Bifurcations in an SEIQR Model for Childhood Diseases

Size: px
Start display at page:

Download "Bifurcations in an SEIQR Model for Childhood Diseases"

Transcription

1 Bifurcations in an SEIQR Model for Childhood Diseases David J. Gerberry Purdue University, West Lafayette, IN, USA, Conference on Computational and Mathematical Population Dynamics Campinas, Brazil

2 Outline Description of the model Summary of literature Preliminary findings Hopf bifurcations Homoclinic bifurcation Comparison to real data

3 SEIQR Model for Childhood Diseases d dt S=Λ µs σsi A d dt E= (µ+γ 1)E+σS I A d dt I= (µ+γ 2)I+γ 1 E d dt Q= (µ+ξ)q+γ 2I d dt R= µr+ξq S=Susceptible E=Exposed I=Infectious Q = Isolated(Quarantined) R=Recovered A= ActivePopulation (S+E+I+R) Λ = Recruitment Rate µ=deathrate σ=infectionrate 1=γ 1 =Ave. LengthofLatentPeriod 1=γ 2 =Ave. LengthofInfectiousPeriod 1=ξ = Ave. Length of Isolation Period

4 The Cause of Sustained Oscillations in Childhood Diseases? (1906) Hamer [7]: suggested autonomous internal forces (1950 s) Bartlett [8,9]: stochastic effects (1973) London and Yorke [10]: external periodic forcing (1975) Bailey [11, p. 12]: this failure of deterministic models led to their abandonment in many quarters (1984) Schenzle [12]: school year/age structure

5 The Cause of Sustained Oscillations in Childhood Diseases? (Continued) (1993) Feng and Thieme [1]: include an isolated class Assumption: per capita contact rate is independent of total population size Can create sustained oscillations

6 Model Simplification Total population size goes to as time goes to infinity Assume that total population is equal to S Eliminate from our system Λ µ Λ µ Rescale time so that New parameters: σ=1 ν= µ σ ; θ 1= γ 1 σ ; θ 2 = γ 2 σ ; ζ= ξ σ

7 Initial Findings Basic Reproductive Number: R 0 = γ 1 σ (γ 1 +µ)(γ 2 +µ) = θ 1 (θ 1 +ν)(θ 2 +ν) Disease-free equilibrium is unstable for R 0 >1 DFE is globally asymptotically stable for R 0 <1 uses approach to persistence of Thieme [5, 6] Endemic Equilibrium: Exists in a biologically feasible region when R 0 >1

8 Hopf Bifurcations Supercritical Hopf bifurcations occur at: ζ 0 (ν)= θ 1θ 2 2 (1 θ 2)(θ 1 +θ 2 ) θ 2 2 (θ 1+1)+θ 1 θ 2 +θ 2 1 +O(ν 1/2 ) and ζ 1 (ν)= (θ1 1 θ θ 1 (1 θ 2 )2 2 (θ 1 +θ 2 ) 2+ (1 θ 2 ) 2 ) 2 ( (θ 1 +θ 2 ) 2 1 4θ 2 θ1 (1 θ 2 ) 2 ) θ 2 1 θ 2 (θ 1 +θ 2 ) 2 1 θ 2 θ 2 2θ 2 ν+o(ν 3/2 ) 1 θ 2

9 Hopf Bifurcations (Cont d) sp sp HB uss HB sss R/A sss Ave. isolation period in days

10 Sketch of the Proof of the Hopf Bifurcation 1. Linearize about endemic equilibrium. 2. Observethatν θ 1 ;θ 2 ;ζ: 3. Note that the coefficients of the characteristic polynomial ofthejacobianareanalyticinν forν> δ: 4. Compute the roots of the characteristic polynomial whenν=0. 5. Usethesetocomputethefirsttwotermsintheseries expansionsforeachrootinν. 6. Higherordertermscanbeomittedsinceν isverysmall. 7. w 1 = ζ+o(ν),w 2 = (θ 1 +θ 2 )+O(ν), w 3,4 =±ai+bν+o(ν 2 ). 8. bgoesfromnegativetopositiveasζ becomessmaller thanζ 0 (ν).

11 Parameter Space ζ ζ 0 (ν) θ 2 θ 1 ζ 1 (ν)

12 Intersection of ζ 0 (ν) and ζ 1 (ν) ζ θ 2

13 Homoclinic Bifurcation of nearby System Recall that ν θ 1 ;θ 2 ;ζ Assume that ν=0 Assume that R 0 =1(i.e. θ 2 =1) Center Manifold Theory Normal Form Theory Resulting system: _u=v+o(3) _v= θ 1 θ 1 +1 uv+o(3)

14 Homoclinic Bifurcation of nearby System (Cont d) Biologically reasonable unfolding: _u=µ 1 u+v _v=(µ 2 µ 1 )v+u 2 uv Hopf bifurcation occurs along H= { (µ 1 ;µ 2 ):µ 2 = µ 2 1;µ 1 >0 } Homoclinic bifurcation occurs along HC= { (µ 1 ;µ 2 ):µ 2 = 6 7 µ2 1+O(µ 3 1);µ 1 >0 }

15 Homoclinic Bifurcation of nearby system (Cont d)

16 Comparison to Scarlet Fever Data Scarlet fever data from England and Wales, [3] Assume: Expect: Mean age at infection = 12 yrs Average life expectancy = 65 yrs Average length of latent period = 1.5 days Average length of effective infectious period = 1.5 days Average length of isolation period between 14 days and 21 days R 0 =6:4 R 0 =7:7 without latent class 22.8 days < D Q < 1.83 yrs 26.7 days < D Q < 1.22 yrs with latent class 18.0 days < D Q < 2.23 yrs 20.8 days < D Q < 1.52 yrs

