C-14 Finding the Right Synergy from GLMs and Machine Learning

Size: px
Start display at page:

Download "C-14 Finding the Right Synergy from GLMs and Machine Learning"

Transcription

1 C-14 Finding the Right Synergy from GLMs and Machine Learning 2010 CAS Annual Meeting Claudine Modlin November 8, 2010 Slide 1

2 Definitions Parametric modeling Objective: build a predictive model User makes assumptions (e.g., distribution, model structure) and specifies preliminary list of explanatory variables User guides statistical method in order to effectively describe a particular response (e.g., claim frequency) Result is an algorithm, a set of parameters, and diagnostics Examples: minimum bias methods, linear regression, GLM Slide 2

3 Definitions Machine learning tools Objective: learn new things (which may help in building a model) Find patterns (often complex) in an unknown underlying distribution Tool may be supervised, unsupervised, or blend of the two Result might be a new variable, a tree, a grouping, a score, etc Examples: principal components analysis, decision trees, clustering, artificial neural networks Slide 3

4 A confusing message.. GLMs have weaknesses, as evident by unexplained predictive power in the GLM residuals. Therefore they need to be corrected via machine learning methods. Slide 4

5 Before we jump to conclusions. Make sure your GLM is as good as it can be (i.e., follow best practices) Use machine learning methods to improve each stage of the GLM process Slide 5

6 Before we jump to conclusions. All models are wrong, but some are useful George E.P. Box What does useful imply other than reliably accurately predictive? Easy to understand and communicate Available in a timely manner Capable of implementation Slide 6

7 Agenda Kristi: GLM best practices Machine learning at every stage of GLM analysis Claudine: Additional enhancements to GLM Mining GLM residuals via machine learning Slide 7

8 GLM enhancements GLM enhancements Testing link function assumption Saddles for interaction detection Slide 8

9 GLM enhancement Test link function via Box-Cox investigation E[Y i ] = µ i = g -1 (ΣX ij.β j +ξ i ) Var[Y i ] = φ.v(µ i )/ω i Box-Cox link function defined as: g(x) = (x λ - 1) / λ for λ 0; ln(x) for λ=0 λ = 1 g(x) = (x - 1) additive (with a base level shift) λ 0 g(x) ln(x) multiplicative (via l'hôpital) λ = -1 g(x) = 1-1/x inverse (with a base level shift) Test a range of values of λ and see which maximizes likelihood Slide 9

10 GLM enhancement Test link function via Box-Cox investigation Likelihood λ Frequencies Slide 10

11 GLM enhancement Test link function via Box-Cox investigation Likelihood λ Frequencies Amounts Slide 11

12 Interactions Policyholder Age Slide 12

13 Interactions Policyholder Age Slide 13

14 Interactions % % % % % % % % % % 0.2 5% 0.1 0% Policyholder Age Slide 14

15 GLM enhancement Interactions Why are interactions present? 1. Because that's how the factors behave 2. Because multiplicative models can go wrong at the edges 1.5 * 1.4 * 1.7 * 1.5 * 1.8 * 1.5 * 1.8 = 26! Slide 15

16 GLM enhancement Interaction detection within GLMs - Saddles Vehicle group β β β β β β β β β Vehicle group β β β β β β β β β Vehicle group β β β β β β β β β β β β Age β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β Age β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β Age β β β β β β β Slide 16

17 Example Slide 17

18 Example Slide 18

19 Example Slide 19

20 Saddles Slide 20

21 Saddles Slide 21

22 Saddles Slide 22

23 Saddles Slide 23

24 Saddles Slide 24

25 Transforming categorical and non-linear responses into single parameter variates Response Factor Levels Slide 25

26 Transforming categorical and non-linear responses into single parameter variates Response β Factor Levels Slide 26

27 Saddles Slide 27

28 Saddles Slide 28

29 Saddles example: no interaction Slide 29

30 Saddles example: unsimplified interaction Slide 30

31 Saddles example: unsimplified interaction Slide 31

32 Saddles example: quadrant interaction Slide 32

33 Slide 33

34 Higher dimensions Why stop with 2 dimensions Fast and parsimonious way of detecting complex signals and model corrections Can be used to guide GLM refinement or used in own right Underwriting rules Slide 34

