critical points: 1,1, 1, 1, 1,1, 1, 1

Size: px
Start display at page:

Download "critical points: 1,1, 1, 1, 1,1, 1, 1"

Transcription

1 Extrema of Functions of Several Variables -(.7). Local Extremes and Critical Points Definition: The point a,b is a critical point of a function f x,y if a,b is in the domain of f and either f a,b or f a,b DNE one or both of f x a,b and f y a,b don t exist) A necessary condition of a local extremum: If f x,y has a local extremum at a,b, then a,b must be a critical point of f. Warning!! A critical point of f may not be a local extremum. Saddle points: The point a,b, f a,b is a saddle point of z f x,y if a,b is a critical point of f andifeveryopendiskcenteredat a,b in the domain of f contains points x,y for which f x,y f a,b and points x,y for which f x,y f a,b. Example Let f x,y xe x / y 3 /3 y. Find all critical points of f and determine graphically if they are local extrema. f x e x / y 3 /3 y x x e x / y 3 /3 y f y x y e x / y 3 /3 y x x or y x and x ory critical points:,,,,,,,

2 Second Derivatives Test Suppose that f x,y has continuous second-order partial derivatives in some open disk containing the point a,b, and f x a,b f y a,b.definethe discriminant D for the point a,b by D a,b f xx a,b f yy a,b f xy ab. a. If D a,b, and f xx a,b, then f has a local minimum at a,b. b. If D a,b, and f xx a,b, then f has a local maximum at a,b. c. If D a,b, then f has a saddle point at a,b. d. If D a,b, then no conclusion can be drawn from this test. Example Let f x,y x 3 y y 3x y. Locate and classify all critical points for f x,y.

3 f x 3x xy f y y 8y 3 3x, f x 3x x y, x orx y When x, f y y 8y 3 y y, y When x y, f y y 8y 3 3 y y 8y 3 y y 3y y y y y x x critical points:,,,,, 3

4 f xx x y, f yy y, f xy x D x,y x y y x x y y 3x D,, D,, D,, f xx, Hence, from the Second Derivatives Test, we know, is a saddle point,, is a local maximum point, and there is no conclusion at,. Now let us check out the case at,. When y, f x, x 3, x is an inflection point. When x, f,y y y,a maximum point. Hence,, is neither a local maximum nor a local minimum point. y, - - x 3. Absolute maximum and minimum Extreme value Theorem: Let f x,y be continuous on a closed and bounded region R. Then f must has both an absolute maximum and minimum on R. Further more, the absolute extrema must occur at either a critical

5 point in R or on the boundary of R. Example Find the absolute extreme values of f x,y 5 x x 3y y on the region R bounded by lines y, y x and y x. a. Find all local extremes. Find all critical points: f x,y x, 3 y, x, x 3 y, y 3 critical point:, 3 f, b. Find the absolute maximum and minimum on the boundary: y, y x and y x. y This boundary consists of 3 pieces. C : y x, x, g x f x,x 5 x x 3x x 5 7x 3x y g x x 7, x 7, g g 5, g 5 7 C : y, x, g x f x, 5 x x 3 7 x x x x 5

6 y x g x x x, x g 7 9, g , g C 3 : y x, x, g x f x, x 5 x x 3 x x 5 x 3x x y f x x, x is not in,. f 5 9, f 5 a,b f a,b Conclusion critical point, absolute maximum boundary y x, boundary y, 9, 9 absolute minimum boundary y x, 5, 9 Conclusion: The absolute maximum value is 9.5 at, 3 and absolute minimum value is 9at,.