17 Comparison to Scarlet Fever Data (Cont d) Anderson and May [3]observe interepidemic periods of 3 6 years Without latent class With latent class 6 yrs 3 yrs 27 days < D Q < 57 days 20 days < D Q < 28 days

18 Primary References [1] Feng, Z., Thieme, H.R. Recurrent outbreaks of childhood diseases revisited: the impact of isolation. Math. Biosci., 128: , [2] Wu, L., Feng, Z. Homoclinic bifurcation in an SIQR model for childhood diseases. J. Differential Equations, 168: , [3] Anderson, R.M., May, R.M. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York, [4] Kato, T. Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, [5] Thieme, H.R. Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations. Math. Biosci., (111), , [6] Thieme, H.R. Persistence under relaxed point-dissipativity (with applications to an endemic model). SIAM J. Math. Anal., (24), , 1993.

19 Historical References [7] Hamer, W.H. Epidemic disease in England. Lancet, (1), , 1996 [8] Bartlett, M.S. Measles periodicity and community size. J. Roy. Stat. Soc. Ser. A, (120), 48-70, [9] Bartlett, M.S. The critical community size for measles in the United States. J. Roy. Stat. Soc. Ser. A, (123), 37-44, [10] London, W.P., Yorke, J.A. Recurrent outbreaks of measles, chickenpox and mumps, I. Seasonal variation in contact rates. Am. J. Epidemiol., (98), , [11] Bailey, N.T.J. The Mathematical Theory of Infectious Diseases and Its Applications, Griffin, London and High Wycombe, [12] Schenzle, D. An age-structured model of pre- and postvaccination measles transmission, IMA J. Math. Appl. Biol. (1), , 1984.

An SEIQR Model for Childhood Diseases

An SEIQR Model for Childhood Diseases Journal of Mathematical Biology manuscript No. (will be inserted by the editor) An SEIQR Model for Childhood Diseases David J. Gerberry Fabio A. Milner Received: date / Revised: date Abstract It has been

More information

Mathematical Models of Infectious Disease: Very different approaches for very different diseases

Mathematical Models of Infectious Disease: Very different approaches for very different diseases Mathematical Models of Infectious Disease: Very different approaches for very different diseases David J. Gerberry Department of Mathematics, Purdue University Integrative Computational Studies Seminar

More information

Homoclinic Bifurcation in an SIQR Model for Childhood Diseases

Homoclinic Bifurcation in an SIQR Model for Childhood Diseases Journal of Differential Equations 168, 150167 (2000) doi:10.1006jdeq.2000.3882, available online at http:www.idealibrary.com on Homoclinic Bifurcation in an SIQR Model for Childhood Diseases Lih-Ing Wu

More information

Introduction to SEIR Models

Introduction to SEIR Models Department of Epidemiology and Public Health Health Systems Research and Dynamical Modelling Unit Introduction to SEIR Models Nakul Chitnis Workshop on Mathematical Models of Climate Variability, Environmental

More information

A Note on the Spread of Infectious Diseases. in a Large Susceptible Population

A Note on the Spread of Infectious Diseases. in a Large Susceptible Population International Mathematical Forum, Vol. 7, 2012, no. 50, 2481-2492 A Note on the Spread of Infectious Diseases in a Large Susceptible Population B. Barnes Department of Mathematics Kwame Nkrumah University

More information

ENDEMIC MODELS WITH ARBITRARILY DISTRIBUTED PERIODS OF INFECTION II: FAST DISEASE DYNAMICS AND PERMANENT RECOVERY

ENDEMIC MODELS WITH ARBITRARILY DISTRIBUTED PERIODS OF INFECTION II: FAST DISEASE DYNAMICS AND PERMANENT RECOVERY SIAM J. APPL. MATH. Vol. 61, No. 3, pp. 983 112 c 2 Society for Industrial and Applied Mathematics ENDEMIC MODELS WITH ARBITRARILY DISTRIBUTED PERIODS OF INFECTION II: FAST DISEASE DYNAMICS AND PERMANENT

More information

MATHEMATICAL MODELS Vol. III - Mathematical Models in Epidemiology - M. G. Roberts, J. A. P. Heesterbeek

MATHEMATICAL MODELS Vol. III - Mathematical Models in Epidemiology - M. G. Roberts, J. A. P. Heesterbeek MATHEMATICAL MODELS I EPIDEMIOLOGY M. G. Roberts Institute of Information and Mathematical Sciences, Massey University, Auckland, ew Zealand J. A. P. Heesterbeek Faculty of Veterinary Medicine, Utrecht

More information

A comparison of delayed SIR and SEIR epidemic models

A comparison of delayed SIR and SEIR epidemic models Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 2, 181 190 181 A comparison of delayed SIR and SEIR epidemic models Abdelilah Kaddar a, Abdelhadi Abta b, Hamad Talibi Alaoui b a Université

More information

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS

GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS CANADIAN APPIED MATHEMATICS QUARTERY Volume 13, Number 4, Winter 2005 GOBA DYNAMICS OF A MATHEMATICA MODE OF TUBERCUOSIS HONGBIN GUO ABSTRACT. Mathematical analysis is carried out for a mathematical model

More information

Spatial Heterogeneity in Epidemic Models

Spatial Heterogeneity in Epidemic Models J. theor. Biol. (1996) 179, 1 11 Spatial Heterogeneity in Epidemic Models ALUN L. LLOYD AND ROBERT M. MAY University of Oxford, Department of Zoology, South Parks Road, Oxford OX1 3PS, U.K. (Received on

More information

(mathematical epidemiology)

(mathematical epidemiology) 1. 30 (mathematical epidemiology) 2. 1927 10) * Anderson and May 1), Diekmann and Heesterbeek 3) 7) 14) NO. 538, APRIL 2008 1 S(t), I(t), R(t) (susceptibles ) (infectives ) (recovered/removed = βs(t)i(t)

More information

Mathematical Epidemiology Lecture 1. Matylda Jabłońska-Sabuka

Mathematical Epidemiology Lecture 1. Matylda Jabłońska-Sabuka Lecture 1 Lappeenranta University of Technology Wrocław, Fall 2013 What is? Basic terminology Epidemiology is the subject that studies the spread of diseases in populations, and primarily the human populations.