35 Saddles - model comparison 14% 200,000 13% 180, ,000 12% 140,000 11% 120,000 10% 100,000 9% 80,000 60,000 8% 40,000 7% 20,000 6% 70% 80% 90% 92% 94% 96% 98% 100% 102% 104% 106% 108% 110% 120% 130% 0 Weight Saddle Original Slide 35

36 Saddles - model comparison 14% 200,000 13% 180, ,000 12% 140,000 11% 120,000 10% 100,000 9% 80,000 60,000 8% 40,000 7% 20,000 6% 70% 80% 90% 92% 94% 96% 98% 100% 102% 104% 106% 108% 110% 120% 130% 0 Weight Observed Saddle Original Slide 36

37 Saddles - model comparison 10.0% 200, % 9.0% 8.5% 180, , , , % 100, % 7.0% 6.5% 80,000 60,000 40,000 20, % % 70.0% 90.0% 94.0% 98.0% 102.0% 106.0% 110.0% 130.0% 150.0% Weight Observed Saddle Original Slide 37

38 GLM residuals What if there is still unexplained power in the GLM residuals and why? Limited list of explanatory variables Missing interactions Poor decisions in factor selection Other? Slide 38

39 Mining GLM residuals Supervised machine learning tools can mine residuals from GLM and develop algorithms that group risks with similar residuals Results can form basis of a single correction factor to the GLM Potential disadvantages of this approach Hard to distinguish signal from noise in the residual when no basis for evaluating residual Prone to overfitting Difficult to understand and explain effect on model, which can lead to implementation issues Slide 39

40 Mining GLM residuals Slide 40

41 An alternative approach to mine GLM residuals Identify additional signal in residual that can be attributed to a particular high-dimension factor for example, Geography (zip code) Vehicle (VIN) Worker compensation SIC code Any factor requiring a large number of small units as building blocks and many building blocks have little or no claims experience EMB uses a Bayesian-based data mining method that utilizes the signal in the residuals to correct the GLM results for that high-dimension factor This type of focused correction factor is easier to control and understand Slide 41

42 Mining GLM residuals in controlled manner Geography example Goal is to remove the noise and find the signal Actual Experience Signal Explained Unexplained Noise Non-Geographic Geographic Non- Geographic Geographic Slide 42

43 Mining GLM residuals in controlled manner Geography example Goal is to find the geographic signal Actual Experience Signal Explained Unexplained Noise Non-Geographic Geographic Non- Geographic Geographic Slide 43

44 Mining GLM residuals in controlled manner Geography example GLM Factors GLM Residual Operator Chars Vehicle Chars Policy Chars (xterr) Geophysical Geo- Other Geodemo Non- Geo Signal Geo Signal Noise Slide 44 Explained Geo Risk

45 Mining GLM residuals in controlled manner Geography example Check the residuals to determine if there is any unexplained systematic effect Smoothing used to find signal Correction factors applied to geo estimates to determine best estimate Slide 45

46 Mining GLM residuals in controlled manner Geography example Operator Chars Vehicle Chars GLM Factors Policy Chars (xterr) Geophysical Geo- Other Unexplained Signal & Noise Geodemo Non- Geo Signal Geo Signal Noise Low $ Slide 46 Expected Geo Risk High $

47 Mining GLM residuals in controlled manner Geography example Assess whether new territorial groupings follow observed data well (ideally on hold-out data) Time Period Selector Node , , , , Node ,000 Weight , , , Smoothing SELECTED (40) Band 0 Slide 47

48 Mining GLM residuals in controlled manner Vehicle example Initial Estimator Vehicle Risk Estimator Vehicle Symbols Symbol Relativities Standardized fitted value from GLM Spatially corrected standardized fitted value Clustered to form symbols Relativities calculated for each symbol Slide 48

