Statistics 581 Revision of Section 4.4: Consistency of Maximum Likelihood Estimates Wellner; 11/30/2001

Size: px
Start display at page:

Download "Statistics 581 Revision of Section 4.4: Consistency of Maximum Likelihood Estimates Wellner; 11/30/2001"

Transcription

1 Statistics 581 Revision of Section 4.4: Consistency of Maximum Likelihood Estimates Wellner; 11/30/2001 Some Uniform Strong Laws of Large Numbers Suppose that: A. X, X 1,...,X n are i.i.d. P on the measurable space (X, A). B. For each θ Θ, f(x, θ) isameasurable, real-valued function of x, f(,θ) L 1 (P ). Let F = {f(,θ):θ Θ}. Since f(,θ) L 1 (P ) for each θ, g(θ) Ef(X, θ) = f(x, θ)dp (x) Pf(,θ) exists and is finite. Moreover, by the strong law of large numbers, P n f(,θ) f(x, θ)dp n (x) = 1 n f(x i,θ) n i=1 (0.1) Ef(X, θ) =Pf(,θ)=g(θ). a.s. It is often useful and important to strengthen (0.1) to hold uniformly in θ Θ: (0.2) sup P n f(,θ) Pf(,θ) a.s. 0. Note that the left side in (0.2) is equal to P n P F sup P n f Pf. f F Here is how (0.2) can be used: suppose that we have a sequence θ n of estimators, possibly dependent on X 1,...,X n, such that θ n a.s. θ 0. Suppose that g(θ) iscontinuous at θ 0.Wewould like to conclude that P n f(, θ n )= 1 n (0.3) f(x i, n θ n ) a.s. g(θ 0 ). i=1 The convergence (0.3) does not follow from (0.1); but (0.3) does follow from (0.2): P n f(, θ n ) g(θ 0 ) P n f(, θ n ) g( θ n ) + g( θ n ) g(θ 0 ) supp n f(,θ) g(θ) + g( θ n ) g(θ 0 ) = P n P F + g( θ n ) g(θ 0 ) a.s. 0+0=0. 1

2 The following theorems, due to Le Cam, give conditions on f and P under which (2) holds. The first theorem is a prototype for what are now known in empirical process theory as Glivenko-Cantelli theorems. Theorem 1. Suppose that: (a) Θ is compact. (b) f(x, ) iscontinuous in θ for all x. (c) There exists a function F (x) such that EF(X) < and f(x, θ) F (x) for all x X, θ Θ. Then (0.2) holds; i.e. sup P n f(,θ) Pf(,θ) a.s. 0. The second theorem is a one-sided version of theorem 1 which is useful for the theory of maximum likelihood estimation. Theorem 2. Suppose that: (a) Θ is compact. (b) f(x, ) isupper1inθ for all x. (c) There exists a function F (x) such that EF(X) < and f(x, θ) F (x) for all x X, θ Θ. (d) For all θ and all sufficiently small ρ>0 is measurable in x. Then limsup n sup sup f(x, θ ) P n f(,θ) a.s. sup Pf(,θ)=sup g(θ). We proceed by first proving Theorem 2. Then Theorem 1 will follow as a consequence of Theorem 2. Proof of Theorem 2. Let ψ(x, θ, ρ) sup f(x, θ ). Then ψ is measurable (for ρ sufficiently small), bounded by an integrable function F, and ψ(x, θ, ρ) f(x, θ) as ρ 0 by (b). Thus by the monotone convergence theorem ψ(x, θ, ρ)dp (x) f(x, θ)dp (x) =g(θ). 2

3 Let ɛ>0. For each θ, find ρ θ so that ψ(x, θ, ρ)dp (x) <g(θ)+ɛ. The spheres S(θ, ρ θ )={θ : θ θ <ρ θ } cover Θ, so by (a) there exists a finite sub cover: Θ m j=1s(θ j,ρ θj ). for each θ Θ there is some j, 1 j m, such that θ S(θ j,ρ θj ); hence from the definition of ψ it follows that f(x, θ) ψ(x, θ j,ρ θj ) for all x. Therefore and hence Hence P n f(,θ) P n ψ(,θ j,ρ θj ), sup P n f(,θ) sup P n ψ(,θ j,ρ θj ) 1 j m Pψ(,θ j,ρ θj ) limsup n sup Letting ɛ 0 completes the proof. a.s. sup 1 j m sup 1 j m sup g(θ j )+ɛ g(θ)+ɛ. P n f(,θ) a.s. sup g(θ)+ɛ. Proof of Theorem 1. Since f is continuous in θ, condition (d) of Theorem 2 is satisfied: for any countable set D dense in {θ : θ θ <ρ}, sup f(x, θ )=sup f(x, θ ) θ D where the right side is measurable since it is a countable supremum of measurable functions. Furthermore, g(θ) iscontinuous in θ: lim g(θ) = lim f(x, θ )dp (x) = f(x, θ)dp (x) θ θ θ θ 3

