Statistical ensembles without typicality

Size: px
Start display at page:

Download "Statistical ensembles without typicality"

Transcription

1 Statistical ensembles without typicality Paul Boes, Henrik Wilming, Jens Eisert, Rodrigo Gallego QIP 18

2 A frequent question in thermodynamics Given a (quantum) system of which you only know its average energy e wrt some Hamiltonian H, how will it behave thermodynamically?

3 A frequent question in thermodynamics Given a (quantum) system of which you only know its average energy e wrt some Hamiltonian H, how will it behave thermodynamically? Difficult problem, due to lack of information about underlying state of system.

4 Gibbs trick : Assign canonical ensemble. { :Tr( H) =e} =: (e, H)! e (H) := e (e)h Tr(e (e)h ) 2 (e, H) macrostate microstate

5 Why does this work?

6 Why does this work? Typicality: vast majority of microstates compatible with coarse-grained information behaves like can. ensemble wrt property of interest.

7 Why does this work? Typicality: vast majority of microstates compatible with coarse-grained information behaves like can. ensemble wrt property of interest. E.g.: Canonical Typicality (Popescu et al., Goldstein et al., 06) V µhaar [{ i2h mc D(Tr S( ih ), S) V µhaar [{ i2h mc }] }] apple 0

8 This talk Provide a novel way to motivate the success of Gibbs trick that is independent of any measure or Jaynes-like reasoning. Result: Thermodynamically, any macrostate is operationally equivalent to its corresponding canonical ensemble.

9 Idea

10 Idea 1. Two models of thermodynamic transitions O 1 f (e, H) O 2 f

11 Idea 1. Two models of thermodynamic transitions O 1 f (e, H) O 2 f 2. Compare via reachable state sets (e, H)! f?,! f

12 Idea 1. Two models of thermodynamic transitions O 1 f (e, H) O 2 f 2. Compare via reachable state sets (e, H)! f?,! f 3. Show equivalence between macrostates and canonical ensembles (e, H) e (H)

13 Setting = 1 k B T! %&' )"* ρ (!

14 Setting = 1 k B T! %&' )"* ρ (!

15 Setting = 1 k B T! %&' )"* ρ (!

16 Setting = 1 k B T 1. Bath states: (E i )= e H E i tr(e H Ei )! %&' )"* ρ (!

17 Setting = 1 k B T 1. Bath states: (E i )= e H E i tr(e H Ei )! %&' )"* ρ (!

18 Setting = 1 k B T 1. Bath states: (E i )= e H E i tr(e H Ei ) 2. Evolution:! %&' )"* ρ (! S and E evolve unitarily, such that total average energy preserved

19 Microstate Operations mic.! f if 8, 0 > 0, 9 {H E 1,...,H E N },U s.t. f tr E U NO (H E i) U! i=1 and NO NO! E U (H E i) U! 0 E (H E i) i=1 i=1

20 Setting = 1 k B T! %&' )"* ρ (!

21 Setting = 1 k B T " β " β " β $ " β " β! "! ρ (

22 Setting 1. Bath states: = 1 k B T " β " β " β $ " β (e (H E i),h E i), e (H E i) := E( (H E i)) " β! "! ρ (

23 Setting 1. Bath states: = 1 k B T " β " β " β " β $ (e (H E i),h E i), e (H E i) := E( (H E i)) " β 2. Evolution: S and E evolve unitarily,! "! ρ ( such that total average energy preserved

24 Macrostate Operations (e, H) mac.! f if 8, 0 > 0, 9 {H E 1,...,H E N },U s.t. 8 2 (e, H), (i) 2 (e,h E i) f tr E U NO (i) U! and E U NO (i) U! i=1 0 E NO (i)! i=1 i=1

25 Setting Same: - Fixed bath temperature - Unitary Evolution - Average energy preservation - No initial correlations - Final state is microstate = 1 k B T Different: - Initial states - Constraint on Unitary = 1 k B T " β " β " β $ " β " β! %&' )"* ρ (!! "! ρ (

26 Operational Equivalence (e, H) (e, H) mac.! f, mic.! f

27 Main Result (e, H) e (H), 8 e, H, > 0

28 Motivating the success of Gibbs trick

29 Motivating the success of Gibbs trick The canonical ensemble is the one and only microstate that encodes the possible thermodynamic state transitions of a system whenever one only has partial information about system, bath and evolution.