7 Steepest Ascent Method and Steepest Descent Method: Recall that f x,y changes the most at a,b along the direction u f a,b. At a,b, the line in the x t a f x a,b t direction f a,b is. We would like to find t such that y t b f y a,b t g t f x t,y t changes the most. We first find t such that g t and then find the maximum of g t c, g and g. Steps: () Compute f a,b. () Set parametric equations for the line: x t a f x a,b t y t b f y a,b t (3) Set g x t,y t and find all critical numbers t c such that g t c. Note that g t f x x t,y t x t f y x t,y t y t. () Choose t from t c,, such that g t max g t c, g, g. (5) Compute the new step: a new,b new x t, y t Example: f x,y xy x y. Carry out one step by the Method of Steepest Ascent at,3. () f x,y y x 3,x y 3, f,3 3 3, 3 3, x t t () Line: y t 3 t TI-89: at HOME, type in t,presssto, type in x t, enter type in 3 t,presssto, type in y t, enter 7

8 (3) g t f x t,y t t 3 t t 3 t TI-89: at HOME type in x t y t x t y t, press STO, type in g t, enter (i) Critical number: g t y x 3 x y 3 y x 3 5x 5y 3 y x 3 5x 5y 3 TI-89: at HOME F/Solve, type in y t x t 3 5x t 5 y t 3,t, green/enter t. 5 type in.5, press STO, type in tb, enter (ii) Check: g 9., g , g TI-89: at HOME type in g, enter type in g, enter type in g tb,enter t tb. 5 () new step: x y f.599, TI-89: at HOME type in x tb type in y tb 8

Extrema of Functions of Several Variables

Extrema of Functions of Several Variables Extrema of Functions of Several Variables MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background (1 of 3) In single-variable calculus there are three important results

More information

LESSON 23: EXTREMA OF FUNCTIONS OF 2 VARIABLES OCTOBER 25, 2017

LESSON 23: EXTREMA OF FUNCTIONS OF 2 VARIABLES OCTOBER 25, 2017 LESSON : EXTREMA OF FUNCTIONS OF VARIABLES OCTOBER 5, 017 Just like with functions of a single variable, we want to find the minima (plural of minimum) and maxima (plural of maximum) of functions of several

More information

MATH Midterm 1 Sample 4

MATH Midterm 1 Sample 4 1. (15 marks) (a) (4 marks) Given the function: f(x, y) = arcsin x 2 + y, find its first order partial derivatives at the point (0, 3). Simplify your answers. Solution: Compute the first order partial

More information

Maximum and Minimum Values (4.2)

Maximum and Minimum Values (4.2) Math 111.01 July 17, 2003 Summer 2003 Maximum and Minimum Values (4.2) Example. Determine the points at which f(x) = sin x attains its maximum and minimum. Solution: sin x attains the value 1 whenever

More information

Test for Increasing and Decreasing Theorem 5 Let f(x) be continuous on [a, b] and differentiable on (a, b).

Test for Increasing and Decreasing Theorem 5 Let f(x) be continuous on [a, b] and differentiable on (a, b). Definition of Increasing and Decreasing A function f(x) is increasing on an interval if for any two numbers x 1 and x in the interval with x 1 < x, then f(x 1 ) < f(x ). As x gets larger, y = f(x) gets

More information

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values I. Review from 1225 A. Definitions 1. Local Extreme Values (Relative) a. A function f has a local

More information

MATH Max-min Theory Fall 2016

MATH Max-min Theory Fall 2016 MATH 20550 Max-min Theory Fall 2016 1. Definitions and main theorems Max-min theory starts with a function f of a vector variable x and a subset D of the domain of f. So far when we have worked with functions

More information

Math 121 Winter 2010 Review Sheet

Math 121 Winter 2010 Review Sheet Math 121 Winter 2010 Review Sheet March 14, 2010 This review sheet contains a number of problems covering the material that we went over after the third midterm exam. These problems (in conjunction with

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to Section 14.8 Maxima & minima of functions of two variables 14.8 1 Learning outcomes After completing this section, you will inshaallah be able to 1. explain what is meant by relative maxima or relative

More information

SOLUTIONS to Exercises from Optimization

SOLUTIONS to Exercises from Optimization SOLUTIONS to Exercises from Optimization. Use the bisection method to find the root correct to 6 decimal places: 3x 3 + x 2 = x + 5 SOLUTION: For the root finding algorithm, we need to rewrite the equation

