random Trees, non-holonomic systems, car system equation, path-finding

More information

Introduction to SAMCEF MECANO

Introduction to SAMCEF MECANO Introduction to SAMCEF MECANO 1 Outline Introduction Generalized coordinates Kinematic constraints Time integration Description and paramerization of finite rotations Acknowledgements Michel Géradin (ULg)

More information

Nonlinear Tracking Control of Underactuated Surface Vessel

Nonlinear Tracking Control of Underactuated Surface Vessel American Control Conference June -. Portland OR USA FrB. Nonlinear Tracking Control of Underactuated Surface Vessel Wenjie Dong and Yi Guo Abstract We consider in this paper the tracking control problem

More information

An Introduction to Differential Flatness

An Introduction to Differential Flatness An Introduction to Differential Flatness William Burgoyne ME598 Geometric Mechanics May 7, 007 INTRODUCTION Systems of ordinary differential equations (ODEs) can be divided into two classes, determined

More information

Real-Time Obstacle Avoidance for trailer-like Systems

Real-Time Obstacle Avoidance for trailer-like Systems Real-Time Obstacle Avoidance for trailer-like Systems T.A. Vidal-Calleja, M. Velasco-Villa,E.Aranda-Bricaire. Departamento de Ingeniería Eléctrica, Sección de Mecatrónica, CINVESTAV-IPN, A.P. 4-74, 7,

More information

Solving high order nonholonomic systems using Gibbs-Appell method

Solving high order nonholonomic systems using Gibbs-Appell method Solving high order nonholonomic systems using Gibbs-Appell method Mohsen Emami, Hassan Zohoor and Saeed Sohrabpour Abstract. In this paper we present a new formulation, based on Gibbs- Appell method, for

More information

DISCRETE VARIATIONAL OPTIMAL CONTROL

DISCRETE VARIATIONAL OPTIMAL CONTROL DISCRETE VARIATIONAL OPTIMAL CONTROL FERNANDO JIMÉNEZ, MARIN KOBILAROV, AND DAVID MARTÍN DE DIEGO Abstract. This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian

More information

Comparison Between Two Actuation Schemes for Underactuated Brachiation Robots

Comparison Between Two Actuation Schemes for Underactuated Brachiation Robots 1 Comparison Between Two Actuation Schemes for Underactuated Brachiation Robots Vinícius Menezes de Oliveira Walter Fetter Lages Department of Mathematics, FURG, Rio Grande, Brazil Department of Electrical

More information

The 34 th IEEE Conference on Decision and Control

The 34 th IEEE Conference on Decision and Control Submitted to the 995 IEEE Conference on Decision and Controls Control of Mechanical Systems with Symmetries and Nonholonomic Constraints Jim Ostrowski Joel Burdick Division of Engineering and Applied Science

More information

NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT

NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT Plamen PETROV Lubomir DIMITROV Technical University of Sofia Bulgaria Abstract. A nonlinear feedback path controller for a differential drive

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Kinematic Functions Kinematic functions Kinematics deals with the study of four functions(called kinematic functions or KFs) that mathematically

More information

Instrumentation Commande Architecture des Robots Evolués

Instrumentation Commande Architecture des Robots Evolués Instrumentation Commande Architecture des Robots Evolués Program 4a : Automatic Control, Robotics, Signal Processing Presentation General Orientation Research activities concern the modelling and control

More information

MEAM 520. More Velocity Kinematics

MEAM 520. More Velocity Kinematics MEAM 520 More Velocity Kinematics Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania Lecture 12: October

More information

Energy-based Swing-up of the Acrobot and Time-optimal Motion

Energy-based Swing-up of the Acrobot and Time-optimal Motion Energy-based Swing-up of the Acrobot and Time-optimal Motion Ravi N. Banavar Systems and Control Engineering Indian Institute of Technology, Bombay Mumbai-476, India Email: banavar@ee.iitb.ac.in Telephone:(91)-(22)

More information

Active Nonlinear Observers for Mobile Systems

Active Nonlinear Observers for Mobile Systems Active Nonlinear Observers for Mobile Systems Simon Cedervall and Xiaoming Hu Optimization and Systems Theory Royal Institute of Technology SE 00 44 Stockholm, Sweden Abstract For nonlinear systems in

More information

Robotics. Dynamics. Marc Toussaint U Stuttgart

Robotics. Dynamics. Marc Toussaint U Stuttgart Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory

More information

DSCC EXPERIMENTAL GAIT ANALYSIS OF WAVEBOARD LOCOMOTION

DSCC EXPERIMENTAL GAIT ANALYSIS OF WAVEBOARD LOCOMOTION Proceedings of the ASME 2016 Dynamic Systems and Control Conference DSCC2016 October 12-14, 2016, Minneapolis, Minnesota, USA DSCC2016-9923 EXPERIMENTAL GAIT ANALYSIS OF WAVEBOARD LOCOMOTION Ayush Agrawal