More information

Global Analysis of an Epidemic Model with Nonmonotone Incidence Rate

Global Analysis of an Epidemic Model with Nonmonotone Incidence Rate Global Analysis of an Epidemic Model with Nonmonotone Incidence Rate Dongmei Xiao Department of Mathematics, Shanghai Jiaotong University, Shanghai 00030, China E-mail: xiaodm@sjtu.edu.cn and Shigui Ruan

More information

Dynamics of Disease Spread. in a Predator-Prey System

Dynamics of Disease Spread. in a Predator-Prey System Advanced Studies in Biology, vol. 6, 2014, no. 4, 169-179 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/asb.2014.4845 Dynamics of Disease Spread in a Predator-Prey System Asrul Sani 1, Edi Cahyono

More information

Modelling the spread of bacterial infectious disease with environmental effect in a logistically growing human population

Modelling the spread of bacterial infectious disease with environmental effect in a logistically growing human population Nonlinear Analysis: Real World Applications 7 2006) 341 363 www.elsevier.com/locate/na Modelling the spread of bacterial infectious disease with environmental effect in a logistically growing human population

More information

Seasonally forced disease dynamics explored as switching between attractors

Seasonally forced disease dynamics explored as switching between attractors Physica D 148 (2001) 317 335 Seasonally forced disease dynamics explored as switching between attractors Matt J. Keeling, Pejman Rohani, Bryan T. Grenfell Zoology Department, University of Cambridge, Downing

More information

Electronic appendices are refereed with the text. However, no attempt has been made to impose a uniform editorial style on the electronic appendices.

Electronic appendices are refereed with the text. However, no attempt has been made to impose a uniform editorial style on the electronic appendices. This is an electronic appendix to the paper by Alun L. Lloyd 2001 Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc. R. Soc. Lond. B 268, 985-993.

More information

GLOBAL STABILITY OF SIR MODELS WITH NONLINEAR INCIDENCE AND DISCONTINUOUS TREATMENT

GLOBAL STABILITY OF SIR MODELS WITH NONLINEAR INCIDENCE AND DISCONTINUOUS TREATMENT Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 304, pp. 1 8. SSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu GLOBAL STABLTY

More information

The death of an epidemic

The death of an epidemic LECTURE 2 Equilibrium Stability Analysis & Next Generation Method The death of an epidemic In SIR equations, let s divide equation for dx/dt by dz/ dt:!! dx/dz = - (β X Y/N)/(γY)!!! = - R 0 X/N Integrate

More information

Research Article Two Quarantine Models on the Attack of Malicious Objects in Computer Network

Research Article Two Quarantine Models on the Attack of Malicious Objects in Computer Network Mathematical Problems in Engineering Volume 2012, Article ID 407064, 13 pages doi:10.1155/2012/407064 Research Article Two Quarantine Models on the Attack of Malicious Objects in Computer Network Bimal

More information

PARAMETER ESTIMATION IN EPIDEMIC MODELS: SIMPLIFIED FORMULAS

PARAMETER ESTIMATION IN EPIDEMIC MODELS: SIMPLIFIED FORMULAS CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 19, Number 4, Winter 211 PARAMETER ESTIMATION IN EPIDEMIC MODELS: SIMPLIFIED FORMULAS Dedicated to Herb Freedman on the occasion of his seventieth birthday

More information

ME 406 S-I-R Model of Epidemics Part 2 Vital Dynamics Included

ME 406 S-I-R Model of Epidemics Part 2 Vital Dynamics Included ME 406 S-I-R Model of Epidemics Part 2 Vital Dynamics Included sysid Mathematica 6.0.3, DynPac 11.01, 1ê13ê9 1. Introduction Description of the Model In this notebook, we include births and deaths in the

More information

Thursday. Threshold and Sensitivity Analysis

Thursday. Threshold and Sensitivity Analysis Thursday Threshold and Sensitivity Analysis SIR Model without Demography ds dt di dt dr dt = βsi (2.1) = βsi γi (2.2) = γi (2.3) With initial conditions S(0) > 0, I(0) > 0, and R(0) = 0. This model can

More information

Mathematical Modeling and Analysis of Infectious Disease Dynamics

Mathematical Modeling and Analysis of Infectious Disease Dynamics Mathematical Modeling and Analysis of Infectious Disease Dynamics V. A. Bokil Department of Mathematics Oregon State University Corvallis, OR MTH 323: Mathematical Modeling May 22, 2017 V. A. Bokil (OSU-Math)

More information

Global Analysis of an SEIRS Model with Saturating Contact Rate 1

Global Analysis of an SEIRS Model with Saturating Contact Rate 1 Applied Mathematical Sciences, Vol. 6, 2012, no. 80, 3991-4003 Global Analysis of an SEIRS Model with Saturating Contact Rate 1 Shulin Sun a, Cuihua Guo b, and Chengmin Li a a School of Mathematics and