30 Proof Sketch () ()! "! ' (! (! $%& *'+ ρ, (

31 Proof Sketch Key Lemma 9 f : NO (e, H) l=1 () -mac! f s.t. tr l ( f ) N!1! e (H).! "... (1) (2) (3) (N) U e(h) e(h) e(h) e(h)! γ ( β*'+! $%& (! ' (... ρ,

32 Re-deriving phenomenological TD (e, H) -mac! e (H)

33 Re-deriving phenomenological TD (e, H) -mac! e (H) Work extraction W apple F S, F S := E S T S S cf. Skrzypczyk et al., Nat. Comm. 5, 4185 (2016)

34 Re-deriving phenomenological TD (e, H) -mac! e (H) Work extraction Second Law (e, H) W apple F S, F S := E S T S S -mac! f, F S ( e (H)) F S ( f ). cf. Skrzypczyk et al., Nat. Comm. 5, 4185 (2016)

35 Re-deriving phenomenological TD (e, H) -mac! e (H) Work extraction Second Law (e, H) W apple F S, F S := E S T S S Clausius Inequality -mac! f, F S ( e (H)) F S ( f ). (e, H) -mac! (e, H), Q apple T S cf. Skrzypczyk et al., Nat. Comm. 5, 4185 (2016)

36 Stronger setting: Unitary commutes Exact commutation instead of average preservation. [U, H S + H E ]=0

37 Stronger setting: Unitary commutes Exact commutation instead of average preservation. [U, H S + H E ]=0 Operational equivalence breaks down! H 6= 0, < 1)9e s.t. (e, H) c e(h)

38 Stronger setting: Unitary commutes Exact commutation instead of average preservation. [U, H S + H E ]=0 Operational equivalence breaks down! H 6= 0, < 1)9e s.t. (e, H) c e(h) Can be recovered for special cases, e.g. locally in thermodynamic limit.

39 Generalizable to GGE setting Can generalise all of this to the case of any set of commuting observables (GGEs). (v, Q) v (Q) v(q) := e P j tr(e P j j S (v)qj j S (v)qj ) cf. Guryanova et al./yunger-halpern et al., Nat. Comm. 7, 12049/12051 (2016)

40 Summary Provided novel justification for use of canonical ensembles in (quantum) statistical mechanics by showing operational equivalence wrt possible thermodynamic transitions. Re-derive phenomenological TD without assuming can. ensemble. Operational equivalence breaks down for exactly commuting case. Can be generalised for commuting observables.

41 Thank you arxiv:

42

43 S S E vs. E E

Quantum thermodynamics

Quantum thermodynamics Quantum thermodynamics a primer for the curious quantum mechanic Lídia del Rio, ETH Zurich QIP 2017 Seattle This talk is licensed under a Creative Commons Attribution 4.0 International License. Why quantum

More information

Resource Theory of Work and Heat

Resource Theory of Work and Heat C. Sparaciari and J. Oppenheim T. Fritz Resource Theory of Work and Heat ArXiv 1607.01302 University College London - Dep. Physics and Astrophysics Motivations Work and heat as resources INFINITE THERMAL

More information

Deriving Thermodynamics from Linear Dissipativity Theory

Deriving Thermodynamics from Linear Dissipativity Theory Deriving Thermodynamics from Linear Dissipativity Theory Jean-Charles Delvenne Université catholique de Louvain Belgium Henrik Sandberg KTH Sweden IEEE CDC 2015, Osaka, Japan «Every mathematician knows

More information

Fundamental work cost of quantum processes

Fundamental work cost of quantum processes 1607.03104 1709.00506 Fundamental work cost of quantum processes Philippe Faist 1,2, Renato Renner 1 1 Institute for Theoretical Physics, ETH Zurich 2 Institute for Quantum Information and Matter, Caltech

More information

The general reason for approach to thermal equilibrium of macroscopic quantu

The general reason for approach to thermal equilibrium of macroscopic quantu The general reason for approach to thermal equilibrium of macroscopic quantum systems 10 May 2011 Joint work with S. Goldstein, J. L. Lebowitz, C. Mastrodonato, and N. Zanghì. Claim macroscopic quantum

More information

Thermodynamics, Statistical Mechanics, and Quantum mechanics with some flavor of information theory

Thermodynamics, Statistical Mechanics, and Quantum mechanics with some flavor of information theory Beyond IID, July 28, 2017 The second law of thermodynamics from the view points of Thermodynamics, Statistical Mechanics, and Quantum mechanics with some flavor of information theory Hal Tasaki partly

More information

The fine-grained Gibbs entropy

The fine-grained Gibbs entropy Chapter 12 The fine-grained Gibbs entropy 12.1 Introduction and definition The standard counterpart of thermodynamic entropy within Gibbsian SM is the socalled fine-grained entropy, or Gibbs entropy. It

More information

From fully quantum thermodynamical identities to a second law equality

From fully quantum thermodynamical identities to a second law equality From fully quantum thermodynamical identities to a second law equality Alvaro Alhambra, Lluis Masanes, Jonathan Oppenheim, Chris Perry Fluctuating States Phys. Rev. X 6, 041016 (2016) Fluctuating Work

More information

1. Thermodynamics 1.1. A macroscopic view of matter

1. Thermodynamics 1.1. A macroscopic view of matter 1. Thermodynamics 1.1. A macroscopic view of matter Intensive: independent of the amount of substance, e.g. temperature,pressure. Extensive: depends on the amount of substance, e.g. internal energy, enthalpy.