More information

On the stability of nonholonomic multi-vehicle formation

On the stability of nonholonomic multi-vehicle formation Abstract On the stability of nonholonomic multi-vehicle formation Lotfi Beji 1, Mohamed Anouar ElKamel 1, Azgal Abichou 2 1 University of Evry (IBISC EA 4526), 40 rue du Pelvoux, 91020 Evry Cedex, France

More information

Estimation-based Disturbance Rejection in Control for Limit Cycle Generation on Inertia wheel Inverted Pendulum Testbed

Estimation-based Disturbance Rejection in Control for Limit Cycle Generation on Inertia wheel Inverted Pendulum Testbed Estimation-based Disturbance Rejection in Control for Limit Cycle Generation on Inertia wheel Inverted Pendulum Testbed Sébastien Andary, Ahmed Chemori, Sébastien Krut To cite this version: Sébastien Andary,

More information

Spacecraft Attitude Control using CMGs: Singularities and Global Controllability

Spacecraft Attitude Control using CMGs: Singularities and Global Controllability 1 / 28 Spacecraft Attitude Control using CMGs: Singularities and Global Controllability Sanjay Bhat TCS Innovation Labs Hyderabad International Workshop on Perspectives in Dynamical Systems and Control

More information

Robust Low Torque Biped Walking Using Differential Dynamic Programming With a Minimax Criterion

Robust Low Torque Biped Walking Using Differential Dynamic Programming With a Minimax Criterion Robust Low Torque Biped Walking Using Differential Dynamic Programming With a Minimax Criterion J. Morimoto and C. Atkeson Human Information Science Laboratories, ATR International, Department 3 2-2-2

More information

Non-Collision Conditions in Multi-agent Robots Formation using Local Potential Functions

Non-Collision Conditions in Multi-agent Robots Formation using Local Potential Functions 2008 IEEE International Conference on Robotics and Automation Pasadena, CA, USA, May 19-23, 2008 Non-Collision Conditions in Multi-agent Robots Formation using Local Potential Functions E G Hernández-Martínez

More information

Experimental Investigation of Fundamental Properties of Snake Robot Locomotion

Experimental Investigation of Fundamental Properties of Snake Robot Locomotion Experimental Investigation of Fundamental Properties of Snake Robot Locomotion Pål Liljebäck 1,2, Kristin Y. Pettersen 1, Øyvind Stavdahl 1, Jan Tommy Gravdahl 1 1 Norwegian University of Science and Technology,

More information

Control and Planning with Asymptotically Stable Gait Primitives: 3D Dynamic Walking to Locomotor Rehabilitation?

Control and Planning with Asymptotically Stable Gait Primitives: 3D Dynamic Walking to Locomotor Rehabilitation? July 8, 2010 Dynamic Walking, Cambridge, MA R. Gregg 1 1 Control and Planning with Asymptotically Stable Gait Primitives: 3D Dynamic Walking to Locomotor Rehabilitation? Robert D. Gregg * and Mark W. Spong

More information

A trajectory tracking control design for a skid-steering mobile robot by adapting its desired instantaneous center of rotation

A trajectory tracking control design for a skid-steering mobile robot by adapting its desired instantaneous center of rotation A trajectory tracking control design for a skid-steering mobile robot by adapting its desired instantaneous center of rotation Jae-Yun Jun, Minh-Duc Hua, Faïz Benamar Abstract A skid-steering mobile robot

More information

Wenjie Dong and Yi Guo. of nonholonomic mobile robots. We use polynomials as flat outputs. A second order and a fifth order polynomials are

Wenjie Dong and Yi Guo. of nonholonomic mobile robots. We use polynomials as flat outputs. A second order and a fifth order polynomials are New Trajectory Generation Methods for Nonholonomic Mobile Robots Wenjie Dong and Yi Guo Department ofelectrical and Computer Engineering University ofcentral Florida, Orlando, FL 32816, USA Email: dongwjl2@yahoo.com

More information

Modeling and Control of Casterboard Robot

Modeling and Control of Casterboard Robot 9th IFAC Symposium on Nonlinear Control Systems Toulouse, France, September 4-6, 23 FrB2.3 Modeling and Control o Casterboard Robot Kazuki KINUGASA Masato ISHIKAWA Yasuhiro SUGIMOTO Koichi OSUKA Department