More information

Numerical qualitative analysis of a large-scale model for measles spread

Numerical qualitative analysis of a large-scale model for measles spread Numerical qualitative analysis of a large-scale model for measles spread Hossein Zivari-Piran Department of Mathematics and Statistics York University (joint work with Jane Heffernan) p./9 Outline Periodic

More information

SI j RS E-Epidemic Model With Multiple Groups of Infection In Computer Network. 1 Introduction. Bimal Kumar Mishra 1, Aditya Kumar Singh 2

SI j RS E-Epidemic Model With Multiple Groups of Infection In Computer Network. 1 Introduction. Bimal Kumar Mishra 1, Aditya Kumar Singh 2 ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.13(2012) No.3,pp.357-362 SI j RS E-Epidemic Model With Multiple Groups of Infection In Computer Network Bimal Kumar

More information

The effect of emigration and immigration on the dynamics of a discrete-generation population

The effect of emigration and immigration on the dynamics of a discrete-generation population J. Biosci., Vol. 20. Number 3, June 1995, pp 397 407. Printed in India. The effect of emigration and immigration on the dynamics of a discrete-generation population G D RUXTON Biomathematics and Statistics

More information

New results on the existences of solutions of the Dirichlet problem with respect to the Schrödinger-prey operator and their applications

New results on the existences of solutions of the Dirichlet problem with respect to the Schrödinger-prey operator and their applications Chen Zhang Journal of Inequalities Applications 2017 2017:143 DOI 10.1186/s13660-017-1417-9 R E S E A R C H Open Access New results on the existences of solutions of the Dirichlet problem with respect

More information

UNIFORM WEAK IMPLIES UNIFORM STRONG PERSISTENCE FOR NON-AUTONOMOUS SEMIFLOWS

UNIFORM WEAK IMPLIES UNIFORM STRONG PERSISTENCE FOR NON-AUTONOMOUS SEMIFLOWS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 8, Pages 2395 2403 S 0002-9939(99)05034-0 Article electronically published on April 15, 1999 UNIFORM WEAK IMPLIES UNIFORM STRONG PERSISTENCE

More information

GLOBAL STABILITY OF THE ENDEMIC EQUILIBRIUM OF A TUBERCULOSIS MODEL WITH IMMIGRATION AND TREATMENT

GLOBAL STABILITY OF THE ENDEMIC EQUILIBRIUM OF A TUBERCULOSIS MODEL WITH IMMIGRATION AND TREATMENT CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 19, Number 1, Spring 2011 GLOBAL STABILITY OF THE ENDEMIC EQUILIBRIUM OF A TUBERCULOSIS MODEL WITH IMMIGRATION AND TREATMENT HONGBIN GUO AND MICHAEL Y. LI

More information

Qualitative Analysis of a Discrete SIR Epidemic Model

Qualitative Analysis of a Discrete SIR Epidemic Model ISSN (e): 2250 3005 Volume, 05 Issue, 03 March 2015 International Journal of Computational Engineering Research (IJCER) Qualitative Analysis of a Discrete SIR Epidemic Model A. George Maria Selvam 1, D.

More information

Recurrent epidemic cycles driven by intervention in a population of two susceptibility types

Recurrent epidemic cycles driven by intervention in a population of two susceptibility types Journal of Physics: Conference Series OPEN ACCESS Recurrent epidemic cycles driven by intervention in a population of two susceptibility types To cite this article: Drandreb Earl O Juanico 214 J. Phys.:

More information

Global Stability of SEIRS Models in Epidemiology

Global Stability of SEIRS Models in Epidemiology Global Stability of SRS Models in pidemiology M. Y. Li, J. S. Muldowney, and P. van den Driessche Department of Mathematics and Statistics Mississippi State University, Mississippi State, MS 39762 Department

More information

Dynamical models of HIV-AIDS e ect on population growth

Dynamical models of HIV-AIDS e ect on population growth Dynamical models of HV-ADS e ect on population growth David Gurarie May 11, 2005 Abstract We review some known dynamical models of epidemics, given by coupled systems of di erential equations, and propose

More information

The dynamics of disease transmission in a Prey Predator System with harvesting of prey

The dynamics of disease transmission in a Prey Predator System with harvesting of prey ISSN: 78 Volume, Issue, April The dynamics of disease transmission in a Prey Predator System with harvesting of prey, Kul Bhushan Agnihotri* Department of Applied Sciences and Humanties Shaheed Bhagat

More information

Mathematical models on Malaria with multiple strains of pathogens

Mathematical models on Malaria with multiple strains of pathogens Mathematical models on Malaria with multiple strains of pathogens Yanyu Xiao Department of Mathematics University of Miami CTW: From Within Host Dynamics to the Epidemiology of Infectious Disease MBI,

More information

Mathematical Analysis of Epidemiological Models: Introduction

Mathematical Analysis of Epidemiological Models: Introduction Mathematical Analysis of Epidemiological Models: Introduction Jan Medlock Clemson University Department of Mathematical Sciences 8 February 2010 1. Introduction. The effectiveness of improved sanitation,

More information

A Time Since Recovery Model with Varying Rates of Loss of Immunity

A Time Since Recovery Model with Varying Rates of Loss of Immunity Bull Math Biol (212) 74:281 2819 DOI 1.17/s11538-12-978-7 ORIGINAL ARTICLE A Time Since Recovery Model with Varying Rates of Loss of Immunity Subhra Bhattacharya Frederick R. Adler Received: 7 May 212

More information

SIR Epidemic Model with total Population size

SIR Epidemic Model with total Population size Advances in Applied Mathematical Biosciences. ISSN 2248-9983 Volume 7, Number 1 (2016), pp. 33-39 International Research Publication House http://www.irphouse.com SIR Epidemic Model with total Population