More information

Thermalization time bounds for Pauli stabilizer Hamiltonians

Thermalization time bounds for Pauli stabilizer Hamiltonians Thermalization time bounds for Pauli stabilizer Hamiltonians Kristan Temme California Institute of Technology arxiv:1412.2858 QEC 2014, Zurich t mix apple O(N 2 e 2 ) Overview Motivation & previous results

More information

Structure of Incoherent Operations

Structure of Incoherent Operations Structure of Incoherent Operations Swapan Rana ICFO Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology 08860 Castelldefels (Barcelona) Spain January 30 2018 Collaborators:

More information

MBL THROUGH MPS. Bryan Clark and David Pekker. arxiv: Perimeter - Urbana. Friday, October 31, 14

MBL THROUGH MPS. Bryan Clark and David Pekker. arxiv: Perimeter - Urbana. Friday, October 31, 14 MBL THROUGH MPS Bryan Clark and David Pekker arxiv:1410.2224 Perimeter - Urbana Many Body Localization... It has been suggested that interactions + (strong) disorder LX H = [h i Si z X + J Ŝ i Ŝi+1] i=1

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood

Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood Verschränkung versus Stosszahlansatz: The second law rests on low correlation levels in our cosmic neighborhood Talk presented at the 2012 Anacapa Society Meeting Hamline University, Saint Paul, Minnesota

More information

Under what conditions do quantum systems thermalize?

Under what conditions do quantum systems thermalize? Under what conditions do quantum systems thermalize? 1 / 9 Under what conditions do quantum systems thermalize? New insights from quantum information theory Christian Gogolin, Arnau Riera, Markus Müller,

More information

Intrinsic Time Quantum Geometrodynamics (ITQG)

Intrinsic Time Quantum Geometrodynamics (ITQG) Intrinsic Time Quantum Geometrodynamics (ITQG) Assistant Professor Eyo Ita Eyo Eyo Ita Physics Department LQG International Seminar United States Naval Academy Annapolis, MD 27 October, 2015 Outline of

More information

Finally, I would like to thank my family. Pares, no us puc agrair suficientment tot el suport i amor que m heu donat, gràcies per ser-hi sempre que

Finally, I would like to thank my family. Pares, no us puc agrair suficientment tot el suport i amor que m heu donat, gràcies per ser-hi sempre que Acknowledgements First of all, I would like express my sincere gratitude to my supervisor, Toni Acín. Thanks for giving me the opportunity to join this great group, for your support, your trust, and excellent

More information

arxiv: v2 [hep-th] 7 Apr 2015

arxiv: v2 [hep-th] 7 Apr 2015 Statistical Mechanics Derived From Quantum Mechanics arxiv:1501.05402v2 [hep-th] 7 Apr 2015 Yu-Lei Feng 1 and Yi-Xin Chen 1 1 Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027,

More information

Thermalization and Revivals after a Quantum Quench in a Finite System

Thermalization and Revivals after a Quantum Quench in a Finite System after a Quantum Quench in a Finite System John Cardy University of Oxford EPSRC Workshop Nottingham May 2014 arxiv:1403.3040, to appear in PRL (Global) Quantum Quench prepare an extended system (in thermodynamic

More information

Statistical Mechanics

Statistical Mechanics 42 My God, He Plays Dice! Statistical Mechanics Statistical Mechanics 43 Statistical Mechanics Statistical mechanics and thermodynamics are nineteenthcentury classical physics, but they contain the seeds

More information

Emergent Fluctuation Theorem for Pure Quantum States

Emergent Fluctuation Theorem for Pure Quantum States Emergent Fluctuation Theorem for Pure Quantum States Takahiro Sagawa Department of Applied Physics, The University of Tokyo 16 June 2016, YITP, Kyoto YKIS2016: Quantum Matter, Spacetime and Information

More information

Measures of irreversibility in quantum phase space

Measures of irreversibility in quantum phase space SISSA, Trieste Measures of irreversibility in quantum phase space Gabriel Teixeira Landi University of São Paulo In collaboration with Jader P. Santos (USP), Raphael Drummond (UFMG) and Mauro Paternostro

More information

Non-geometric states and Holevo information in AdS3/CFT2

Non-geometric states and Holevo information in AdS3/CFT2 Non-geometric states and Holevo information in AdS3/CFT2 Feng-Li Lin (NTNU) @KIAS workshop 11/2018 based on 1806.07595, 1808.02873 & 1810.01258 with Jiaju Zhang(Milano-Bicocca) & Wu-Zhong Guo(NCTS) 1 Motivations