More information

Hybrid Control of the Pendubot

Hybrid Control of the Pendubot IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 7, NO. 1, MARCH 2002 79 Hybrid Control of the Pendubot Mingjun Zhang, Student Member, IEEE, and Tzyh-Jong Tarn, Fellow, IEEE Abstract Swing up and balance control

More information

Position in the xy plane y position x position

Position in the xy plane y position x position Robust Control of an Underactuated Surface Vessel with Thruster Dynamics K. Y. Pettersen and O. Egeland Department of Engineering Cybernetics Norwegian Uniersity of Science and Technology N- Trondheim,

More information

Vehicle Dynamics of Redundant Mobile Robots with Powered Caster Wheels

Vehicle Dynamics of Redundant Mobile Robots with Powered Caster Wheels Vehicle Dynamics of Redundant Mobile Robots with Powered Caster Wheels Yuan Ping Li * and Teresa Zielinska and Marcelo H. Ang Jr.* and Wei Lin * National University of Singapore, Faculty of Engineering,

More information

CDS 205 Final Project: Incorporating Nonholonomic Constraints in Basic Geometric Mechanics Concepts

CDS 205 Final Project: Incorporating Nonholonomic Constraints in Basic Geometric Mechanics Concepts CDS 205 Final Project: Incorporating Nonholonomic Constraints in Basic Geometric Mechanics Concepts Michael Wolf wolf@caltech.edu 6 June 2005 1 Introduction 1.1 Motivation While most mechanics and dynamics

More information

SDRE BASED LEADER-FOLLOWER FORMATION CONTROL OF MULTIPLE MOBILE ROBOTS

SDRE BASED LEADER-FOLLOWER FORMATION CONTROL OF MULTIPLE MOBILE ROBOTS SDRE BASED EADER-FOOWER FORMAION CONRO OF MUIPE MOBIE ROBOS Caio Igor Gonçalves Chinelato, uiz S. Martins-Filho Universidade Federal do ABC - UFABC Av. dos Estados, 5001, Bangu, 09210-971, Santo André,

More information

Robotics. Dynamics. University of Stuttgart Winter 2018/19

Robotics. Dynamics. University of Stuttgart Winter 2018/19 Robotics Dynamics 1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler, joint space control, reference trajectory following, optimal operational

More information

Dynamics of Heel Strike in Bipedal Systems with Circular Feet

Dynamics of Heel Strike in Bipedal Systems with Circular Feet Dynamics of Heel Strike in Bipedal Systems with Circular Feet Josep Maria Font and József Kövecses Abstract Energetic efficiency is a fundamental subject of research in bipedal robot locomotion. In such

More information

Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum

Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum Sébastien Andary Ahmed Chemori Sébastien Krut LIRMM, Univ. Montpellier - CNRS, 6, rue Ada

More information

Control of a Handwriting Robot with DOF-Redundancy based on Feedback in Task-Coordinates

Control of a Handwriting Robot with DOF-Redundancy based on Feedback in Task-Coordinates Control of a Handwriting Robot with DOF-Redundancy based on Feedback in Task-Coordinates Hiroe HASHIGUCHI, Suguru ARIMOTO, and Ryuta OZAWA Dept. of Robotics, Ritsumeikan Univ., Kusatsu, Shiga 525-8577,

More information

Robotics. Path Planning. University of Stuttgart Winter 2018/19

Robotics. Path Planning. University of Stuttgart Winter 2018/19 Robotics Path Planning Path finding vs. trajectory optimization, local vs. global, Dijkstra, Probabilistic Roadmaps, Rapidly Exploring Random Trees, non-holonomic systems, car system equation, path-finding

More information

Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics

Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics Geometric Mechanics and Global Nonlinear Control for Multi-Body Dynamics Harris McClamroch Aerospace Engineering, University of Michigan Joint work with Taeyoung Lee (George Washington University) Melvin

More information

8 Velocity Kinematics

8 Velocity Kinematics 8 Velocity Kinematics Velocity analysis of a robot is divided into forward and inverse velocity kinematics. Having the time rate of joint variables and determination of the Cartesian velocity of end-effector

More information

Discontinuous Backstepping for Stabilization of Nonholonomic Mobile Robots

Discontinuous Backstepping for Stabilization of Nonholonomic Mobile Robots Discontinuous Backstepping for Stabilization of Nonholonomic Mobile Robots Herbert G. Tanner GRASP Laboratory University of Pennsylvania Philadelphia, PA, 94, USA. tanner@grasp.cis.upenn.edu Kostas J.

More information

ECE557 Systems Control

ECE557 Systems Control ECE557 Systems Control Bruce Francis Course notes, Version.0, September 008 Preface This is the second Engineering Science course on control. It assumes ECE56 as a prerequisite. If you didn t take ECE56,

More information