4 by the dominated convergence theorem. Now Theorem 1 follows from Theorem 2 applied to the functions h(x, θ) f(x, θ) g(θ) and h(x, θ): by Theorem 2 applied to {h(x, θ) :θ Θ}, limsup n sup(p n f(,θ) g(θ)) 0 a.s. By Theorem 2 applied to { h(x, θ) :θ Θ}, limsup n sup(g(θ)) P n f(,θ)) 0 a.s. The conclusion of Theorem 1 follows since 0 sup P n f(,θ) g(θ) = sup(p n f(,θ) g(θ)) sup(g(θ) P n f(,θ)). For our application of Theorem 2 to consistency of maximum likelihood, the following Lemma will be useful. Lemma 1. If the conditions of Theorem 2 hold, then g(θ) isupper-semicontinuous: i.e. limsup θ θg(θ ) g(θ). Proof. Since f(x, θ) is upper semicontinuous, i.e. limsup θ θf(x, θ ) f(x, θ) for all x ; liminf θ θ {f(x, θ) f(x, θ )} 0 for all x. Hence it follows by Fatou s lemma that 0 Eliminf θ θ {f(x, θ) f(x, θ )} liminf θ θe {f(x, θ) f(x, θ )} = Ef(X, θ) limsup θ θef(x, θ ); i.e. limsup θ θef(x, θ ) Ef(X, θ) =g(θ). 4

5 Now we are prepared to tackle consistency of maximum likelihood estimates. Theorem 3. (Wald, 1949). Suppose that X, X 1,...,X n are i.i.d. P θ0, θ 0 Θ with density p(x, θ 0 ) with respect to the dominating measure ν, and that: (a) Θ is compact. (b) p(x, ) isupper semi-continuous in θ for all x. (c) There exists a function F (x) such that EF(X) < and f(x, θ) log p(x, θ) log p(x, θ 0 ) F (x) for all x X, θ Θ. (d) For all θ and all sufficiently small ρ>0 sup p(x, θ ) is measurable in x. (e) p(x, θ) =p(x, θ 0 ) a.e. ν implies that θ = θ 0. Then for any sequence of maximum likelihood estimates θ n of θ 0, θ n a.s. θ 0. Proof. Let ρ > 0. The functions {f(x, θ) :θ Θ} satisfy the conditions of theorem 2. But we will apply Theorem 2 with Θ replaced by the subset Then S is compact, and by Theorem 2 S {θ : θ θ 0 ρ} Θ. P θ0 (limsup n sup ) P n f(,θ) sup g(θ) =1 where { } p(x, θ) g(θ) =E θ0 f(x, θ) = E θ0 log p(x, θ 0 ) = K(P θ0,p θ ) < 0 for θ S. Furthermore by the Lemma, g(θ) isupper semicontinuous and hence achieves its supremum onthe compact set S. Let δ = sup g(θ). Then by Lemma it follows that δ<0 and we have ) P θ0 (limsup n sup P n f(,θ) δ =1. 5

6 Thus with probability 1 there exists an N such that for all n>n But sup P n f(,θ) δ/2 < 0. P n f(, θ n ) = sup P n f(,θ) = sup 1 n {l n(θ) l n (θ 0 )} 0. Hence θ n / S for n>n; that is, θ n θ 0 <ρwith probability 1. Since ρ was arbitrary, θ n is a.s. consistent. Remark 3. Theorem 3 is due to Wald (1949). The present writeup is an adaptation of Chapters 16 and 17 of Ferguson (1996). For further Glivenko - Cantelli theorems, see chapter 2.4 of Van der Vaart and Wellner (1996). References: Le Cam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related estimates. Univ. Calif. Publ. in Statist. 1, Ferguson, T. (1996). A Course in Large Sample Theory. Chapman and Hall, London. Van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer-Verlag, New York. Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20,

Verifying Regularity Conditions for Logit-Normal GLMM

Verifying Regularity Conditions for Logit-Normal GLMM Verifying Regularity Conditions for Logit-Normal GLMM Yun Ju Sung Charles J. Geyer January 10, 2006 In this note we verify the conditions of the theorems in Sung and Geyer (submitted) for the Logit-Normal

More information

Efficiency of Profile/Partial Likelihood in the Cox Model

Efficiency of Profile/Partial Likelihood in the Cox Model Efficiency of Profile/Partial Likelihood in the Cox Model Yuichi Hirose School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, New Zealand Summary. This paper shows

More information

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December Homework for MATH 4603 (Advanced Calculus I) Fall 2015 Homework 13: Due on Tuesday 15 December 49. Let D R, f : D R and S D. Let a S (acc S). Assume that f is differentiable at a. Let g := f S. Show that

More information

Section 8.2. Asymptotic normality

Section 8.2. Asymptotic normality 30 Section 8.2. Asymptotic normality We assume that X n =(X 1,...,X n ), where the X i s are i.i.d. with common density p(x; θ 0 ) P= {p(x; θ) :θ Θ}. We assume that θ 0 is identified in the sense that

More information

ROBUST - September 10-14, 2012

ROBUST - September 10-14, 2012 Charles University in Prague ROBUST - September 10-14, 2012 Linear equations We observe couples (y 1, x 1 ), (y 2, x 2 ), (y 3, x 3 ),......, where y t R, x t R d t N. We suppose that members of couples

More information

An inverse of Sanov s theorem

An inverse of Sanov s theorem An inverse of Sanov s theorem Ayalvadi Ganesh and Neil O Connell BRIMS, Hewlett-Packard Labs, Bristol Abstract Let X k be a sequence of iid random variables taking values in a finite set, and consider