More information

Math Maximum and Minimum Values, I

Math Maximum and Minimum Values, I Math 213 - Maximum and Minimum Values, I Peter A. Perry University of Kentucky October 8, 218 Homework Re-read section 14.7, pp. 959 965; read carefully pp. 965 967 Begin homework on section 14.7, problems

More information

14.7: Maxima and Minima

14.7: Maxima and Minima 14.7: Maxima and Minima Marius Ionescu October 29, 2012 Marius Ionescu () 14.7: Maxima and Minima October 29, 2012 1 / 13 Local Maximum and Local Minimum Denition Marius Ionescu () 14.7: Maxima and Minima

More information

MA261-A Calculus III 2006 Fall Midterm 2 Solutions 11/8/2006 8:00AM ~9:15AM

MA261-A Calculus III 2006 Fall Midterm 2 Solutions 11/8/2006 8:00AM ~9:15AM MA6-A Calculus III 6 Fall Midterm Solutions /8/6 8:AM ~9:5AM. Find the it xy cos y (x;y)(;) 3x + y, if it exists, or show that the it does not exist. Assume that x. The it becomes (;y)(;) y cos y 3 + y

More information

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables We learned to find the maxima and minima of a function of a single variable earlier in the course We had a second derivative test

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

ENGI Partial Differentiation Page y f x

ENGI Partial Differentiation Page y f x ENGI 3424 4 Partial Differentiation Page 4-01 4. Partial Differentiation For functions of one variable, be found unambiguously by differentiation: y f x, the rate of change of the dependent variable can

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

Calculus 2502A - Advanced Calculus I Fall : Local minima and maxima

Calculus 2502A - Advanced Calculus I Fall : Local minima and maxima Calculus 50A - Advanced Calculus I Fall 014 14.7: Local minima and maxima Martin Frankland November 17, 014 In these notes, we discuss the problem of finding the local minima and maxima of a function.

More information

Math 1314 Final Exam Review. Year Profits (in millions of dollars)

Math 1314 Final Exam Review. Year Profits (in millions of dollars) Math 1314 Final Exam Review 1. The following table of values gives a company s annual profits in millions of dollars. Rescale the data so that the year 2003 corresponds to x = 0. Year 2003 2004 2005 2006

More information

The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211.

The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211. 1. a) Let The University of British Columbia Midterm 1 Solutions - February 3, 2012 Mathematics 105, 2011W T2 Sections 204, 205, 206, 211 fx, y) = x siny). If the value of x, y) changes from 0, π) to 0.1,

More information

Online Math 1314 Final Exam Review

Online Math 1314 Final Exam Review Online Math 1314 Final Exam Review 1. The following table of values gives a company s annual profits in millions of dollars. Rescale the data so that the year 2003 corresponds to x = 0. Year 2003 2004

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Optimization II: Unconstrained Multivariable 1

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8).

Daily WeBWorK. 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). Daily WeBWorK 1. Below is the graph of the derivative f (x) of a function defined on the interval (0, 8). (a) On what intervals is f (x) concave down? f (x) is concave down where f (x) is decreasing, so

More information

Section 2.4: Add and Subtract Rational Expressions

Section 2.4: Add and Subtract Rational Expressions CHAPTER Section.: Add and Subtract Rational Expressions Section.: Add and Subtract Rational Expressions Objective: Add and subtract rational expressions with like and different denominators. You will recall

More information

12.1 Taylor Polynomials In Two-Dimensions: Nonlinear Approximations of F(x,y) Polynomials in Two-Variables. Taylor Polynomials and Approximations.