More information

Stability of SEIR Model of Infectious Diseases with Human Immunity

Stability of SEIR Model of Infectious Diseases with Human Immunity Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 6 (2017), pp. 1811 1819 Research India Publications http://www.ripublication.com/gjpam.htm Stability of SEIR Model of Infectious

More information

Mathematical modelling and controlling the dynamics of infectious diseases

Mathematical modelling and controlling the dynamics of infectious diseases Mathematical modelling and controlling the dynamics of infectious diseases Musa Mammadov Centre for Informatics and Applied Optimisation Federation University Australia 25 August 2017, School of Science,

More information

Behavior Stability in two SIR-Style. Models for HIV

Behavior Stability in two SIR-Style. Models for HIV Int. Journal of Math. Analysis, Vol. 4, 2010, no. 9, 427-434 Behavior Stability in two SIR-Style Models for HIV S. Seddighi Chaharborj 2,1, M. R. Abu Bakar 2, I. Fudziah 2 I. Noor Akma 2, A. H. Malik 2,

More information

The Effect of Stochastic Migration on an SIR Model for the Transmission of HIV. Jan P. Medlock

The Effect of Stochastic Migration on an SIR Model for the Transmission of HIV. Jan P. Medlock The Effect of Stochastic Migration on an SIR Model for the Transmission of HIV A Thesis Presented to The Faculty of the Division of Graduate Studies by Jan P. Medlock In Partial Fulfillment of the Requirements

More information

Recurrent epidemics in small world networks

Recurrent epidemics in small world networks Journal of Theoretical Biology 233 (2005) 553 561 www.elsevier.com/locate/yjtbi Recurrent epidemics in small world networks J. Verdasca a, M.M. Telo da Gama a,, A. Nunes a, N.R. Bernardino a, J.M. Pacheco

More information

Seasonal forcing in stochastic epidemiology models

Seasonal forcing in stochastic epidemiology models Ricerche mat. (218) 67:27 47 https://doi.org/1.17/s11587-17-346-8 Seasonal forcing in stochastic epidemiology models Lora Billings 1 Eric Forgoston 1 Received: 4 December 216 / Revised: 6 June 217 / Published

More information

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response

Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response Gang Huang 1,2, Wanbiao Ma 2, Yasuhiro Takeuchi 1 1,Graduate School of Science and Technology, Shizuoka University,

More information

Bifurcation Analysis in Simple SIS Epidemic Model Involving Immigrations with Treatment

Bifurcation Analysis in Simple SIS Epidemic Model Involving Immigrations with Treatment Appl. Math. Inf. Sci. Lett. 3, No. 3, 97-10 015) 97 Applied Mathematics & Information Sciences Letters An International Journal http://dx.doi.org/10.1785/amisl/03030 Bifurcation Analysis in Simple SIS

More information

Statistical Inference for Stochastic Epidemic Models

Statistical Inference for Stochastic Epidemic Models Statistical Inference for Stochastic Epidemic Models George Streftaris 1 and Gavin J. Gibson 1 1 Department of Actuarial Mathematics & Statistics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS,

More information

A New Mathematical Approach for. Rabies Endemy

A New Mathematical Approach for. Rabies Endemy Applied Mathematical Sciences, Vol. 8, 2014, no. 2, 59-67 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.39525 A New Mathematical Approach for Rabies Endemy Elif Demirci Ankara University

More information

MODELING AND ANALYSIS OF THE SPREAD OF CARRIER DEPENDENT INFECTIOUS DISEASES WITH ENVIRONMENTAL EFFECTS

MODELING AND ANALYSIS OF THE SPREAD OF CARRIER DEPENDENT INFECTIOUS DISEASES WITH ENVIRONMENTAL EFFECTS Journal of Biological Systems, Vol. 11, No. 3 2003 325 335 c World Scientific Publishing Company MODELING AND ANALYSIS OF THE SPREAD OF CARRIER DEPENDENT INFECTIOUS DISEASES WITH ENVIRONMENTAL EFFECTS

More information

A Mathematical Model for the Spatial Spread of HIV in a Heterogeneous Population

A Mathematical Model for the Spatial Spread of HIV in a Heterogeneous Population A Mathematical Model for the Spatial Spread of HIV in a Heterogeneous Population Titus G. Kassem * Department of Mathematics, University of Jos, Nigeria. Abstract Emmanuel J.D. Garba Department of Mathematics,

More information

Transmission Dynamics of an Influenza Model with Vaccination and Antiviral Treatment

Transmission Dynamics of an Influenza Model with Vaccination and Antiviral Treatment Bulletin of Mathematical Biology (2010) 72: 1 33 DOI 10.1007/s11538-009-9435-5 ORIGINAL ARTICLE Transmission Dynamics of an Influenza Model with Vaccination and Antiviral Treatment Zhipeng Qiu a,, Zhilan

More information

STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL

STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL VFAST Transactions on Mathematics http://vfast.org/index.php/vtm@ 2013 ISSN: 2309-0022 Volume 1, Number 1, May-June, 2013 pp. 16 20 STABILITY ANALYSIS OF A GENERAL SIR EPIDEMIC MODEL Roman Ullah 1, Gul

More information

GLOBAL STABILITY OF A 9-DIMENSIONAL HSV-2 EPIDEMIC MODEL

GLOBAL STABILITY OF A 9-DIMENSIONAL HSV-2 EPIDEMIC MODEL CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 9 Number 4 Winter 0 GLOBAL STABILITY OF A 9-DIMENSIONAL HSV- EPIDEMIC MODEL Dedicated to Professor Freedman on the Occasion of his 70th Birthday ZHILAN FENG