More information

Empirical Processes: General Weak Convergence Theory

Empirical Processes: General Weak Convergence Theory Empirical Processes: General Weak Convergence Theory Moulinath Banerjee May 18, 2010 1 Extended Weak Convergence The lack of measurability of the empirical process with respect to the sigma-field generated

More information

M- and Z- theorems; GMM and Empirical Likelihood Wellner; 5/13/98, 1/26/07, 5/08/09, 6/14/2010

M- and Z- theorems; GMM and Empirical Likelihood Wellner; 5/13/98, 1/26/07, 5/08/09, 6/14/2010 M- and Z- theorems; GMM and Empirical Likelihood Wellner; 5/13/98, 1/26/07, 5/08/09, 6/14/2010 Z-theorems: Notation and Context Suppose that Θ R k, and that Ψ n : Θ R k, random maps Ψ : Θ R k, deterministic

More information

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty.

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. 1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. Let E be a subset of R. We say that E is bounded above if there exists a real number U such that x U for

More information

REAL VARIABLES: PROBLEM SET 1. = x limsup E k

REAL VARIABLES: PROBLEM SET 1. = x limsup E k REAL VARIABLES: PROBLEM SET 1 BEN ELDER 1. Problem 1.1a First let s prove that limsup E k consists of those points which belong to infinitely many E k. From equation 1.1: limsup E k = E k For limsup E

More information

Estimation of the Bivariate and Marginal Distributions with Censored Data

Estimation of the Bivariate and Marginal Distributions with Censored Data Estimation of the Bivariate and Marginal Distributions with Censored Data Michael Akritas and Ingrid Van Keilegom Penn State University and Eindhoven University of Technology May 22, 2 Abstract Two new

More information

SOME CONVERSE LIMIT THEOREMS FOR EXCHANGEABLE BOOTSTRAPS

SOME CONVERSE LIMIT THEOREMS FOR EXCHANGEABLE BOOTSTRAPS SOME CONVERSE LIMIT THEOREMS OR EXCHANGEABLE BOOTSTRAPS Jon A. Wellner University of Washington The bootstrap Glivenko-Cantelli and bootstrap Donsker theorems of Giné and Zinn (990) contain both necessary

More information

λ(x + 1)f g (x) > θ 0

λ(x + 1)f g (x) > θ 0 Stat 8111 Final Exam December 16 Eleven students took the exam, the scores were 92, 78, 4 in the 5 s, 1 in the 4 s, 1 in the 3 s and 3 in the 2 s. 1. i) Let X 1, X 2,..., X n be iid each Bernoulli(θ) where

More information

Problem set 1, Real Analysis I, Spring, 2015.

Problem set 1, Real Analysis I, Spring, 2015. Problem set 1, Real Analysis I, Spring, 015. (1) Let f n : D R be a sequence of functions with domain D R n. Recall that f n f uniformly if and only if for all ɛ > 0, there is an N = N(ɛ) so that if n

More information

is a Borel subset of S Θ for each c R (Bertsekas and Shreve, 1978, Proposition 7.36) This always holds in practical applications.

is a Borel subset of S Θ for each c R (Bertsekas and Shreve, 1978, Proposition 7.36) This always holds in practical applications. Stat 811 Lecture Notes The Wald Consistency Theorem Charles J. Geyer April 9, 01 1 Analyticity Assumptions Let { f θ : θ Θ } be a family of subprobability densities 1 with respect to a measure µ on a measurable

More information

Section Integration of Nonnegative Measurable Functions

Section Integration of Nonnegative Measurable Functions 18.2. Integration of Nonnegative Measurable Functions 1 Section 18.2. Integration of Nonnegative Measurable Functions Note. We now define integrals of measurable functions on measure spaces. Though similar

More information

A SKOROHOD REPRESENTATION THEOREM WITHOUT SEPARABILITY PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO

A SKOROHOD REPRESENTATION THEOREM WITHOUT SEPARABILITY PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO A SKOROHOD REPRESENTATION THEOREM WITHOUT SEPARABILITY PATRIZIA BERTI, LUCA PRATELLI, AND PIETRO RIGO Abstract. Let (S, d) be a metric space, G a σ-field on S and (µ n : n 0) a sequence of probabilities

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Preservation Theorems for Glivenko-Cantelli and Uniform Glivenko-Cantelli Classes

Preservation Theorems for Glivenko-Cantelli and Uniform Glivenko-Cantelli Classes Preservation Theorems for Glivenko-Cantelli and Uniform Glivenko-Cantelli Classes This is page 5 Printer: Opaque this Aad van der Vaart and Jon A. Wellner ABSTRACT We show that the P Glivenko property

More information

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure? MA 645-4A (Real Analysis), Dr. Chernov Homework assignment 1 (Due ). Show that the open disk x 2 + y 2 < 1 is a countable union of planar elementary sets. Show that the closed disk x 2 + y 2 1 is a countable

More information

02. Measure and integral. 1. Borel-measurable functions and pointwise limits

02. Measure and integral. 1. Borel-measurable functions and pointwise limits (October 3, 2017) 02. Measure and integral Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2017-18/02 measure and integral.pdf]

More information

Metric Spaces. Exercises Fall 2017 Lecturer: Viveka Erlandsson. Written by M.van den Berg