12.1 Taylor Polynomials In Two-Dimensions: Nonlinear Approximations of F(x,y) Polynomials in Two-Variables. Taylor Polynomials and Approximations. Week 12 Lecture Overheads Math2080 Week 12 Page 1 12.1 Taylor Polynomials In Two-Dimensions: Nonlinear Approximations of F(x,y) Polynomials in Two-Variables. Taylor Polynomials and Approximations. 12.2

More information

MATH 151, Fall 2015, Week 12, Section

MATH 151, Fall 2015, Week 12, Section MATH 151, Fall 2015, Week 12, Section 5.1-5.3 Chapter 5 Application of Differentiation We develop applications of differentiation to study behaviors of functions and graphs Part I of Section 5.1-5.3, Qualitative/intuitive

More information

( ) 2 75( ) 3

( ) 2 75( ) 3 Chemistry 380.37 Dr. Jean M. Standard Homework Problem Set 3 Solutions 1. The part of a particular MM3-like force field that describes stretching energy for an O-H single bond is given by the following

More information

Quadratic Equations 6 QUESTIONS. Relatively Easy: Questions 1 to 2 Moderately Difficult: Questions 3 to 4 Difficult: Questions 5 to 6

Quadratic Equations 6 QUESTIONS. Relatively Easy: Questions 1 to 2 Moderately Difficult: Questions 3 to 4 Difficult: Questions 5 to 6 Quadratic Equations 6 QUESTIONS Relatively Easy: Questions 1 to 2 Moderately Difficult: Questions 3 to 4 Difficult: Questions 5 to 6 Questions www.tutornext.com Page 2 of 11 Q1. The factors of 2x² - 7x

More information

Solutions to Homework 7

Solutions to Homework 7 Solutions to Homework 7 Exercise #3 in section 5.2: A rectangular box is inscribed in a hemisphere of radius r. Find the dimensions of the box of maximum volume. Solution: The base of the rectangular box

More information

Increasing and Decreasing Functions and the First Derivative Test. By Tuesday J. Johnson

Increasing and Decreasing Functions and the First Derivative Test. By Tuesday J. Johnson Increasing and Decreasing Functions and the First Derivative Test By Tuesday J. Johnson 1 Suggested Review Topics Algebra skills reviews suggested: None Trigonometric skills reviews suggested: None 2 Applications

More information

Math 222 Spring 2013 Exam 3 Review Problem Answers

Math 222 Spring 2013 Exam 3 Review Problem Answers . (a) By the Chain ule, Math Spring 3 Exam 3 eview Problem Answers w s w x x s + w y y s (y xy)() + (xy x )( ) (( s + 4t) (s 3t)( s + 4t)) ((s 3t)( s + 4t) (s 3t) ) 8s 94st + 3t (b) By the Chain ule, w

More information

Math 31A Differential and Integral Calculus. Final

Math 31A Differential and Integral Calculus. Final Math 31A Differential and Integral Calculus Final Instructions: You have 3 hours to complete this exam. There are eight questions, worth a total of??? points. This test is closed book and closed notes.

More information

Maxima and Minima. Marius Ionescu. November 5, Marius Ionescu () Maxima and Minima November 5, / 7

Maxima and Minima. Marius Ionescu. November 5, Marius Ionescu () Maxima and Minima November 5, / 7 Maxima and Minima Marius Ionescu November 5, 2012 Marius Ionescu () Maxima and Minima November 5, 2012 1 / 7 Second Derivative Test Fact Suppose the second partial derivatives of f are continuous on a

More information

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will Math, Final Exam, Fall Problem Solution. Let u,, and v,,3. (a) Is the angle between u and v acute, obtuse, or right? (b) Find an equation for the plane through (,,) containing u and v. Solution: (a) The

More information

Math 1323 Lesson 12 Analyzing functions. This lesson will cover analyzing polynomial functions using GeoGebra.

Math 1323 Lesson 12 Analyzing functions. This lesson will cover analyzing polynomial functions using GeoGebra. Math 1323 Lesson 12 Analyzing functions This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales based

More information

3.5: Issues in Curve Sketching

3.5: Issues in Curve Sketching 3.5: Issues in Curve Sketching Mathematics 3 Lecture 20 Dartmouth College February 17, 2010 Typeset by FoilTEX Example 1 Which of the following are the graphs of a function, its derivative and its second

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 208 Version A refers to the regular exam and Version B to the make-up. Version A. A particle