49 Mining GLM residuals in controlled manner Vehicle example Initial Estimator: Base Price Curb Weight Engine Size Model Year Airbag Features Theft Deterrents Vehicle Component Relativities Vehicle characteristics are used as proxies for VIN These are standardized for nonvehicle factors (e.g., age of driver) Slide 49

50 Mining GLM residuals in controlled manner Vehicle example Smooth residuals across neighbor vehicles Slide 50

51 Mining GLM residuals in controlled manner Vehicle example Vehicle estimator is clustered into new symbols Modeled Vehicle Signal Spatial Correction Base Price Curb Weight Engine Size Model Year Airbag Features Theft Deterrents Smoothed Residual Low $ Vehicle Component Relativities High $ Slide 51

52 Mining GLM residuals in controlled manner Vehicle example Slide 52 Technique has proven very successful based on proper hold-out sampling validation

53 Summary Model building tools build models. Machine learning tools explore data. GLMs are a powerful and practical multivariate method for insurance analysis, particularly ratemaking. Model-building in general can be improved by following best practices and enhancements. Machine learning tools can improve the GLM process at every stage: data preparation, variable reduction, interaction detection, variable simplification, model validation. Data mining methods can squeeze additional predictive power out of GLM residuals. Rather than mining residuals on a broad basis, consider mining residuals and correcting a particular high-dimension factor easier to control easier to understand Slide 53

54 Contact us EMB El Camino Real Suite 150 San Diego, California T +1 (858) F +1 (858) Slide 54

55 EMB refers to the software and consulting practice carried on by EMB America LLC, EMB Software Management LLP and their directly or indirectly affiliated firms or entities, partnerships or joint ventures, each of which is a separate and distinct legal entity. Slide 55

PL-2 The Matrix Inverted: A Primer in GLM Theory

PL-2 The Matrix Inverted: A Primer in GLM Theory PL-2 The Matrix Inverted: A Primer in GLM Theory 2005 CAS Seminar on Ratemaking Claudine Modlin, FCAS Watson Wyatt Insurance & Financial Services, Inc W W W. W A T S O N W Y A T T. C O M / I N S U R A

More information

Content Preview. Multivariate Methods. There are several theoretical stumbling blocks to overcome to develop rating relativities

Content Preview. Multivariate Methods. There are several theoretical stumbling blocks to overcome to develop rating relativities Introduction to Ratemaking Multivariate Methods March 15, 2010 Jonathan Fox, FCAS, GuideOne Mutual Insurance Group Content Preview 1. Theoretical Issues 2. One-way Analysis Shortfalls 3. Multivariate Methods

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Innovation and Regional Growth in the European Union

Innovation and Regional Growth in the European Union Riccardo Crescenzi Andres Rodriguez-Pose Innovation and Regional Growth in the European Union Springer Contents 1 Introduction 1 2 Theoretical Framework: A Spatial Perspective On Innovation and the Genesis

More information

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University

Chap 1. Overview of Statistical Learning (HTF, , 2.9) Yongdai Kim Seoul National University Chap 1. Overview of Statistical Learning (HTF, 2.1-2.6, 2.9) Yongdai Kim Seoul National University 0. Learning vs Statistical learning Learning procedure Construct a claim by observing data or using logics

More information

A Practitioner s Guide to Generalized Linear Models

A Practitioner s Guide to Generalized Linear Models A Practitioners Guide to Generalized Linear Models Background The classical linear models and most of the minimum bias procedures are special cases of generalized linear models (GLMs). GLMs are more technically

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Delta Boosting Machine and its application in Actuarial Modeling Simon CK Lee, Sheldon XS Lin KU Leuven, University of Toronto

Delta Boosting Machine and its application in Actuarial Modeling Simon CK Lee, Sheldon XS Lin KU Leuven, University of Toronto Delta Boosting Machine and its application in Actuarial Modeling Simon CK Lee, Sheldon XS Lin KU Leuven, University of Toronto This presentation has been prepared for the Actuaries Institute 2015 ASTIN

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2015 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