More information

Quantum Quench in Conformal Field Theory from a General Short-Ranged State

Quantum Quench in Conformal Field Theory from a General Short-Ranged State from a General Short-Ranged State John Cardy University of Oxford GGI, Florence, May 2012 (Global) Quantum Quench prepare an extended system at time t = 0 in a (translationally invariant) pure state ψ

More information

Particle-number projection in finite-temperature mean-field approximations to level densities

Particle-number projection in finite-temperature mean-field approximations to level densities Particle-number projection in finite-temperature mean-field approximations to level densities Paul Fanto (Yale University) Motivation Finite-temperature mean-field theory for level densities Particle-number

More information

Einstein-Hilbert action on Connes-Landi noncommutative manifolds

Einstein-Hilbert action on Connes-Landi noncommutative manifolds Einstein-Hilbert action on Connes-Landi noncommutative manifolds Yang Liu MPIM, Bonn Analysis, Noncommutative Geometry, Operator Algebras Workshop June 2017 Motivations and History Motivation: Explore

More information

What is thermal equilibrium and how do we get there?

What is thermal equilibrium and how do we get there? arxiv:1507.06479 and more What is thermal equilibrium and how do we get there? Hal Tasaki QMath 13, Oct. 9, 2016, Atlanta 40 C 20 C 30 C 30 C about the talk Foundation of equilibrium statistical mechanics

More information

arxiv: v2 [quant-ph] 2 Oct 2016

arxiv: v2 [quant-ph] 2 Oct 2016 Regularized Boltzmann entropy determines macroscopic adiabatic accessibility Hiroyasu Tajima and Eyuri Wakakuwa 2 Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 35-098 Japan 2 Graduate

More information

The great conceptual puzzle of statistical mechanics is how a

The great conceptual puzzle of statistical mechanics is how a ARTICL ntanglement and the foundations of statistical mechanics ANDU POPCU 1,, ANTHONY J. HORT 1 * AND ANDRA WINTR 3 1 H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol B8

More information

arxiv: v3 [quant-ph] 23 Apr 2016

arxiv: v3 [quant-ph] 23 Apr 2016 Second laws under control restrictions H. Wilming, R. Gallego, and J. Eisert Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany arxiv:1411.3754v3 [quant-ph] 23 Apr

More information

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Zala Lenarčič, Florian Lange, Achim Rosch University of Cologne theory of weakly driven quantum system role of approximate

More information

Thermodynamics of feedback controlled systems. Francisco J. Cao

Thermodynamics of feedback controlled systems. Francisco J. Cao Thermodynamics of feedback controlled systems Francisco J. Cao Open-loop and closed-loop control Open-loop control: the controller actuates on the system independently of the system state. Controller Actuation

More information

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle Bruce Turkington Univ. of Massachusetts Amherst An optimization principle for deriving nonequilibrium

More information

Theoretical Statistical Physics

Theoretical Statistical Physics Theoretical Statistical Physics Prof. Dr. Christof Wetterich Institute for Theoretical Physics Heidelberg University Last update: March 25, 2014 Script prepared by Robert Lilow, using earlier student's

More information

DISSIPATIVE TRANSPORT APERIODIC SOLIDS KUBO S FORMULA. and. Jean BELLISSARD 1 2. Collaborations:

DISSIPATIVE TRANSPORT APERIODIC SOLIDS KUBO S FORMULA. and. Jean BELLISSARD 1 2. Collaborations: Vienna February 1st 2005 1 DISSIPATIVE TRANSPORT and KUBO S FORMULA in APERIODIC SOLIDS Jean BELLISSARD 1 2 Georgia Institute of Technology, Atlanta, & Institut Universitaire de France Collaborations:

More information

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m.

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m. College of Science and Engineering School of Physics H T O F E E U D N I I N V E B R U S I R T Y H G Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat Thursday 24th April, 2008

More information

Open quantum systems

Open quantum systems Chapter 4 Open quantum systems 4. Quantum operations Let s go back for a second to the basic postulates of quantum mechanics. Recall that when we first establish the theory, we begin by postulating that

More information

From unitary dynamics to statistical mechanics in isolated quantum systems

From unitary dynamics to statistical mechanics in isolated quantum systems From unitary dynamics to statistical mechanics in isolated quantum systems Marcos Rigol Department of Physics The Pennsylvania State University The Tony and Pat Houghton Conference on Non-Equilibrium Statistical

More information

Thermodynamical cost of accuracy and stability of information processing

Thermodynamical cost of accuracy and stability of information processing Thermodynamical cost of accuracy and stability of information processing Robert Alicki Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdański, Poland e-mail: fizra@univ.gda.pl Fields Institute,