More information

Math 1314 Lesson 13: Analyzing Other Types of Functions

Math 1314 Lesson 13: Analyzing Other Types of Functions Math 1314 Lesson 13: Analyzing Other Types of Functions If the function you need to analyze is something other than a polynomial function, you will have some other types of information to find and some

More information

Math 1314 Lesson 23 Partial Derivatives

Math 1314 Lesson 23 Partial Derivatives Math 1314 Lesson 3 Partial Derivatives When we are asked to ind the derivative o a unction o a single variable, (x), we know exactly what to do However, when we have a unction o two variables, there is

More information

AP Calculus BC Fall Final Part IA. Calculator NOT Allowed. Name:

AP Calculus BC Fall Final Part IA. Calculator NOT Allowed. Name: AP Calculus BC 18-19 Fall Final Part IA Calculator NOT Allowed Name: 3π cos + h 1. lim cos 3π h 0 = h 1 (a) 1 (b) (c) 0 (d) -1 (e) DNE dy. At which of the five points on the graph in the figure below are

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

Section 3.3 Maximum and Minimum Values

Section 3.3 Maximum and Minimum Values Section 3.3 Maximum and Minimum Values Definition For a function f defined on a set S of real numbers and a number c in S. A) f(c) is called the absolute maximum of f on S if f(c) f(x) for all x in S.

More information

MAT 122 Homework 7 Solutions

MAT 122 Homework 7 Solutions MAT 1 Homework 7 Solutions Section 3.3, Problem 4 For the function w = (t + 1) 100, we take the inside function to be z = t + 1 and the outside function to be z 100. The derivative of the inside function

More information

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2 Polynomials Patterns Task 1. To get an idea of what polynomial functions look like, we can graph the first through fifth degree polynomials with leading coefficients of 1. For each polynomial function,

More information

Section 1.2 DOMAIN, RANGE, INTERCEPTS, SYMMETRY, EVEN/ODD

Section 1.2 DOMAIN, RANGE, INTERCEPTS, SYMMETRY, EVEN/ODD Section 1.2 DOMAIN, RANGE, INTERCEPTS, SYMMETRY, EVEN/ODD zeros roots line symmetry point symmetry even function odd function Estimate Function Values A. ADVERTISING The function f (x) = 5x 2 + 50x approximates

More information

Determining the Intervals on Which a Function is Increasing or Decreasing From the Graph of f

Determining the Intervals on Which a Function is Increasing or Decreasing From the Graph of f Math 1314 Applications of the First Derivative Determining the Intervals on Which a Function is Increasing or Decreasing From the Graph of f Definition: A function is increasing on an interval (a, b) if,

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G y G Y 87 y Y 8 Y - $ X ; ; y y q 8 y $8 $ $ $ G 8 q < 8 6 4 y 8 7 4 8 8 < < y 6 $ q - - y G y G - Y y y 8 y y y Y Y 7-7- G - y y y ) y - y y y y - - y - y 87 7-7- G G < G y G y y 6 X y G y y y 87 G

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Variational Methods & Optimal Control

Variational Methods & Optimal Control Variational Methods & Optimal Control lecture 02 Matthew Roughan Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide April 14, 2016

More information

Convex Optimization. Chapter Introduction Mathematical Optimization

Convex Optimization. Chapter Introduction Mathematical Optimization Chapter 4 Convex Optimization 4.1 Introduction 4.1.1 Mathematical Optimization The problem of mathematical optimization is to minimize a non-linear cost function f 0 (x) subject to inequality constraints

More information

Math 108, Solution of Midterm Exam 3

Math 108, Solution of Midterm Exam 3 Math 108, Solution of Midterm Exam 3 1 Find an equation of the tangent line to the curve x 3 +y 3 = xy at the point (1,1). Solution. Differentiating both sides of the given equation with respect to x,

More information

Exam 2 Solutions October 12, 2006

Exam 2 Solutions October 12, 2006 Math 44 Fall 006 Sections and P. Achar Exam Solutions October, 006 Total points: 00 Time limit: 80 minutes No calculators, books, notes, or other aids are permitted. You must show your work and justify