More information

THE STOCHASTIC DYNAMICS OF EPIDEMIC MODELS

THE STOCHASTIC DYNAMICS OF EPIDEMIC MODELS THE STOCHASTIC DYNAMICS OF EPIDEMIC MODELS A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2010 By Andrew James

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com A SIR Transmission Model of Political Figure Fever 1 Benny Yong and 2 Nor Azah Samat 1

More information

The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model

The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model Journal of Physics: Conference Series PAPER OPEN ACCESS The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model Related content - Anomalous ion conduction from toroidal

More information

On a stochastic epidemic SEIHR model and its diffusion approximation

On a stochastic epidemic SEIHR model and its diffusion approximation On a stochastic epidemic SEIHR model and its diffusion approximation Marco Ferrante (1), Elisabetta Ferraris (1) and Carles Rovira (2) (1) Dipartimento di Matematica, Università di Padova (Italy), (2)

More information

The Dynamic Properties of a Deterministic SIR Epidemic Model in Discrete-Time

The Dynamic Properties of a Deterministic SIR Epidemic Model in Discrete-Time Applied Mathematics, 05, 6, 665-675 Published Online September 05 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/046/am056048 The Dynamic Properties of a Deterministic SIR Epidemic Model in Discrete-Time

More information

1. Introduction: time-continuous linear population dynamics. Differential equation and Integral equation. Semigroup approach.

1. Introduction: time-continuous linear population dynamics. Differential equation and Integral equation. Semigroup approach. Intensive Programme Course: Lecturer: Dates and place: Mathematical Models in Life and Social Sciences Structured Population Dynamics in ecology and epidemiology Jordi Ripoll (Universitat de Girona, Spain)

More information

DYNAMICS OF A DELAY-DIFFUSION PREY-PREDATOR MODEL WITH DISEASE IN THE PREY

DYNAMICS OF A DELAY-DIFFUSION PREY-PREDATOR MODEL WITH DISEASE IN THE PREY J. Appl. Math. & Computing Vol. 17(2005), No. 1-2, pp. 361-377 DYNAMICS OF A DELAY-DIFFUSION PREY-PREDATOR MODEL WITH DISEASE IN THE PREY B. MUHOPADHYAY AND R. BHATTACHARYYA Abstract. A mathematical model

More information

Global Stability of a Computer Virus Model with Cure and Vertical Transmission

Global Stability of a Computer Virus Model with Cure and Vertical Transmission International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 3, Issue 1, January 016, PP 16-4 ISSN 349-4840 (Print) & ISSN 349-4859 (Online) www.arcjournals.org Global

More information

Demographic impact and controllability of malaria in an SIS model with proportional fatality

Demographic impact and controllability of malaria in an SIS model with proportional fatality Demographic impact and controllability of malaria in an SIS model with proportional fatality Muntaser Safan 1 Ahmed Ghazi Mathematics Department, Faculty of Science, Mansoura University, 35516 Mansoura,

More information

Mathematical Modeling, Simulation, and Time Series Analysis of Seasonal Epidemics.

Mathematical Modeling, Simulation, and Time Series Analysis of Seasonal Epidemics. East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations 12-2010 Mathematical Modeling, Simulation, and Time Series Analysis of Seasonal Epidemics.

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a ournal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Stability and bifurcation analysis of epidemic models with saturated incidence rates: an application to a nonmonotone incidence rate

Stability and bifurcation analysis of epidemic models with saturated incidence rates: an application to a nonmonotone incidence rate Published in Mathematical Biosciences and Engineering 4 785-85 DOI:.3934/mbe.4..785 Stability and bifurcation analysis of epidemic models with saturated incidence rates: an application to a nonmonotone

More information

Figure The Threshold Theorem of epidemiology

Figure The Threshold Theorem of epidemiology K/a Figure 3 6. Assurne that K 1/ a < K 2 and K 2 / ß < K 1 (a) Show that the equilibrium solution N 1 =0, N 2 =0 of (*) is unstable. (b) Show that the equilibrium solutions N 2 =0 and N 1 =0, N 2 =K 2

More information

CHARACTERIZATION OF SADDLE-NODE EQUILIBRIUM POINTS ON THE STABILITY BOUNDARY OF NONLINEAR AUTONOMOUS DYNAMICAL SYSTEM

CHARACTERIZATION OF SADDLE-NODE EQUILIBRIUM POINTS ON THE STABILITY BOUNDARY OF NONLINEAR AUTONOMOUS DYNAMICAL SYSTEM CHARACTERIZATION OF SADDLE-NODE EQUILIBRIUM POINTS ON THE STABILITY BOUNDARY OF NONLINEAR AUTONOMOUS DYNAMICAL SYSTEM Fabíolo Moraes Amaral, Josaphat Ricardo Ribeiro Gouveia Júnior, Luís Fernando Costa

More information

The Fractional-order SIR and SIRS Epidemic Models with Variable Population Size

The Fractional-order SIR and SIRS Epidemic Models with Variable Population Size Math. Sci. Lett. 2, No. 3, 195-200 (2013) 195 Mathematical Sciences Letters An International Journal http://dx.doi.org/10.12785/msl/020308 The Fractional-order SIR and SIRS Epidemic Models with Variable

More information

Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields

Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields Francisco Armando Carrillo Navarro, Fernando Verduzco G., Joaquín Delgado F. Programa de Doctorado en Ciencias (Matemáticas),

More information

USE OF A PERIODIC VACCINATION STRATEGY TO CONTROL THE SPREAD OF EPIDEMICS WITH SEASONALLY VARYING CONTACT RATE. Islam A. Moneim.