More information

III. Kinetic Theory of Gases

III. Kinetic Theory of Gases III. Kinetic Theory of Gases III.A General Definitions Kinetic theory studies the macroscopic properties of large numbers of particles, starting from their (classical) equations of motion. Thermodynamics

More information

Classical and quantum simulation of dissipative quantum many-body systems

Classical and quantum simulation of dissipative quantum many-body systems 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 Classical and quantum simulation of dissipative quantum many-body systems

More information

8 Lecture 8: Thermodynamics: Principles

8 Lecture 8: Thermodynamics: Principles 8. LECTURE 8: THERMODYNMICS: PRINCIPLES 69 8 Lecture 8: Thermodynamics: Principles Summary Phenomenological approach is a respectable way of understanding the world, especially when we cannot expect microscopic

More information

EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical

EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical C. P. Burgess, R.H., Gianmassimo Tasinato, Matt Williams, arxiv:1408.5002 Status and Future of Inflation

More information

Time in Bohmian Mechanics

Time in Bohmian Mechanics Perimeter Institute, 28 September 2008 BM as Axioms For Quantum Mechanics Bohmian Mechanics is Time Symmetric BM in Relativistic Space-Time 1. Bohmian Mechanics BM as Axioms For Quantum Mechanics Bohmian

More information

Talk 1: An Introduction to Graph C -algebras

Talk 1: An Introduction to Graph C -algebras Talk 1: An Introduction to Graph C -algebras Mark Tomforde University of Houston, USA July, 2010 Mark Tomforde (University of Houston) Graph C -algebras July, 2010 1 / 39 Some Terminology A graph E = (E

More information

Operator Quantum Error Correcting Codes

Operator Quantum Error Correcting Codes Operator Quantum Error Correcting Codes Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. June 18, 2008 Vlad Gheorghiu (CMU) Operator Quantum Error Correcting

More information

Black hole thermodynamics under the microscope

Black hole thermodynamics under the microscope DELTA 2013 January 11, 2013 Outline Introduction Main Ideas 1 : Understanding black hole (BH) thermodynamics as arising from an averaging of degrees of freedom via the renormalisation group. Go beyond

More information

Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence

Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence Richard S. Ellis, Generalized Canonical Ensembles 1 Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence Richard S. Ellis Department of Mathematics and Statistics University

More information

Quantum Mechanical Foundations of Causal Entropic Forces

Quantum Mechanical Foundations of Causal Entropic Forces Quantum Mechanical Foundations of Causal Entropic Forces Swapnil Shah North Carolina State University, USA snshah4@ncsu.edu Abstract. The theory of Causal Entropic Forces was introduced to explain the

More information

A Brief Introduction to Statistical Mechanics

A Brief Introduction to Statistical Mechanics A Brief Introduction to Statistical Mechanics E. J. Maginn, J. K. Shah Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame, IN 46556 USA Monte Carlo Workshop Universidade

More information

arxiv: v2 [quant-ph] 13 Nov 2014

arxiv: v2 [quant-ph] 13 Nov 2014 Thermal machines beyond the weak coupling regime arxiv:1310.8349v2 [quant-ph] 13 Nov 2014 1. Introduction. Gallego 1, A. iera 1,2, and J. Eisert 1 1 Dahlem Center for Complex Quantum ystems, Freie Universität

More information

Cluster Expansion in the Canonical Ensemble

Cluster Expansion in the Canonical Ensemble Università di Roma Tre September 2, 2011 (joint work with Dimitrios Tsagkarogiannis) Background Motivation: phase transitions for a system of particles in the continuum interacting via a Kac potential,

More information

Out of Equilibrium Analogues of Symmetry Protected Topological Phases of Matter

Out of Equilibrium Analogues of Symmetry Protected Topological Phases of Matter Out of Equilibrium Analogues of Symmetry Protected Topological Phases of Matter Curt von Keyserlingk & Shivaji Sondhi PCTS & Princeton University Phys. Rev. B 93, 245145 (2016) Quantum Phases of matter

More information

Grand Canonical Formalism

Grand Canonical Formalism Grand Canonical Formalism Grand Canonical Ensebmle For the gases of ideal Bosons and Fermions each single-particle mode behaves almost like an independent subsystem, with the only reservation that the

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

Statistical thermodynamics (mechanics)

Statistical thermodynamics (mechanics) Statistical thermodynamics mechanics) 1/15 Macroskopic quantities are a consequence of averaged behavior of many particles [tchem/simplyn.sh] 2/15 Pressure of ideal gas from kinetic theory I Molecule =