More information

THE UNIVERSITY OF BRITISH COLUMBIA Sample Questions for Midterm 1 - January 26, 2012 MATH 105 All Sections

THE UNIVERSITY OF BRITISH COLUMBIA Sample Questions for Midterm 1 - January 26, 2012 MATH 105 All Sections THE UNIVERSITY OF BRITISH COLUMBIA Sample Questions for Midterm 1 - January 26, 2012 MATH 105 All Sections Closed book examination Time: 50 minutes Last Name First Signature Student Number Special Instructions:

More information

Math 234 Final Exam (with answers) Spring 2017

Math 234 Final Exam (with answers) Spring 2017 Math 234 Final Exam (with answers) pring 217 1. onsider the points A = (1, 2, 3), B = (1, 2, 2), and = (2, 1, 4). (a) [6 points] Find the area of the triangle formed by A, B, and. olution: One way to solve

More information

Solutions of Math 53 Midterm Exam I

Solutions of Math 53 Midterm Exam I Solutions of Math 53 Midterm Exam I Problem 1: (1) [8 points] Draw a direction field for the given differential equation y 0 = t + y. (2) [8 points] Based on the direction field, determine the behavior

More information

Chapter 2: Unconstrained Extrema

Chapter 2: Unconstrained Extrema Chapter 2: Unconstrained Extrema Math 368 c Copyright 2012, 2013 R Clark Robinson May 22, 2013 Chapter 2: Unconstrained Extrema 1 Types of Sets Definition For p R n and r > 0, the open ball about p of

More information

Using the MVT: Increasing and Decreasing Functions

Using the MVT: Increasing and Decreasing Functions Using the MVT: Increasing and Decreasing Functions F irst let s be clear on what and decreasing functions are DEFINITION 317 Assume f is defined on an interval I f is on I if whenever a and b are in I

More information

z 2 = 1 4 (x 2) + 1 (y 6)

z 2 = 1 4 (x 2) + 1 (y 6) MA 5 Fall 007 Exam # Review Solutions. Consider the function fx, y y x. a Sketch the domain of f. For the domain, need y x 0, i.e., y x. - - - 0 0 - - - b Sketch the level curves fx, y k for k 0,,,. The

More information

Answers for Calculus Review (Extrema and Concavity)

Answers for Calculus Review (Extrema and Concavity) Answers for Calculus Review 4.1-4.4 (Extrema and Concavity) 1. A critical number is a value of the independent variable (a/k/a x) in the domain of the function at which the derivative is zero or undefined.

More information

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Page Problem Score Max Score a 8 12b a b 10 14c 6 6 Fall 14 MTH 34 FINAL EXAM December 8, 14 Name: PID: Section: Instructor: DO NOT WRITE BELOW THIS LINE. Go to the next page. Page Problem Score Max Score 1 5 5 1 3 5 4 5 5 5 6 5 7 5 8 5 9 5 1 5 11 1 3 1a

More information

Lecture 8: Maxima and Minima

Lecture 8: Maxima and Minima Lecture 8: Maxima and Minima Rafikul Alam Department of Mathematics IIT Guwahati Local extremum of f : R n R Let f : U R n R be continuous, where U is open. Then f has a local maximum at p if there exists

More information

= cos(cos(tan t)) ( sin(tan t)) d (tan t) = cos(cos(tan t)) ( sin(tan t)) sec 2 t., we get. 4x 3/4 f (t) 4 [ ln(f (t)) ] 3/4 f (t)

= cos(cos(tan t)) ( sin(tan t)) d (tan t) = cos(cos(tan t)) ( sin(tan t)) sec 2 t., we get. 4x 3/4 f (t) 4 [ ln(f (t)) ] 3/4 f (t) Tuesday, January 2 Solutions A review of some important calculus topics 1. Chain Rule: (a) Let h(t) = sin ( cos(tan t) ). Find the derivative with respect to t. Solution. d (h(t)) = d (sin(cos(tan t)))

More information

Math 115 Practice for Exam 2

Math 115 Practice for Exam 2 Math 115 Practice for Exam Generated October 30, 017 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 5 questions. Note that the problems are not of equal difficulty, so you may want to skip