Metric Spaces. Exercises Fall 2017 Lecturer: Viveka Erlandsson. Written by M.van den Berg Metric Spaces Exercises Fall 2017 Lecturer: Viveka Erlandsson Written by M.van den Berg School of Mathematics University of Bristol BS8 1TW Bristol, UK 1 Exercises. 1. Let X be a non-empty set, and suppose

More information

A uniform central limit theorem for neural network based autoregressive processes with applications to change-point analysis

A uniform central limit theorem for neural network based autoregressive processes with applications to change-point analysis A uniform central limit theorem for neural network based autoregressive processes with applications to change-point analysis Claudia Kirch Joseph Tadjuidje Kamgaing March 6, 20 Abstract We consider an

More information

Preparatory Material for the European Intensive Program in Bydgoszcz 2011 Analytical and computer assisted methods in mathematical models

Preparatory Material for the European Intensive Program in Bydgoszcz 2011 Analytical and computer assisted methods in mathematical models Preparatory Material for the European Intensive Program in Bydgoszcz 2011 Analytical and computer assisted methods in mathematical models September 4{18 Basics on the Lebesgue integral and the divergence

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Statistics 581, Problem Set 1 Solutions Wellner; 10/3/ (a) The case r = 1 of Chebychev s Inequality is known as Markov s Inequality

Statistics 581, Problem Set 1 Solutions Wellner; 10/3/ (a) The case r = 1 of Chebychev s Inequality is known as Markov s Inequality Statistics 581, Problem Set 1 Solutions Wellner; 1/3/218 1. (a) The case r = 1 of Chebychev s Inequality is known as Markov s Inequality and is usually written P ( X ɛ) E( X )/ɛ for an arbitrary random

More information

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015

Walker Ray Econ 204 Problem Set 3 Suggested Solutions August 6, 2015 Problem 1. Take any mapping f from a metric space X into a metric space Y. Prove that f is continuous if and only if f(a) f(a). (Hint: use the closed set characterization of continuity). I make use of

More information

Strong Consistency of Set-Valued Frechet Sample Mean in Metric Spaces

Strong Consistency of Set-Valued Frechet Sample Mean in Metric Spaces Strong Consistency of Set-Valued Frechet Sample Mean in Metric Spaces Cedric E. Ginestet Department of Mathematics and Statistics Boston University JSM 2013 The Frechet Mean Barycentre as Average Given

More information

large number of i.i.d. observations from P. For concreteness, suppose

large number of i.i.d. observations from P. For concreteness, suppose 1 Subsampling Suppose X i, i = 1,..., n is an i.i.d. sequence of random variables with distribution P. Let θ(p ) be some real-valued parameter of interest, and let ˆθ n = ˆθ n (X 1,..., X n ) be some estimate

More information

Prohorov s theorem. Bengt Ringnér. October 26, 2008

Prohorov s theorem. Bengt Ringnér. October 26, 2008 Prohorov s theorem Bengt Ringnér October 26, 2008 1 The theorem Definition 1 A set Π of probability measures defined on the Borel sets of a topological space is called tight if, for each ε > 0, there is

More information

van Rooij, Schikhof: A Second Course on Real Functions

van Rooij, Schikhof: A Second Course on Real Functions vanrooijschikhof.tex April 25, 2018 van Rooij, Schikhof: A Second Course on Real Functions Notes from [vrs]. Introduction A monotone function is Riemann integrable. A continuous function is Riemann integrable.

More information

Chapter 4 Efficient Likelihood Estimation and Related Tests

Chapter 4 Efficient Likelihood Estimation and Related Tests Chapter 4 Efficiet Likelihood Estimatio ad Related Tests. Maximum likelihood ad efficiet likelihood estimatio 2. Likelihood ratio, Wald, ad Rao or score) tests 3. Examples 4. Cosistecy of Maximum Likelihood

More information

ON THE DEFINITION OF RELATIVE PRESSURE FOR FACTOR MAPS ON SHIFTS OF FINITE TYPE. 1. Introduction

ON THE DEFINITION OF RELATIVE PRESSURE FOR FACTOR MAPS ON SHIFTS OF FINITE TYPE. 1. Introduction ON THE DEFINITION OF RELATIVE PRESSURE FOR FACTOR MAPS ON SHIFTS OF FINITE TYPE KARL PETERSEN AND SUJIN SHIN Abstract. We show that two natural definitions of the relative pressure function for a locally

More information

Preservation Theorems for Glivenko-Cantelli and Uniform Glivenko-Cantelli Classes

Preservation Theorems for Glivenko-Cantelli and Uniform Glivenko-Cantelli Classes Preservation Theorems for Glivenko-Cantelli and Uniform Glivenko-Cantelli Classes Aad van der Vaart and Jon A. Wellner Free University and University of Washington ABSTRACT We show that the P Glivenko

More information

The Borel-Cantelli Group

The Borel-Cantelli Group The Borel-Cantelli Group Dorothy Baumer Rong Li Glenn Stark November 14, 007 1 Borel-Cantelli Lemma Exercise 16 is the introduction of the Borel-Cantelli Lemma using Lebesue measure. An approach using

More information

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ =

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ = Chapter 6. Integration 1. Integrals of Nonnegative Functions Let (, S, µ) be a measure space. We denote by L + the set of all measurable functions from to [0, ]. Let φ be a simple function in L +. Suppose