More information

GLM I An Introduction to Generalized Linear Models

GLM I An Introduction to Generalized Linear Models GLM I An Introduction to Generalized Linear Models CAS Ratemaking and Product Management Seminar March Presented by: Tanya D. Havlicek, ACAS, MAAA ANTITRUST Notice The Casualty Actuarial Society is committed

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients What our model needs to do regression Usually, we are not just trying to explain observed data We want to uncover meaningful trends And predict future observations Our questions then are Is β" a good estimate

More information

Machine Learning Basics: Maximum Likelihood Estimation

Machine Learning Basics: Maximum Likelihood Estimation Machine Learning Basics: Maximum Likelihood Estimation Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics 1. Learning

More information

Terminology for Statistical Data

Terminology for Statistical Data Terminology for Statistical Data variables - features - attributes observations - cases (consist of multiple values) In a standard data matrix, variables or features correspond to columns observations

More information

PATTERN RECOGNITION AND MACHINE LEARNING

PATTERN RECOGNITION AND MACHINE LEARNING PATTERN RECOGNITION AND MACHINE LEARNING Chapter 1. Introduction Shuai Huang April 21, 2014 Outline 1 What is Machine Learning? 2 Curve Fitting 3 Probability Theory 4 Model Selection 5 The curse of dimensionality

More information

Data Mining. Supervised Learning. Hamid Beigy. Sharif University of Technology. Fall 1396

Data Mining. Supervised Learning. Hamid Beigy. Sharif University of Technology. Fall 1396 Data Mining Supervised Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Data Mining Fall 1396 1 / 15 Table of contents 1 Introduction 2 Supervised

More information

Forecasting Data Streams: Next Generation Flow Field Forecasting

Forecasting Data Streams: Next Generation Flow Field Forecasting Forecasting Data Streams: Next Generation Flow Field Forecasting Kyle Caudle South Dakota School of Mines & Technology (SDSMT) kyle.caudle@sdsmt.edu Joint work with Michael Frey (Bucknell University) and

More information

Machine Learning (CS 567) Lecture 2

Machine Learning (CS 567) Lecture 2 Machine Learning (CS 567) Lecture 2 Time: T-Th 5:00pm - 6:20pm Location: GFS118 Instructor: Sofus A. Macskassy (macskass@usc.edu) Office: SAL 216 Office hours: by appointment Teaching assistant: Cheol

More information

Chart types and when to use them

Chart types and when to use them APPENDIX A Chart types and when to use them Pie chart Figure illustration of pie chart 2.3 % 4.5 % Browser Usage for April 2012 18.3 % 38.3 % Internet Explorer Firefox Chrome Safari Opera 35.8 % Pie chart

More information

Bayesian ensemble learning of generative models

Bayesian ensemble learning of generative models Chapter Bayesian ensemble learning of generative models Harri Valpola, Antti Honkela, Juha Karhunen, Tapani Raiko, Xavier Giannakopoulos, Alexander Ilin, Erkki Oja 65 66 Bayesian ensemble learning of generative

More information

Regression I: Mean Squared Error and Measuring Quality of Fit

Regression I: Mean Squared Error and Measuring Quality of Fit Regression I: Mean Squared Error and Measuring Quality of Fit -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD 1 The Setup Suppose there is a scientific problem we are interested in solving

More information

An Introduction to Statistical and Probabilistic Linear Models

An Introduction to Statistical and Probabilistic Linear Models An Introduction to Statistical and Probabilistic Linear Models Maximilian Mozes Proseminar Data Mining Fakultät für Informatik Technische Universität München June 07, 2017 Introduction In statistical learning

More information

Modeling Spatial Relationships Using Regression Analysis

Modeling Spatial Relationships Using Regression Analysis Esri International User Conference San Diego, California Technical Workshops July 24, 2012 Modeling Spatial Relationships Using Regression Analysis Lauren M. Scott, PhD Lauren Rosenshein Bennett, MS Answering

More information

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar

Support Vector Machines. Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Data Mining Support Vector Machines Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar 02/03/2018 Introduction to Data Mining 1 Support Vector Machines Find a linear hyperplane

More information

Analysis of the Performance of AdaBoost.M2 for the Simulated Digit-Recognition-Example

Analysis of the Performance of AdaBoost.M2 for the Simulated Digit-Recognition-Example Analysis of the Performance of AdaBoost.M2 for the Simulated Digit-Recognition-Example Günther Eibl and Karl Peter Pfeiffer Institute of Biostatistics, Innsbruck, Austria guenther.eibl@uibk.ac.at Abstract.