USE OF A PERIODIC VACCINATION STRATEGY TO CONTROL THE SPREAD OF EPIDEMICS WITH SEASONALLY VARYING CONTACT RATE. Islam A. Moneim. MATHEMATICAL BIOSCIENCES http://www.mbejournal.org/ AND ENGINEERING Volume?, Number?,???????? pp.???? USE OF A PERIODIC VACCINATION STRATEGY TO CONTROL THE SPREAD OF EPIDEMICS WITH SEASONALLY VARYING CONTACT

More information

AGE OF INFECTION IN EPIDEMIOLOGY MODELS

AGE OF INFECTION IN EPIDEMIOLOGY MODELS 24 Conference on Diff. Eqns. and Appl. in Math. Biology, Nanaimo, BC, Canada. Electronic Journal of Differential Equations, Conference 12, 25, pp. 29 37. ISSN: 172-6691. URL: http://ejde.math.txstate.edu

More information

Dynamics of a Networked Connectivity Model of Waterborne Disease Epidemics

Dynamics of a Networked Connectivity Model of Waterborne Disease Epidemics Dynamics of a Networked Connectivity Model of Waterborne Disease Epidemics A. Edwards, D. Mercadante, C. Retamoza REU Final Presentation July 31, 214 Overview Background on waterborne diseases Introduction

More information

Parameter Estimation of Some Epidemic Models. The Case of Recurrent Epidemics Caused by Respiratory Syncytial Virus

Parameter Estimation of Some Epidemic Models. The Case of Recurrent Epidemics Caused by Respiratory Syncytial Virus Bulletin of Mathematical Biology (2009) DOI 10.1007/s11538-009-9429-3 ORIGINAL ARTICLE Parameter Estimation of Some Epidemic Models. The Case of Recurrent Epidemics Caused by Respiratory Syncytial Virus

More information

Fractional Calculus Model for Childhood Diseases and Vaccines

Fractional Calculus Model for Childhood Diseases and Vaccines Applied Mathematical Sciences, Vol. 8, 2014, no. 98, 4859-4866 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4294 Fractional Calculus Model for Childhood Diseases and Vaccines Moustafa

More information

Seasonally forced epidemics Biennial outbreaks of Measles in England and Wales

Seasonally forced epidemics Biennial outbreaks of Measles in England and Wales Seasonally forced epidemics Biennial outbreaks of Measles in England and Wales John M. Drake & Pejman Rohani 1 Introduction As we have now seen on several occasions, the simple SIR model predicts damped

More information

arxiv: v3 [q-bio.pe] 2 Jun 2009

arxiv: v3 [q-bio.pe] 2 Jun 2009 Fluctuations and oscillations in a simple epidemic model G. Rozhnova 1 and A. Nunes 1 1 Centro de Física Teórica e Computacional and Departamento de Física, Faculdade de Ciências da Universidade de Lisboa,

More information

Australian Journal of Basic and Applied Sciences. Effect of Education Campaign on Transmission Model of Conjunctivitis

Australian Journal of Basic and Applied Sciences. Effect of Education Campaign on Transmission Model of Conjunctivitis ISSN:99-878 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com ffect of ducation Campaign on Transmission Model of Conjunctivitis Suratchata Sangthongjeen, Anake Sudchumnong

More information

A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD

A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD April, 4. Vol. 4, No. - 4 EAAS & ARF. All rights reserved ISSN35-869 A NEW SOLUTION OF SIR MODEL BY USING THE DIFFERENTIAL FRACTIONAL TRANSFORMATION METHOD Ahmed A. M. Hassan, S. H. Hoda Ibrahim, Amr M.

More information

GLOBAL STABILITY OF A VACCINATION MODEL WITH IMMIGRATION

GLOBAL STABILITY OF A VACCINATION MODEL WITH IMMIGRATION Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 92, pp. 1 10. SSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu GLOBAL STABLTY

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied athematics Letters 25 (212) 156 16 Contents lists available at SciVerse ScienceDirect Applied athematics Letters journal homepage: www.elsevier.com/locate/aml Globally stable endemicity for infectious

More information

Persistence theory applied to Keen s model a link between mathematical biology and mathematical economics

Persistence theory applied to Keen s model a link between mathematical biology and mathematical economics Persistence theory applied to Keen s model a link between mathematical biology and mathematical economics Jianhong Wu and Xiang-Sheng Wang Mprime Centre for Disease Modelling York University, Toronto Persistence

More information

A stochastic model for extinction and recurrence of epidemics: estimation and inference for measles outbreaks

A stochastic model for extinction and recurrence of epidemics: estimation and inference for measles outbreaks Biostatistics (2002), 3, 4,pp. 493 510 Printed in Great Britain A stochastic model for extinction and recurrence of epidemics: estimation and inference for measles outbreaks BÄRBEL F. FINKENSTÄDT Department

More information

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:13 No:05 55 Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting K. Saleh Department of Mathematics, King Fahd

More information

A Mathematical Model for Tuberculosis: Who should be vaccinating?