More information

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write Lecture 3: Expected Value 1.) Definitions. If X 0 is a random variable on (Ω, F, P), then we define its expected value to be EX = XdP. Notice that this quantity may be. For general X, we say that EX exists

More information

Chapter 4: Asymptotic Properties of the MLE

Chapter 4: Asymptotic Properties of the MLE Chapter 4: Asymptotic Properties of the MLE Daniel O. Scharfstein 09/19/13 1 / 1 Maximum Likelihood Maximum likelihood is the most powerful tool for estimation. In this part of the course, we will consider

More information

Accumulation constants of iterated function systems with Bloch target domains

Accumulation constants of iterated function systems with Bloch target domains Accumulation constants of iterated function systems with Bloch target domains September 29, 2005 1 Introduction Linda Keen and Nikola Lakic 1 Suppose that we are given a random sequence of holomorphic

More information

Three hours THE UNIVERSITY OF MANCHESTER. 24th January

Three hours THE UNIVERSITY OF MANCHESTER. 24th January Three hours MATH41011 THE UNIVERSITY OF MANCHESTER FOURIER ANALYSIS AND LEBESGUE INTEGRATION 24th January 2013 9.45 12.45 Answer ALL SIX questions in Section A (25 marks in total). Answer THREE of the

More information

A PROOF OF A CONVEX-VALUED SELECTION THEOREM WITH THE CODOMAIN OF A FRÉCHET SPACE. Myung-Hyun Cho and Jun-Hui Kim. 1. Introduction

A PROOF OF A CONVEX-VALUED SELECTION THEOREM WITH THE CODOMAIN OF A FRÉCHET SPACE. Myung-Hyun Cho and Jun-Hui Kim. 1. Introduction Comm. Korean Math. Soc. 16 (2001), No. 2, pp. 277 285 A PROOF OF A CONVEX-VALUED SELECTION THEOREM WITH THE CODOMAIN OF A FRÉCHET SPACE Myung-Hyun Cho and Jun-Hui Kim Abstract. The purpose of this paper

More information

Generalized Neyman Pearson optimality of empirical likelihood for testing parameter hypotheses

Generalized Neyman Pearson optimality of empirical likelihood for testing parameter hypotheses Ann Inst Stat Math (2009) 61:773 787 DOI 10.1007/s10463-008-0172-6 Generalized Neyman Pearson optimality of empirical likelihood for testing parameter hypotheses Taisuke Otsu Received: 1 June 2007 / Revised:

More information

MATH 202B - Problem Set 5

MATH 202B - Problem Set 5 MATH 202B - Problem Set 5 Walid Krichene (23265217) March 6, 2013 (5.1) Show that there exists a continuous function F : [0, 1] R which is monotonic on no interval of positive length. proof We know there

More information

Lecture 17: Likelihood ratio and asymptotic tests

Lecture 17: Likelihood ratio and asymptotic tests Lecture 17: Likelihood ratio and asymptotic tests Likelihood ratio When both H 0 and H 1 are simple (i.e., Θ 0 = {θ 0 } and Θ 1 = {θ 1 }), Theorem 6.1 applies and a UMP test rejects H 0 when f θ1 (X) f

More information

0.1 Uniform integrability

0.1 Uniform integrability Copyright c 2009 by Karl Sigman 0.1 Uniform integrability Given a sequence of rvs {X n } for which it is known apriori that X n X, n, wp1. for some r.v. X, it is of great importance in many applications

More information

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology

40.530: Statistics. Professor Chen Zehua. Singapore University of Design and Technology Singapore University of Design and Technology Lecture 9: Hypothesis testing, uniformly most powerful tests. The Neyman-Pearson framework Let P be the family of distributions of concern. The Neyman-Pearson

More information

The Hilbert Transform and Fine Continuity

The Hilbert Transform and Fine Continuity Irish Math. Soc. Bulletin 58 (2006), 8 9 8 The Hilbert Transform and Fine Continuity J. B. TWOMEY Abstract. It is shown that the Hilbert transform of a function having bounded variation in a finite interval

More information

1 The Glivenko-Cantelli Theorem

1 The Glivenko-Cantelli Theorem 1 The Glivenko-Cantelli Theorem Let X i, i = 1,..., n be an i.i.d. sequence of random variables with distribution function F on R. The empirical distribution function is the function of x defined by ˆF

More information

Chapter 7 Statistical Functionals and the Delta Method

Chapter 7 Statistical Functionals and the Delta Method Chapter 7 Statistical Functionals and the Delta Method. Estimators as Functionals of F n or P n 2. Continuity of Functionals of F or P 3. Metrics for Distribution Functions F and Probability Distributions

More information

. Then V l on K l, and so. e e 1.

. Then V l on K l, and so. e e 1. Sanov s Theorem Let E be a Polish space, and define L n : E n M E to be the empirical measure given by L n x = n n m= δ x m for x = x,..., x n E n. Given a µ M E, denote by µ n the distribution of L n

More information

THEOREMS, ETC., FOR MATH 516

THEOREMS, ETC., FOR MATH 516 THEOREMS, ETC., FOR MATH 516 Results labeled Theorem Ea.b.c (or Proposition Ea.b.c, etc.) refer to Theorem c from section a.b of Evans book (Partial Differential Equations). Proposition 1 (=Proposition

More information

COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS

COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS Series Logo Volume 00, Number 00, Xxxx 19xx COMPLETELY INVARIANT JULIA SETS OF POLYNOMIAL SEMIGROUPS RICH STANKEWITZ Abstract. Let G be a semigroup of rational functions of degree at least two, under composition

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued

Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued Introduction to Empirical Processes and Semiparametric Inference Lecture 02: Overview Continued Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations Research

More information

SOLUTION FOR HOMEWORK 7, STAT p(x σ) = (1/[2πσ 2 ] 1/2 )e (x µ)2 /2σ 2.