More information

Forecasting with Expert Opinions

Forecasting with Expert Opinions CS 229 Machine Learning Forecasting with Expert Opinions Khalid El-Awady Background In 2003 the Wall Street Journal (WSJ) introduced its Monthly Economic Forecasting Survey. Each month the WSJ polls between

More information

Modeling Spatial Relationships using Regression Analysis

Modeling Spatial Relationships using Regression Analysis Esri International User Conference San Diego, CA Technical Workshops July 2011 Modeling Spatial Relationships using Regression Analysis Lauren M. Scott, PhD Lauren Rosenshein, MS Mark V. Janikas, PhD Answering

More information

From statistics to data science. BAE 815 (Fall 2017) Dr. Zifei Liu

From statistics to data science. BAE 815 (Fall 2017) Dr. Zifei Liu From statistics to data science BAE 815 (Fall 2017) Dr. Zifei Liu Zifeiliu@ksu.edu Why? How? What? How much? How many? Individual facts (quantities, characters, or symbols) The Data-Information-Knowledge-Wisdom

More information

Ratemaking with a Copula-Based Multivariate Tweedie Model

Ratemaking with a Copula-Based Multivariate Tweedie Model with a Copula-Based Model joint work with Xiaoping Feng and Jean-Philippe Boucher University of Wisconsin - Madison CAS RPM Seminar March 10, 2015 1 / 18 Outline 1 2 3 4 5 6 2 / 18 Insurance Claims Two

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition

CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition CLUe Training An Introduction to Machine Learning in R with an example from handwritten digit recognition Ad Feelders Universiteit Utrecht Department of Information and Computing Sciences Algorithmic Data

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 21, 2015 Announcements TA Monisha s office hour has changed to Thursdays 10-12pm, 462WVH (the same

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

Lecture 3: Statistical Decision Theory (Part II)

Lecture 3: Statistical Decision Theory (Part II) Lecture 3: Statistical Decision Theory (Part II) Hao Helen Zhang Hao Helen Zhang Lecture 3: Statistical Decision Theory (Part II) 1 / 27 Outline of This Note Part I: Statistics Decision Theory (Classical

More information

Machine Learning. Lecture 9: Learning Theory. Feng Li.

Machine Learning. Lecture 9: Learning Theory. Feng Li. Machine Learning Lecture 9: Learning Theory Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Why Learning Theory How can we tell

More information

MLPR: Logistic Regression and Neural Networks

MLPR: Logistic Regression and Neural Networks MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition Amos Storkey Amos Storkey MLPR: Logistic Regression and Neural Networks 1/28 Outline 1 Logistic Regression 2 Multi-layer

More information

Spatial Statistics A Framework for Analyzing Geographically Referenced Data in Insurance Ratemaking

Spatial Statistics A Framework for Analyzing Geographically Referenced Data in Insurance Ratemaking Spatial Statistics A Framework for Analyzing Geographically Referenced Data in Insurance Ratemaking Satadru Sengupta Personal Market Liberty Mutual Group CAS Ratemaking & Product Management Seminar Chicago

More information

Outline. MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition. Which is the correct model? Recap.