More information

Optimization. Sherif Khalifa. Sherif Khalifa () Optimization 1 / 50

Optimization. Sherif Khalifa. Sherif Khalifa () Optimization 1 / 50 Sherif Khalifa Sherif Khalifa () Optimization 1 / 50 Y f(x 0 ) Y=f(X) X 0 X Sherif Khalifa () Optimization 2 / 50 Y Y=f(X) f(x 0 ) X 0 X Sherif Khalifa () Optimization 3 / 50 A necessary condition for

More information

Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2)

Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2) Math 2, Final Exam, Practice Fall 29 Problem Solution. A triangle has vertices at the points A (,,), B (, 3,4), and C (2,,3) (a) Find the cosine of the angle between the vectors AB and AC. (b) Find an

More information

Math 1314 Test 4 Review Lesson 16 Lesson Use Riemann sums with midpoints and 6 subdivisions to approximate the area between

Math 1314 Test 4 Review Lesson 16 Lesson Use Riemann sums with midpoints and 6 subdivisions to approximate the area between Math 1314 Test 4 Review Lesson 16 Lesson 24 1. Use Riemann sums with midpoints and 6 subdivisions to approximate the area between and the x-axis on the interval [1, 9]. Recall: RectangleSum[,

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B Laval KSU April 9, 2012 Philippe B Laval (KSU) Functions of Several Variables April 9, 2012 1 / 13 Introduction In Calculus I (differential calculus

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

Math 251 Midterm II Information Spring 2018

Math 251 Midterm II Information Spring 2018 Math 251 Midterm II Information Spring 2018 WHEN: Thursday, April 12 (in class). You will have the entire period (125 minutes) to work on the exam. RULES: No books or notes. You may bring a non-graphing

More information

Faculty of Engineering, Mathematics and Science School of Mathematics

Faculty of Engineering, Mathematics and Science School of Mathematics Faculty of Engineering, Mathematics and Science School of Mathematics GROUPS Trinity Term 06 MA3: Advanced Calculus SAMPLE EXAM, Solutions DAY PLACE TIME Prof. Larry Rolen Instructions to Candidates: Attempt

More information

Solutions to Math 53 First Exam April 20, 2010

Solutions to Math 53 First Exam April 20, 2010 Solutions to Math 53 First Exam April 0, 00. (5 points) Match the direction fields below with their differential equations. Also indicate which two equations do not have matches. No justification is necessary.

More information

It has neither a local maximum value nor an absolute maximum value

It has neither a local maximum value nor an absolute maximum value 1 Here, we learn how derivatives affect the shape of a graph of a function and, in particular, how they help us locate maximum and minimum values of functions. Some of the most important applications of

More information

Optimization II: Unconstrained Multivariable

Optimization II: Unconstrained Multivariable Optimization II: Unconstrained Multivariable CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization II: Unconstrained

More information

AP Calculus AB. Chapter IV Lesson B. Curve Sketching

AP Calculus AB. Chapter IV Lesson B. Curve Sketching AP Calculus AB Chapter IV Lesson B Curve Sketching local maxima Absolute maximum F I A B E G C J Absolute H K minimum D local minima Summary of trip along curve critical points occur where the derivative

More information

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON. a b. Name: Problem 1

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON. a b. Name: Problem 1 BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON Name: Problem 1 In this problem, we will use vectors to show that an angle formed by connecting a point on a circle to two

More information

Lesson 10. Maximum and Minimum of function of two variables

Lesson 10. Maximum and Minimum of function of two variables Module 1: Differential Calculus Lesson 10 Maximum and Minimum of function of two variables 10.1 Introduction We say that a function has a maximum (local) at a point if for all points sufficiently close

More information

Practice Problems for Final Exam

Practice Problems for Final Exam Math 1280 Spring 2016 Practice Problems for Final Exam Part 2 (Sections 6.6, 6.7, 6.8, and chapter 7) S o l u t i o n s 1. Show that the given system has a nonlinear center at the origin. ẋ = 9y 5y 5,

More information

Extrema and the First-Derivative Test

Extrema and the First-Derivative Test Extrema and the First-Derivative Test MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics 2018 Why Maximize or Minimize? In almost all quantitative fields there are objective

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

Exam 3 MATH Calculus I

Exam 3 MATH Calculus I Trinity College December 03, 2015 MATH 131-01 Calculus I By signing below, you attest that you have neither given nor received help of any kind on this exam. Signature: Printed Name: Instructions: Show

More information

Partial Derivatives. w = f(x, y, z).