SOLUTION FOR HOMEWORK 7, STAT p(x σ) = (1/[2πσ 2 ] 1/2 )e (x µ)2 /2σ 2. SOLUTION FOR HOMEWORK 7, STAT 6332 1. We have (for a general case) Denote p (x) p(x σ)/ σ. Then p(x σ) (1/[2πσ 2 ] 1/2 )e (x µ)2 /2σ 2. p (x σ) p(x σ) 1 (x µ)2 +. σ σ 3 Then E{ p (x σ) p(x σ) } σ 2 2σ

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS AND CONTINUOUS SOLUTIONS OF RELATED EQUATIONS. Rafa l Kapica Silesian University, Poland

SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS AND CONTINUOUS SOLUTIONS OF RELATED EQUATIONS. Rafa l Kapica Silesian University, Poland GLASNIK MATEMATIČKI Vol. 42(62)(2007), 389 399 SEQUENCES OF ITERATES OF RANDOM-VALUED VECTOR FUNCTIONS AND CONTINUOUS SOLUTIONS OF RELATED EQUATIONS Rafa l Kapica Silesian University, Poland Abstract.

More information

Semiparametric posterior limits

Semiparametric posterior limits Statistics Department, Seoul National University, Korea, 2012 Semiparametric posterior limits for regular and some irregular problems Bas Kleijn, KdV Institute, University of Amsterdam Based on collaborations

More information

Theoretical Statistics. Lecture 17.

Theoretical Statistics. Lecture 17. Theoretical Statistics. Lecture 17. Peter Bartlett 1. Asymptotic normality of Z-estimators: classical conditions. 2. Asymptotic equicontinuity. 1 Recall: Delta method Theorem: Supposeφ : R k R m is differentiable

More information

( f ^ M _ M 0 )dµ (5.1)

( f ^ M _ M 0 )dµ (5.1) 47 5. LEBESGUE INTEGRAL: GENERAL CASE Although the Lebesgue integral defined in the previous chapter is in many ways much better behaved than the Riemann integral, it shares its restriction to bounded

More information

Measure and Integration: Solutions of CW2

Measure and Integration: Solutions of CW2 Measure and Integration: s of CW2 Fall 206 [G. Holzegel] December 9, 206 Problem of Sheet 5 a) Left (f n ) and (g n ) be sequences of integrable functions with f n (x) f (x) and g n (x) g (x) for almost

More information

arxiv:submit/ [math.st] 6 May 2011

arxiv:submit/ [math.st] 6 May 2011 A Continuous Mapping Theorem for the Smallest Argmax Functional arxiv:submit/0243372 [math.st] 6 May 2011 Emilio Seijo and Bodhisattva Sen Columbia University Abstract This paper introduces a version of

More information

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5 MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5.. The Arzela-Ascoli Theorem.. The Riemann mapping theorem Let X be a metric space, and let F be a family of continuous complex-valued functions on X. We have

More information

Random Process Lecture 1. Fundamentals of Probability

Random Process Lecture 1. Fundamentals of Probability Random Process Lecture 1. Fundamentals of Probability Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/43 Outline 2/43 1 Syllabus

More information

PCA sets and convexity

PCA sets and convexity F U N D A M E N T A MATHEMATICAE 163 (2000) PCA sets and convexity by Robert K a u f m a n (Urbana, IL) Abstract. Three sets occurring in functional analysis are shown to be of class PCA (also called Σ

More information

Summary of Real Analysis by Royden

Summary of Real Analysis by Royden Summary of Real Analysis by Royden Dan Hathaway May 2010 This document is a summary of the theorems and definitions and theorems from Part 1 of the book Real Analysis by Royden. In some areas, such as

More information

Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, Metric Spaces

Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, Metric Spaces Stat 8112 Lecture Notes Weak Convergence in Metric Spaces Charles J. Geyer January 23, 2013 1 Metric Spaces Let X be an arbitrary set. A function d : X X R is called a metric if it satisfies the folloing

More information

NUMERICAL RADIUS OF A HOLOMORPHIC MAPPING

NUMERICAL RADIUS OF A HOLOMORPHIC MAPPING Geometric Complex Analysis edited by Junjiro Noguchi et al. World Scientific, Singapore, 1995 pp.1 7 NUMERICAL RADIUS OF A HOLOMORPHIC MAPPING YUN SUNG CHOI Department of Mathematics Pohang University

More information

MATH 140B - HW 5 SOLUTIONS

MATH 140B - HW 5 SOLUTIONS MATH 140B - HW 5 SOLUTIONS Problem 1 (WR Ch 7 #8). If I (x) = { 0 (x 0), 1 (x > 0), if {x n } is a sequence of distinct points of (a,b), and if c n converges, prove that the series f (x) = c n I (x x n