Outline. MLPR: Logistic Regression and Neural Networks Machine Learning and Pattern Recognition. Which is the correct model? Recap. Outline MLPR: and Neural Networks Machine Learning and Pattern Recognition 2 Amos Storkey Amos Storkey MLPR: and Neural Networks /28 Recap Amos Storkey MLPR: and Neural Networks 2/28 Which is the correct

More information

Experimental Design and Data Analysis for Biologists

Experimental Design and Data Analysis for Biologists Experimental Design and Data Analysis for Biologists Gerry P. Quinn Monash University Michael J. Keough University of Melbourne CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv I I Introduction 1 1.1

More information

Source localization in an ocean waveguide using supervised machine learning

Source localization in an ocean waveguide using supervised machine learning Source localization in an ocean waveguide using supervised machine learning Haiqiang Niu, Emma Reeves, and Peter Gerstoft Scripps Institution of Oceanography, UC San Diego Part I Localization on Noise09

More information

An Introduction to Mplus and Path Analysis

An Introduction to Mplus and Path Analysis An Introduction to Mplus and Path Analysis PSYC 943: Fundamentals of Multivariate Modeling Lecture 10: October 30, 2013 PSYC 943: Lecture 10 Today s Lecture Path analysis starting with multivariate regression

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows Kn-Nearest

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Matrix Data: Prediction Instructor: Yizhou Sun yzsun@ccs.neu.edu September 14, 2014 Today s Schedule Course Project Introduction Linear Regression Model Decision Tree 2 Methods

More information

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated Fall 3 Computer Vision Overview of Statistical Tools Statistical Inference Haibin Ling Observation inference Decision Prior knowledge http://www.dabi.temple.edu/~hbling/teaching/3f_5543/index.html Bayesian

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Article from Predictive Analytics and Futurism July 2016 Issue 13 Regression and Classification: A Deeper Look By Jeff Heaton Classification and regression are the two most common forms of models fitted

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining MLE and MAP Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1 Admin Assignment 4: Due tonight. Assignment 5: Will be released

More information

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul Generative Learning INFO-4604, Applied Machine Learning University of Colorado Boulder November 29, 2018 Prof. Michael Paul Generative vs Discriminative The classification algorithms we have seen so far

More information

Contents. Preface to the second edition. Preface to the fírst edition. Acknowledgments PART I PRELIMINARIES

Contents. Preface to the second edition. Preface to the fírst edition. Acknowledgments PART I PRELIMINARIES Contents Foreword Preface to the second edition Preface to the fírst edition Acknowledgments xvll xix xxi xxiii PART I PRELIMINARIES CHAPTER 1 Introduction 3 1.1 What Is Data Mining? 3 1.2 Where Is Data

More information

Neural networks (not in book)

Neural networks (not in book) (not in book) Another approach to classification is neural networks. were developed in the 1980s as a way to model how learning occurs in the brain. There was therefore wide interest in neural networks

More information

Anomaly Detection. Jing Gao. SUNY Buffalo

Anomaly Detection. Jing Gao. SUNY Buffalo Anomaly Detection Jing Gao SUNY Buffalo 1 Anomaly Detection Anomalies the set of objects are considerably dissimilar from the remainder of the data occur relatively infrequently when they do occur, their

More information

PATTERN CLASSIFICATION

PATTERN CLASSIFICATION PATTERN CLASSIFICATION Second Edition Richard O. Duda Peter E. Hart David G. Stork A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2016 BASEL. Logistic Regression. Pattern Recognition 2016 Sandro Schönborn University of Basel Logistic Regression Pattern Recognition 2016 Sandro Schönborn University of Basel Two Worlds: Probabilistic & Algorithmic We have seen two conceptual approaches to classification: data class density estimation

More information

Machine Learning And Applications: Supervised Learning-SVM

Machine Learning And Applications: Supervised Learning-SVM Machine Learning And Applications: Supervised Learning-SVM Raphaël Bournhonesque École Normale Supérieure de Lyon, Lyon, France raphael.bournhonesque@ens-lyon.fr 1 Supervised vs unsupervised learning Machine

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Prediction Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict the

More information

Probabilistic Machine Learning. Industrial AI Lab.