Partial Derivatives. w = f(x, y, z). Partial Derivatives 1 Functions of Several Variables So far we have focused our attention of functions of one variable. These functions model situations in which a variable depends on another independent

More information

Mathematics 2203, Test 1 - Solutions

Mathematics 2203, Test 1 - Solutions Mathematics 220, Test 1 - Solutions F, 2010 Philippe B. Laval Name 1. Determine if each statement below is True or False. If it is true, explain why (cite theorem, rule, property). If it is false, explain

More information

A.P. Calculus Holiday Packet

A.P. Calculus Holiday Packet A.P. Calculus Holiday Packet Since this is a take-home, I cannot stop you from using calculators but you would be wise to use them sparingly. When you are asked questions about graphs of functions, do

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

Conditional Random Field

Conditional Random Field Introduction Linear-Chain General Specific Implementations Conclusions Corso di Elaborazione del Linguaggio Naturale Pisa, May, 2011 Introduction Linear-Chain General Specific Implementations Conclusions

More information

4 Partial Differentiation

4 Partial Differentiation 4 Partial Differentiation Many equations in engineering, physics and mathematics tie together more than two variables. For example Ohm s Law (V = IR) and the equation for an ideal gas, PV = nrt, which

More information

ARNOLD PIZER rochester problib from CVS Summer 2003

ARNOLD PIZER rochester problib from CVS Summer 2003 WeBWorK assignment VmultivariableFunctions due 3/3/08 at 2:00 AM.( pt) setvmultivariablefunctions/ur VC 5.pg Match the surfaces with the verbal description of the level curves by placing the letter of

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 8 February 22nd 1 Overview In the previous lecture we saw characterizations of optimality in linear optimization, and we reviewed the

More information

Higher order derivative

Higher order derivative 2 Î 3 á Higher order derivative Î 1 Å Iterated partial derivative Iterated partial derivative Suppose f has f/ x, f/ y and ( f ) = 2 f x x x 2 ( f ) = 2 f x y x y ( f ) = 2 f y x y x ( f ) = 2 f y y y

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B. Laval KSU Today Philippe B. Laval (KSU) Extreme Values Today 1 / 18 Introduction In Calculus I (differential calculus for functions of one variable),

More information

1. For each function, find all of its critical points and then classify each point as a local extremum or saddle point.

1. For each function, find all of its critical points and then classify each point as a local extremum or saddle point. Solutions Review for Exam # Math 6. For each function, find all of its critical points and then classify each point as a local extremum or saddle point. a fx, y x + 6xy + y Solution.The gradient of f is

More information

Partial derivatives, linear approximation and optimization

Partial derivatives, linear approximation and optimization ams 11b Study Guide 4 econ 11b Partial derivatives, linear approximation and optimization 1. Find the indicated partial derivatives of the functions below. a. z = 3x 2 + 4xy 5y 2 4x + 7y 2, z x = 6x +

More information

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012 Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University September 20, 2012 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

Math 1314 ONLINE Lesson 12

Math 1314 ONLINE Lesson 12 Math 1314 ONLINE Lesson 12 This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales based on it. The graph

More information

MA FINAL EXAM Form B December 13, 2016

MA FINAL EXAM Form B December 13, 2016 MA 6100 FINAL EXAM Form B December 1, 016 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME 1. You must use a # pencil on the scantron. a. If the cover of your exam is GREEN, write 01 in the TEST/QUIZ NUMBER

More information