More information

27 Superefficiency. A. W. van der Vaart Introduction

27 Superefficiency. A. W. van der Vaart Introduction 27 Superefficiency A. W. van der Vaart 1 ABSTRACT We review the history and several proofs of the famous result of Le Cam that a sequence of estimators can be superefficient on at most a Lebesgue null

More information

Multilayer feedforward networks are universal approximators

Multilayer feedforward networks are universal approximators Multilayer feedforward networks are universal approximators Kur Hornik, Maxwell Stinchcombe and Halber White (1989) Presenter: Sonia Todorova Theoretical properties of multilayer feedforward networks -

More information

2 Lebesgue integration

2 Lebesgue integration 2 Lebesgue integration 1. Let (, A, µ) be a measure space. We will always assume that µ is complete, otherwise we first take its completion. The example to have in mind is the Lebesgue measure on R n,

More information

6.1 Variational representation of f-divergences

6.1 Variational representation of f-divergences ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 6: Variational representation, HCR and CR lower bounds Lecturer: Yihong Wu Scribe: Georgios Rovatsos, Feb 11, 2016

More information

Testing Algebraic Hypotheses

Testing Algebraic Hypotheses Testing Algebraic Hypotheses Mathias Drton Department of Statistics University of Chicago 1 / 18 Example: Factor analysis Multivariate normal model based on conditional independence given hidden variable:

More information

ON THE CONTINUITY OF GLOBAL ATTRACTORS

ON THE CONTINUITY OF GLOBAL ATTRACTORS ON THE CONTINUITY OF GLOBAL ATTRACTORS LUAN T. HOANG, ERIC J. OLSON, AND JAMES C. ROBINSON Abstract. Let Λ be a complete metric space, and let {S λ ( ) : λ Λ} be a parametrised family of semigroups with

More information

STOR 635 Notes (S13)

STOR 635 Notes (S13) STOR 635 Notes (S13) Jimmy Jin UNC-Chapel Hill Last updated: 1/14/14 Contents 1 Measure theory and probability basics 2 1.1 Algebras and measure.......................... 2 1.2 Integration................................

More information

An elementary proof of the weak convergence of empirical processes

An elementary proof of the weak convergence of empirical processes An elementary proof of the weak convergence of empirical processes Dragan Radulović Department of Mathematics, Florida Atlantic University Marten Wegkamp Department of Mathematics & Department of Statistical

More information

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras

Math 4121 Spring 2012 Weaver. Measure Theory. 1. σ-algebras Math 4121 Spring 2012 Weaver Measure Theory 1. σ-algebras A measure is a function which gauges the size of subsets of a given set. In general we do not ask that a measure evaluate the size of every subset,

More information

Chapter 3 : Likelihood function and inference

Chapter 3 : Likelihood function and inference Chapter 3 : Likelihood function and inference 4 Likelihood function and inference The likelihood Information and curvature Sufficiency and ancilarity Maximum likelihood estimation Non-regular models EM

More information

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration?

Lebesgue Integration: A non-rigorous introduction. What is wrong with Riemann integration? Lebesgue Integration: A non-rigorous introduction What is wrong with Riemann integration? xample. Let f(x) = { 0 for x Q 1 for x / Q. The upper integral is 1, while the lower integral is 0. Yet, the function

More information

Exercises from other sources REAL NUMBERS 2,...,

Exercises from other sources REAL NUMBERS 2,..., Exercises from other sources REAL NUMBERS 1. Find the supremum and infimum of the following sets: a) {1, b) c) 12, 13, 14, }, { 1 3, 4 9, 13 27, 40 } 81,, { 2, 2 + 2, 2 + 2 + } 2,..., d) {n N : n 2 < 10},

More information

Lecture 2: Random Variables and Expectation

Lecture 2: Random Variables and Expectation Econ 514: Probability and Statistics Lecture 2: Random Variables and Expectation Definition of function: Given sets X and Y, a function f with domain X and image Y is a rule that assigns to every x X one

More information

1 Weak Convergence in R k

1 Weak Convergence in R k 1 Weak Convergence in R k Byeong U. Park 1 Let X and X n, n 1, be random vectors taking values in R k. These random vectors are allowed to be defined on different probability spaces. Below, for the simplicity

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 12: Glivenko-Cantelli and Donsker Results

Introduction to Empirical Processes and Semiparametric Inference Lecture 12: Glivenko-Cantelli and Donsker Results Introduction to Empirical Processes and Semiparametric Inference Lecture 12: Glivenko-Cantelli and Donsker Results Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics

More information

1* (10 pts) Let X be a random variable with P (X = 1) = P (X = 1) = 1 2

1* (10 pts) Let X be a random variable with P (X = 1) = P (X = 1) = 1 2 Math 736-1 Homework Fall 27 1* (1 pts) Let X be a random variable with P (X = 1) = P (X = 1) = 1 2 and let Y be a standard normal random variable. Assume that X and Y are independent. Find the distribution

More information

Exercise 1. Let f be a nonnegative measurable function. Show that. where ϕ is taken over all simple functions with ϕ f. k 1.