A Mathematical Model for Tuberculosis: Who should be vaccinating? A Mathematical Model for Tuberculosis: Who should be vaccinating? David Gerberry Center for Biomedical Modeling David Geffen School of Medicine at UCLA Tuberculosis Basics 1 or 2 years lifetime New Infection

More information

Available online at Commun. Math. Biol. Neurosci. 2015, 2015:29 ISSN:

Available online at   Commun. Math. Biol. Neurosci. 2015, 2015:29 ISSN: Available online at http://scik.org Commun. Math. Biol. Neurosci. 215, 215:29 ISSN: 252-2541 AGE-STRUCTURED MATHEMATICAL MODEL FOR HIV/AIDS IN A TWO-DIMENSIONAL HETEROGENEOUS POPULATION PRATIBHA RANI 1,

More information

DENSITY DEPENDENCE IN DISEASE INCIDENCE AND ITS IMPACTS ON TRANSMISSION DYNAMICS

DENSITY DEPENDENCE IN DISEASE INCIDENCE AND ITS IMPACTS ON TRANSMISSION DYNAMICS CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 19, Number 3, Fall 2011 DENSITY DEPENDENCE IN DISEASE INCIDENCE AND ITS IMPACTS ON TRANSMISSION DYNAMICS REBECCA DE BOER AND MICHAEL Y. LI ABSTRACT. Incidence

More information

Partially Observed Stochastic Epidemics

Partially Observed Stochastic Epidemics Institut de Mathématiques Ecole Polytechnique Fédérale de Lausanne victor.panaretos@epfl.ch http://smat.epfl.ch Stochastic Epidemics Stochastic Epidemic = stochastic model for evolution of epidemic { stochastic

More information

HETEROGENEOUS MIXING IN EPIDEMIC MODELS

HETEROGENEOUS MIXING IN EPIDEMIC MODELS CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 2, Number 1, Spring 212 HETEROGENEOUS MIXING IN EPIDEMIC MODELS FRED BRAUER ABSTRACT. We extend the relation between the basic reproduction number and the

More information

STUDY OF THE BRUCELLOSIS TRANSMISSION WITH MULTI-STAGE KE MENG, XAMXINUR ABDURAHMAN

STUDY OF THE BRUCELLOSIS TRANSMISSION WITH MULTI-STAGE KE MENG, XAMXINUR ABDURAHMAN Available online at http://scik.org Commun. Math. Biol. Neurosci. 208, 208:20 https://doi.org/0.2899/cmbn/3796 ISSN: 2052-254 STUDY OF THE BRUCELLOSIS TRANSMISSION WITH MULTI-STAGE KE MENG, XAMXINUR ABDURAHMAN

More information

Discrete Time Markov Chain of a Dynamical System with a Rest Phase

Discrete Time Markov Chain of a Dynamical System with a Rest Phase Discrete Time Markov Chain of a Dynamical System with a Rest Phase Abstract A stochastic model, in the form of a discrete time Markov chain, is constructed to describe the dynamics of a population that

More information

Smoking as Epidemic: Modeling and Simulation Study

Smoking as Epidemic: Modeling and Simulation Study American Journal of Applied Mathematics 2017; 5(1): 31-38 http://www.sciencepublishinggroup.com/j/ajam doi: 10.11648/j.ajam.20170501.14 ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online) Smoking as Epidemic:

More information

On the Spread of Epidemics in a Closed Heterogeneous Population

On the Spread of Epidemics in a Closed Heterogeneous Population On the Spread of Epidemics in a Closed Heterogeneous Population Artem Novozhilov Applied Mathematics 1 Moscow State University of Railway Engineering (MIIT) the 3d Workshop on Mathematical Models and Numerical

More information

Slow and fast dynamics model of a Malaria with Sickle-Cell genetic disease with multi-stage infections of the mosquitoes population

Slow and fast dynamics model of a Malaria with Sickle-Cell genetic disease with multi-stage infections of the mosquitoes population Journal of Physics: Conference Series PAPER OPEN ACCESS Slow and fast dynamics model of a Malaria with Sickle-Cell genetic disease with multi-stage infections of the mosquitoes population To cite this

More information

Global stability of an SEIS epidemic model with recruitment and a varying total population size

Global stability of an SEIS epidemic model with recruitment and a varying total population size Mathematical Biosciences 170 2001) 199±208 www.elsevier.com/locate/mbs Global stability of an SEIS epidemic model with recruitment and a varying total population size Meng Fan a, Michael Y. Li b, *, Ke

More information

Chaos and adaptive control in two prey, one predator system with nonlinear feedback

Chaos and adaptive control in two prey, one predator system with nonlinear feedback Chaos and adaptive control in two prey, one predator system with nonlinear feedback Awad El-Gohary, a, and A.S. Al-Ruzaiza a a Department of Statistics and O.R., College of Science, King Saud University,

More information

A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae. Yk j N k j

A Mathematical Analysis on the Transmission Dynamics of Neisseria gonorrhoeae. Yk j N k j North Carolina Journal of Mathematics and Statistics Volume 3, Pages 7 20 (Accepted June 23, 2017, published June 30, 2017 ISSN 2380-7539 A Mathematical Analysis on the Transmission Dynamics of Neisseria

More information

A GRAPH-THEORETIC APPROACH TO THE METHOD OF GLOBAL LYAPUNOV FUNCTIONS

A GRAPH-THEORETIC APPROACH TO THE METHOD OF GLOBAL LYAPUNOV FUNCTIONS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 8, August 2008, Pages 2793 2802 S 0002-993908)09341-6 Article electronically published on March 27, 2008 A GRAPH-THEORETIC APPROACH TO

More information

A Model on the Impact of Treating Typhoid with Anti-malarial: Dynamics of Malaria Concurrent and Co-infection with Typhoid

A Model on the Impact of Treating Typhoid with Anti-malarial: Dynamics of Malaria Concurrent and Co-infection with Typhoid International Journal of Mathematical Analysis Vol. 9, 2015, no. 11, 541-551 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.412403 A Model on the Impact of Treating Typhoid with Anti-malarial:

More information