Probabilistic Machine Learning. Industrial AI Lab. Probabilistic Machine Learning Industrial AI Lab. Probabilistic Linear Regression Outline Probabilistic Classification Probabilistic Clustering Probabilistic Dimension Reduction 2 Probabilistic Linear

More information

Decision Tree Learning Lecture 2

Decision Tree Learning Lecture 2 Machine Learning Coms-4771 Decision Tree Learning Lecture 2 January 28, 2008 Two Types of Supervised Learning Problems (recap) Feature (input) space X, label (output) space Y. Unknown distribution D over

More information

Uncertainty and Graphical Analysis

Uncertainty and Graphical Analysis Uncertainty and Graphical Analysis Introduction Two measures of the quality of an experimental result are its accuracy and its precision. An accurate result is consistent with some ideal, true value, perhaps

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

Making Our Cities Safer: A Study In Neighbhorhood Crime Patterns

Making Our Cities Safer: A Study In Neighbhorhood Crime Patterns Making Our Cities Safer: A Study In Neighbhorhood Crime Patterns Aly Kane alykane@stanford.edu Ariel Sagalovsky asagalov@stanford.edu Abstract Equipped with an understanding of the factors that influence

More information

Introduction to Machine Learning and Cross-Validation

Introduction to Machine Learning and Cross-Validation Introduction to Machine Learning and Cross-Validation Jonathan Hersh 1 February 27, 2019 J.Hersh (Chapman ) Intro & CV February 27, 2019 1 / 29 Plan 1 Introduction 2 Preliminary Terminology 3 Bias-Variance

More information

Optimization Methods for Machine Learning (OMML)

Optimization Methods for Machine Learning (OMML) Optimization Methods for Machine Learning (OMML) 2nd lecture (2 slots) Prof. L. Palagi 16/10/2014 1 What is (not) Data Mining? By Namwar Rizvi - Ad Hoc Query: ad Hoc queries just examines the current data

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Data Mining. Preamble: Control Application. Industrial Researcher s Approach. Practitioner s Approach. Example. Example. Goal: Maintain T ~Td

Data Mining. Preamble: Control Application. Industrial Researcher s Approach. Practitioner s Approach. Example. Example. Goal: Maintain T ~Td Data Mining Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 Preamble: Control Application Goal: Maintain T ~Td Tel: 319-335 5934 Fax: 319-335 5669 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Ensembles Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Introduction to Machine Learning. Regression. Computer Science, Tel-Aviv University,

Introduction to Machine Learning. Regression. Computer Science, Tel-Aviv University, 1 Introduction to Machine Learning Regression Computer Science, Tel-Aviv University, 2013-14 Classification Input: X Real valued, vectors over real. Discrete values (0,1,2,...) Other structures (e.g.,

More information

The Dual of the Maximum Likelihood Method

The Dual of the Maximum Likelihood Method Open Journal of Statistics, 06, 6, 86-93 Published Online February 06 in SciRes. http://www.scirp.org/journal/ojs http://dx.doi.org/0.436/ojs.06.606 The Dual of the Maximum Likelihood Method Quirino Paris

More information

Models of collective inference

Models of collective inference Models of collective inference Laurent Massoulié (Microsoft Research-Inria Joint Centre) Mesrob I. Ohannessian (University of California, San Diego) Alexandre Proutière (KTH Royal Institute of Technology)

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction In this book we will be concerned with supervised learning, which is the problem of learning input-output mappings from empirical data (the training dataset). Depending on the characteristics

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems - Machine Learning Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning last change November 26, 2014 Ute Schmid (CogSys,

More information

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition Data Mining Classification: Basic Concepts and Techniques Lecture Notes for Chapter 3 by Tan, Steinbach, Karpatne, Kumar 1 Classification: Definition Given a collection of records (training set ) Each

More information

Exploratory Spatial Data Analysis (ESDA)

Exploratory Spatial Data Analysis (ESDA) Exploratory Spatial Data Analysis (ESDA) VANGHR s method of ESDA follows a typical geospatial framework of selecting variables, exploring spatial patterns, and regression analysis. The primary software

More information

1 Bewley Economies with Aggregate Uncertainty

1 Bewley Economies with Aggregate Uncertainty 1 Bewley Economies with Aggregate Uncertainty Sofarwehaveassumedawayaggregatefluctuations (i.e., business cycles) in our description of the incomplete-markets economies with uninsurable idiosyncratic risk