Exercise 1. Let f be a nonnegative measurable function. Show that. where ϕ is taken over all simple functions with ϕ f. k 1. Real Variables, Fall 2014 Problem set 3 Solution suggestions xercise 1. Let f be a nonnegative measurable function. Show that f = sup ϕ, where ϕ is taken over all simple functions with ϕ f. For each n

More information

ABSTRACT INTEGRATION CHAPTER ONE

ABSTRACT INTEGRATION CHAPTER ONE CHAPTER ONE ABSTRACT INTEGRATION Version 1.1 No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Suggestions and errors are invited and can be mailed

More information

Foundations of Nonparametric Bayesian Methods

Foundations of Nonparametric Bayesian Methods 1 / 27 Foundations of Nonparametric Bayesian Methods Part II: Models on the Simplex Peter Orbanz http://mlg.eng.cam.ac.uk/porbanz/npb-tutorial.html 2 / 27 Tutorial Overview Part I: Basics Part II: Models

More information

MATHS 730 FC Lecture Notes March 5, Introduction

MATHS 730 FC Lecture Notes March 5, Introduction 1 INTRODUCTION MATHS 730 FC Lecture Notes March 5, 2014 1 Introduction Definition. If A, B are sets and there exists a bijection A B, they have the same cardinality, which we write as A, #A. If there exists

More information

NONLINEAR LEAST-SQUARES ESTIMATION 1. INTRODUCTION

NONLINEAR LEAST-SQUARES ESTIMATION 1. INTRODUCTION NONLINEAR LEAST-SQUARES ESTIMATION DAVID POLLARD AND PETER RADCHENKO ABSTRACT. The paper uses empirical process techniques to study the asymptotics of the least-squares estimator for the fitting of a nonlinear

More information

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N Applied Analysis prelim July 15, 216, with solutions Solve 4 of the problems 1-5 and 2 of the problems 6-8. We will only grade the first 4 problems attempted from1-5 and the first 2 attempted from problems

More information

arxiv: v1 [math.ds] 31 Jul 2018

arxiv: v1 [math.ds] 31 Jul 2018 arxiv:1807.11801v1 [math.ds] 31 Jul 2018 On the interior of projections of planar self-similar sets YUKI TAKAHASHI Abstract. We consider projections of planar self-similar sets, and show that one can create

More information

MATH & MATH FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING Scientia Imperii Decus et Tutamen 1

MATH & MATH FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING Scientia Imperii Decus et Tutamen 1 MATH 5310.001 & MATH 5320.001 FUNCTIONS OF A REAL VARIABLE EXERCISES FALL 2015 & SPRING 2016 Scientia Imperii Decus et Tutamen 1 Robert R. Kallman University of North Texas Department of Mathematics 1155

More information

On The Asymptotics of Minimum Disparity Estimation

On The Asymptotics of Minimum Disparity Estimation Noname manuscript No. (will be inserted by the editor) On The Asymptotics of Minimum Disparity Estimation Arun Kumar Kuchibhotla Ayanendranath Basu Received: date / Accepted: date Abstract Inference procedures

More information

ERRATUM TO AFFINE MANIFOLDS, SYZ GEOMETRY AND THE Y VERTEX

ERRATUM TO AFFINE MANIFOLDS, SYZ GEOMETRY AND THE Y VERTEX ERRATUM TO AFFINE MANIFOLDS, SYZ GEOMETRY AND THE Y VERTEX JOHN LOFTIN, SHING-TUNG YAU, AND ERIC ZASLOW 1. Main result The purpose of this erratum is to correct an error in the proof of the main result

More information

4 Invariant Statistical Decision Problems

4 Invariant Statistical Decision Problems 4 Invariant Statistical Decision Problems 4.1 Invariant decision problems Let G be a group of measurable transformations from the sample space X into itself. The group operation is composition. Note that

More information

Useful Probability Theorems

Useful Probability Theorems Useful Probability Theorems Shiu-Tang Li Finished: March 23, 2013 Last updated: November 2, 2013 1 Convergence in distribution Theorem 1.1. TFAE: (i) µ n µ, µ n, µ are probability measures. (ii) F n (x)

More information

Random Bernstein-Markov factors

Random Bernstein-Markov factors Random Bernstein-Markov factors Igor Pritsker and Koushik Ramachandran October 20, 208 Abstract For a polynomial P n of degree n, Bernstein s inequality states that P n n P n for all L p norms on the unit

More information

Homework Assignment #2 for Prob-Stats, Fall 2018 Due date: Monday, October 22, 2018

Homework Assignment #2 for Prob-Stats, Fall 2018 Due date: Monday, October 22, 2018 Homework Assignment #2 for Prob-Stats, Fall 2018 Due date: Monday, October 22, 2018 Topics: consistent estimators; sub-σ-fields and partial observations; Doob s theorem about sub-σ-field measurability;

More information

Minimax Estimation of Kernel Mean Embeddings

Minimax Estimation of Kernel Mean Embeddings Minimax Estimation of Kernel Mean Embeddings Bharath K. Sriperumbudur Department of Statistics Pennsylvania State University Gatsby Computational Neuroscience Unit May 4, 2016 Collaborators Dr. Ilya Tolstikhin

More information

The Uniform Weak Law of Large Numbers and the Consistency of M-Estimators of Cross-Section and Time Series Models

The Uniform Weak Law of Large Numbers and the Consistency of M-Estimators of Cross-Section and Time Series Models The Uniform Weak Law of Large Numbers and the Consistency of M-Estimators of Cross-Section and Time Series Models Herman J. Bierens Pennsylvania State University September 16, 2005 1. The uniform weak

More information