More information

BOLTZMANN-GIBBS ENTROPY: AXIOMATIC CHARACTERIZATION AND APPLICATION

BOLTZMANN-GIBBS ENTROPY: AXIOMATIC CHARACTERIZATION AND APPLICATION Internat. J. Math. & Math. Sci. Vol. 23, No. 4 2000 243 251 S0161171200000375 Hindawi Publishing Corp. BOLTZMANN-GIBBS ENTROPY: AXIOMATIC CHARACTERIZATION AND APPLICATION C. G. CHAKRABARTI and KAJAL DE

More information

Physics 550. Problem Set 6: Kinematics and Dynamics

Physics 550. Problem Set 6: Kinematics and Dynamics Physics 550 Problem Set 6: Kinematics and Dynamics Name: Instructions / Notes / Suggestions: Each problem is worth five points. In order to receive credit, you must show your work. Circle your final answer.

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 25 Sep 2000 technical note, cond-mat/0009244 arxiv:cond-mat/0009244v2 [cond-mat.stat-mech] 25 Sep 2000 Jarzynski Relations for Quantum Systems and Some Applications Hal Tasaki 1 1 Introduction In a series of papers

More information

Ashvin Vishwanath UC Berkeley

Ashvin Vishwanath UC Berkeley TOPOLOGY + LOCALIZATION: QUANTUM COHERENCE IN HOT MATTER Ashvin Vishwanath UC Berkeley arxiv:1307.4092 (to appear in Nature Comm.) Thanks to David Huse for inspiring discussions Yasaman Bahri (Berkeley)

More information

F(t) equilibrium under H 0

F(t) equilibrium under H 0 Physics 17b: Statistical Mechanics Linear Response Theory Useful references are Callen and Greene [1], and Chandler [], chapter 16. Task To calculate the change in a measurement B t) due to the application

More information

arxiv: v1 [cond-mat.str-el] 7 Aug 2011

arxiv: v1 [cond-mat.str-el] 7 Aug 2011 Topological Geometric Entanglement of Blocks Román Orús 1, 2 and Tzu-Chieh Wei 3, 4 1 School of Mathematics and Physics, The University of Queensland, QLD 4072, Australia 2 Max-Planck-Institut für Quantenoptik,

More information

This is the important completeness relation,

This is the important completeness relation, Observable quantities are represented by linear, hermitian operators! Compatible observables correspond to commuting operators! In addition to what was written in eqn 2.1.1, the vector corresponding to

More information

From physical assumptions to classical Hamiltonian and Lagrangian particle mechanics

From physical assumptions to classical Hamiltonian and Lagrangian particle mechanics From physical assumptions to classical Hamiltonian and Lagrangian particle mechanics Gabriele Carcassi, Christine A. Aidala, David John Baker and Lydia Bieri University of Michigan Foundations of Physics

More information

Quantum Thermodynamics

Quantum Thermodynamics Quantum Thermodynamics In this chapter we wish to give some insights to quantum thermodynamics. It can be seen as an introduction to the topic, however not a broad one but rather an introduction by examples.

More information

From the microscopic to the macroscopic world. Kolloqium April 10, 2014 Ludwig-Maximilians-Universität München. Jean BRICMONT

From the microscopic to the macroscopic world. Kolloqium April 10, 2014 Ludwig-Maximilians-Universität München. Jean BRICMONT From the microscopic to the macroscopic world Kolloqium April 10, 2014 Ludwig-Maximilians-Universität München Jean BRICMONT Université Catholique de Louvain Can Irreversible macroscopic laws be deduced

More information

CARNOT CYCLE = T = S ( U,V )

CARNOT CYCLE = T = S ( U,V ) hermodynamics CANO CYCE Do not trouble students with history In 1824, Sadi Carnot (1796-1832) published a short book, eflections on the Motive Power of Fire (he book is now free online You should try it

More information

On asymmetric quantum hypothesis testing

On asymmetric quantum hypothesis testing On asymmetric quantum hypothesis testing JMP, Vol 57, 6, 10.1063/1.4953582 arxiv:1612.01464 Cambyse Rouzé (Cambridge) Joint with Nilanjana Datta (University of Cambridge) and Yan Pautrat (Paris-Saclay)

More information

Undecidability as a genuine quantum property

Undecidability as a genuine quantum property Undecidability as a genuine quantum property 1 / 20 Undecidability as a genuine quantum property Jens Eisert 1, Markus P. Müller 2, and Christian Gogolin 1 1 Dahlem Center for Complex Quantum Systems,

More information

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017 Lecture 4: Entropy Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, PHYS 743 September 7, 2017 Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, Lecture PHYS4: 743 Entropy September

More information

Macroscopic time evolution and MaxEnt inference for closed systems with Hamiltonian dynamics. Abstract