More information

Learning Equilibrium as a Generalization of Learning to Optimize

Learning Equilibrium as a Generalization of Learning to Optimize Learning Equilibrium as a Generalization of Learning to Optimize Dov Monderer and Moshe Tennenholtz Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Haifa 32000,

More information

Linear Regression (continued)

Linear Regression (continued) Linear Regression (continued) Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 6, 2017 1 / 39 Outline 1 Administration 2 Review of last lecture 3 Linear regression

More information

STATS216v Introduction to Statistical Learning Stanford University, Summer Midterm Exam (Solutions) Duration: 1 hours

STATS216v Introduction to Statistical Learning Stanford University, Summer Midterm Exam (Solutions) Duration: 1 hours Instructions: STATS216v Introduction to Statistical Learning Stanford University, Summer 2017 Remember the university honor code. Midterm Exam (Solutions) Duration: 1 hours Write your name and SUNet ID

More information

Machine Learning, Midterm Exam

Machine Learning, Midterm Exam 10-601 Machine Learning, Midterm Exam Instructors: Tom Mitchell, Ziv Bar-Joseph Wednesday 12 th December, 2012 There are 9 questions, for a total of 100 points. This exam has 20 pages, make sure you have

More information

A Bayesian Perspective on Residential Demand Response Using Smart Meter Data

A Bayesian Perspective on Residential Demand Response Using Smart Meter Data A Bayesian Perspective on Residential Demand Response Using Smart Meter Data Datong-Paul Zhou, Maximilian Balandat, and Claire Tomlin University of California, Berkeley [datong.zhou, balandat, tomlin]@eecs.berkeley.edu

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Chemometrics: Classification of spectra

Chemometrics: Classification of spectra Chemometrics: Classification of spectra Vladimir Bochko Jarmo Alander University of Vaasa November 1, 2010 Vladimir Bochko Chemometrics: Classification 1/36 Contents Terminology Introduction Big picture

More information

The prediction of house price

The prediction of house price 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

An Introduction to Path Analysis

An Introduction to Path Analysis An Introduction to Path Analysis PRE 905: Multivariate Analysis Lecture 10: April 15, 2014 PRE 905: Lecture 10 Path Analysis Today s Lecture Path analysis starting with multivariate regression then arriving

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

y(x) = x w + ε(x), (1)

y(x) = x w + ε(x), (1) Linear regression We are ready to consider our first machine-learning problem: linear regression. Suppose that e are interested in the values of a function y(x): R d R, here x is a d-dimensional vector-valued

More information

10-701/ Machine Learning - Midterm Exam, Fall 2010

10-701/ Machine Learning - Midterm Exam, Fall 2010 10-701/15-781 Machine Learning - Midterm Exam, Fall 2010 Aarti Singh Carnegie Mellon University 1. Personal info: Name: Andrew account: E-mail address: 2. There should be 15 numbered pages in this exam

More information

CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes

CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes CSL302/612 Artificial Intelligence End-Semester Exam 120 Minutes Name: Roll Number: Please read the following instructions carefully Ø Calculators are allowed. However, laptops or mobile phones are not

More information

Qualifying Exam in Machine Learning

Qualifying Exam in Machine Learning Qualifying Exam in Machine Learning October 20, 2009 Instructions: Answer two out of the three questions in Part 1. In addition, answer two out of three questions in two additional parts (choose two parts

More information

Relevance Vector Machines for Earthquake Response Spectra

Relevance Vector Machines for Earthquake Response Spectra 2012 2011 American American Transactions Transactions on on Engineering Engineering & Applied Applied Sciences Sciences. American Transactions on Engineering & Applied Sciences http://tuengr.com/ateas

More information

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine CS 484 Data Mining Classification 7 Some slides are from Professor Padhraic Smyth at UC Irvine Bayesian Belief networks Conditional independence assumption of Naïve Bayes classifier is too strong. Allows

More information