Macroscopic time evolution and MaxEnt inference for closed systems with Hamiltonian dynamics. Abstract acroscopic time evolution and axent inference for closed systems with Hamiltonian dynamics Domagoj Kuić, Paško Županović, and Davor Juretić University of Split, Faculty of Science, N. Tesle 12, 21000 Split,

More information

The shape distribution of nuclear level densities in the shell model Monte Carlo method

The shape distribution of nuclear level densities in the shell model Monte Carlo method The shape distribution of nuclear level densities in the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method and level densities Nuclear deformation

More information

General quantum quenches in the transverse field Ising chain

General quantum quenches in the transverse field Ising chain General quantum quenches in the transverse field Ising chain Tatjana Puškarov and Dirk Schuricht Institute for Theoretical Physics Utrecht University Novi Sad, 23.12.2015 Non-equilibrium dynamics of isolated

More information

arxiv: v1 [math-ph] 5 Feb 2015

arxiv: v1 [math-ph] 5 Feb 2015 BIOLOGY AND NONEQUILIBRIUM: REMARKS ON A PAPER BY J.L. ENGLAND. by David Ruelle. arxiv:1502.01600v1 [math-ph] 5 Feb 2015 Abstract: This note analyzes the physical basis of J.R. England s paper Statistical

More information

UNDERSTANDING BOLTZMANN S ANALYSIS VIA. Contents SOLVABLE MODELS

UNDERSTANDING BOLTZMANN S ANALYSIS VIA. Contents SOLVABLE MODELS UNDERSTANDING BOLTZMANN S ANALYSIS VIA Contents SOLVABLE MODELS 1 Kac ring model 2 1.1 Microstates............................ 3 1.2 Macrostates............................ 6 1.3 Boltzmann s entropy.......................

More information

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21 Preface Reference tables Table A Counting and combinatorics formulae Table B Useful integrals, expansions, and approximations Table C Extensive thermodynamic potentials Table D Intensive per-particle thermodynamic

More information

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4 MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM AND BOLTZMANN ENTROPY Contents 1 Macroscopic Variables 3 2 Local quantities and Hydrodynamics fields 4 3 Coarse-graining 6 4 Thermal equilibrium 9 5 Two systems

More information

The Nuclear Equation of State

The Nuclear Equation of State The Nuclear Equation of State Abhishek Mukherjee University of Illinois at Urbana-Champaign Work done with : Vijay Pandharipande, Gordon Baym, Geoff Ravenhall, Jaime Morales and Bob Wiringa National Nuclear

More information

Thermodynamics of the nucleus

Thermodynamics of the nucleus Thermodynamics of the nucleus Hilde-Therese Nyhus 1. October, 8 Hilde-Therese Nyhus Thermodynamics of the nucleus Owerview 1 Link between level density and thermodynamics Definition of level density Level

More information

Taming the non-equilibrium: Equilibration, thermalization and the predictions of quantum simulations

Taming the non-equilibrium: Equilibration, thermalization and the predictions of quantum simulations Taming the non-equilibrium: Equilibration, thermalization and the predictions of quantum simulations Jens Eisert Freie Universität Berlin v KITP, Santa Barbara, August 2012 Dynamics and thermodynamics

More information

THERMODYNAMICS AND STATISTICAL MECHANICS

THERMODYNAMICS AND STATISTICAL MECHANICS Some Misconceptions about Entropy P 1 Some Misconceptions about Entropy P 2 THERMODYNAMICS AND STATISTICAL MECHANICS SOME MISCONCEPTIONS ABOUT ENTROPY Introduction the ground rules. Gibbs versus Boltmann

More information

Non-square diagonal matrices

Non-square diagonal matrices Non-square diagonal matrices Aim lecture: We apply the spectral theory of hermitian operators to look at linear maps T : V W which are not necessarily endomorphisms. This gives useful factorisations of

More information

Entanglement Entropy in Extended Quantum Systems

Entanglement Entropy in Extended Quantum Systems Entanglement Entropy in Extended Quantum Systems John Cardy University of Oxford STATPHYS 23 Genoa Outline A. Universal properties of entanglement entropy near quantum critical points B. Behaviour of entanglement

More information

Quantum theory from information inference principles

Quantum theory from information inference principles Quantum theory from information inference principles Philipp Höhn Perimeter Institute ILQGS 11 November 2014 based on: PH (to appear hopefully soon) PH, C. Wever (to appear hopefully soon too) Physics

More information

A General Transfer-Function Approach to Noise Filtering in Open-Loop Quantum Control

A General Transfer-Function Approach to Noise Filtering in Open-Loop Quantum Control Isaac Newton Institute for Mathematical Sciences Principles & Applications of Control to Quantum Systems 4-8 August 2014 A General Transfer-Function Approach to Noise Filtering in Open-Loop Quantum Control

More information

Symmetries and Dynamics of Discrete Systems

Symmetries and Dynamics of Discrete Systems Symmetries and Dynamics of Discrete Systems Talk at CASC 2007, Bonn, Germany Vladimir Kornyak Laboratory of Information Technologies Joint Institute for Nuclear Research 19 September 2007 V. V. Kornyak

More information

Quantum Marginal Problems

Quantum Marginal Problems Quantum Marginal Problems David Gross (Colgone) Joint with: Christandl, Doran, Lopes, Schilling, Walter Outline Overview: Marginal problems Overview: Entanglement Main Theme: Entanglement Polytopes Shortly:

More information

Storage of Quantum Information in Topological Systems with Majorana Fermions

Storage of Quantum Information in Topological Systems with Majorana Fermions Storage of Quantum Information in Topological Systems with Majorana Fermions Leonardo Mazza Scuola Normale Superiore, Pisa Mainz September 26th, 2013 Leonardo Mazza (SNS) Storage of Information & Majorana

More information

Quantum Theory and Group Representations

Quantum Theory and Group Representations Quantum Theory and Group Representations Peter Woit Columbia University LaGuardia Community College, November 1, 2017 Queensborough Community College, November 15, 2017 Peter Woit (Columbia University)

More information

LOCAL RECOVERY MAPS AS DUCT TAPE FOR MANY BODY SYSTEMS

LOCAL RECOVERY MAPS AS DUCT TAPE FOR MANY BODY SYSTEMS LOCAL RECOVERY MAPS AS DUCT TAPE FOR MANY BODY SYSTEMS Michael J. Kastoryano November 14 2016, QuSoft Amsterdam CONTENTS Local recovery maps Exact recovery and approximate recovery Local recovery for many

More information

Observer dependent background geometries arxiv:

Observer dependent background geometries arxiv: Observer dependent background geometries arxiv:1403.4005 Manuel Hohmann Laboratory of Theoretical Physics Physics Institute University of Tartu DPG-Tagung Berlin Session MP 4 18. März 2014 Manuel Hohmann

More information

arxiv: v1 [gr-qc] 17 Jan 2019

arxiv: v1 [gr-qc] 17 Jan 2019 Outline for a Quantum Theory of Gravity Tejinder P. Singh Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India ABSTRACT arxiv:1901.05953v1 [gr-qc] 17 Jan 2019 By invoking an asymmetric

More information

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Beijing International Center for Mathematical Research and Biodynamic Optical Imaging Center Peking

More information

Quantum Measurement Uncertainty

Quantum Measurement Uncertainty Quantum Measurement Uncertainty New Relations for Qubits Paul Busch Department of Mathematics Siegen, 9 July 2015 Paul Busch (York) Quantum Measurement Uncertainty 1 / 40 Peter Mittelstaedt 1929-2014 Paul

More information

Statistical thermodynamics L1-L3. Lectures 11, 12, 13 of CY101

Statistical thermodynamics L1-L3. Lectures 11, 12, 13 of CY101 Statistical thermodynamics L1-L3 Lectures 11, 12, 13 of CY101 Need for statistical thermodynamics Microscopic and macroscopic world Distribution of energy - population Principle of equal a priori probabilities

More information

Bosonic quadratic Hamiltonians. diagonalization

Bosonic quadratic Hamiltonians. diagonalization and their diagonalization P. T. Nam 1 M. Napiórkowski 2 J. P. Solovej 3 1 Masaryk University Brno 2 University of Warsaw 3 University of Copenhagen Macroscopic Limits of Quantum Systems 70th Birthday of

More information

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Fidelity and other distance metrics Brad Lackey 3 November 2016 FIDELITY AND OTHER DISTANCE METRICS 1 of 17 OUTLINE 1 Noise channels 2 Fidelity 3 Trace distance

More information

Introduction to Computational Materials Science

Introduction to Computational Materials Science Introduction to Computational Materials Science Fundamentals to Applications RICHARD LESAR lowa State University.CAMBRIDGE ::: UNIVERSITY PRESS CONTENTS Preface 1 Introduction to materials modeling and

More information

IV. Classical Statistical Mechanics

IV. Classical Statistical Mechanics IV. Classical Statistical Mechanics IV.A General Definitions Statistical Mechanics is a probabilistic approach to equilibrium macroscopic properties of large numbers of degrees of freedom. As discussed

More information

Notes on matrix arithmetic geometric mean inequalities

Notes on matrix arithmetic geometric mean inequalities Linear Algebra and its Applications 308 (000) 03 11 www.elsevier.com/locate/laa Notes on matrix arithmetic geometric mean inequalities Rajendra Bhatia a,, Fuad Kittaneh b a Indian Statistical Institute,

More information