Lucas Lehmer primality test - Wikipedia, the free encyclopedia

Size: px
Start display at page:

Download "Lucas Lehmer primality test - Wikipedia, the free encyclopedia"

Transcription

1 Lucas Lehmer primality test From Wikipedia, the free encyclopedia In mathematics, the Lucas Lehmer test (LLT) is a primality test for Mersenne numbers. The test was originally developed by Edouard Lucas in 1856, [1] and subsequently improved by Lucas in 1878 and Derrick Henry Lehmer in the 1930s. Contents 1 The test 2 Time complexity 3 Examples 4 Proof of correctness 4.1 Sufficiency 4.2 Necessity 5 Applications 6 See also 7 References 8 External links The test The Lucas Lehmer test works as follows. Let M p = 2 p 1 be the Mersenne number to test with p an odd prime (because p is exponentially smaller than M p, we can use a simple algorithm like trial division for establishing its primality). Define a sequence {s i } for all i 0 by The first few terms of this sequence are 4, 14, 194, 37634,... (sequence A ( in OEIS). Then M p is prime iff The number s p 2 mod M p is called the Lucas Lehmer residue of p. (Some authors equivalently set s 1 = 4 and test s p 1 mod M p ). In pseudocode, the test might be written: // Determine if M p = 2 p 1 is prime Lucas Lehmer(p) var s = 4 var M = 2 p 1 repeat p 2 times: s = ((s s) 2) mod M 1 of 7 8/17/11 9:52 AM

2 if s = 0 return PRIME else return COMPOSITE By performing the mod M at each iteration, we ensure that all intermediate results are at most p bits (otherwise the number of bits would double each iteration). It is exactly the same strategy employed in modular exponentiation. Time complexity In the algorithm as written above, there are two expensive operations during each iteration: the multiplication s s, and the mod M operation. The mod M operation can be made particularly efficient on standard binary computers by observing the following simple property: In other words, if we take the least significant n bits of k, and add the remaining bits of k, and then do this repeatedly until at most n bits remain, we can compute the remainder after dividing k by the Mersenne number 2 n 1 without using division. For example: 916 = = = = = = = 17. Moreover, since s s will never exceed M 2 < 2 2p, this simple technique converges in at most 2 p-bit additions, which can be done in linear time. As a small exceptional case, the above algorithm may produce 2 n 1 for a multiple of the modulus, rather than the correct value of zero; this should be accounted for. With the modulus out of the way, the asymptotic complexity of the algorithm depends only on the multiplication algorithm used to square s at each step. The simple "grade-school" algorithm for multiplication requires O(p 2 ) bit-level or word-level operations to square a p-bit number, and since we do this O(p) times, the total time complexity is O(p 3 ). A more efficient multiplication method, the Schönhage Strassen algorithm based on the Fast Fourier transform, requires O(p log p log log p) time to square a p-bit number, reducing the complexity to O(p 2 log p log log p) or Õ(p 2 ). [2]. Currently the most efficient known multiplication algorithm, Fürer's algorithm, needs time to multiply two p-bit numbers. By comparison, the most efficient randomized primality test for general integers, the Miller Rabin primality test, takes O(k p 2 log p log log p) bit operations using FFT multiplication, where k is the number of iterations and is related to the error rate. This is a constant factor difference for constant k, but in practice the cost of doing many iterations and other differences lead to worse performance for Miller Rabin. The most efficient deterministic primality test for general integers, the AKS primality test, requires Õ(p 6 ) bit 2 of 7 8/17/11 9:52 AM

3 operations in its best known variant and is dramatically slower in practice. Examples Suppose we wish to verify that M 3 = 7 is prime using the Lucas Lehmer test. We start out with s set to 4 and then update it 3 2 = 1 time, taking the results mod 7: s ((4 4) 2) mod 7 = 0 Because we end with s set to zero, M 3 is prime. On the other hand, M 11 = 2047 = is not prime. To show this, we start with s set to 4 and update it 11 2 = 9 times, taking the results mod 2047: s ((4 4) 2) mod 2047 = 14 s ((14 14) 2) mod 2047 = 194 s (( ) 2) mod 2047 = 788 s (( ) 2) mod 2047 = 701 s (( ) 2) mod 2047 = 119 s (( ) 2) mod 2047 = 1877 s (( ) 2) mod 2047 = 240 s (( ) 2) mod 2047 = 282 s (( ) 2) mod 2047 = 1736 Because s is not zero, M 11 =2047 is not prime. Notice that we learn nothing about the factors of 2047, only its Lucas Lehmer residue, Proof of correctness Lehmer's original proof of the correctness of this test is complex, so we'll depend upon more recent refinements. Recall the definition: Then our theorem is that M p is prime iff We begin by noting that is a recurrence relation with a closed-form solution. Define and ; then we can verify by induction that for all i: 3 of 7 8/17/11 9:52 AM

4 where the last step follows from. We will use this in both parts. Sufficiency In this direction we wish to show that implies that M p is prime. We relate a straightforward proof exploiting elementary group theory given by J. W. Bruce [3] as related by Jason Wojciechowski. [4] Suppose. Then for some integer k, and: Now suppose M p is composite, and let q be the smallest prime factor of M p. Since Mersenne numbers are odd, we have q > 2. Define the set with q 2 elements, where is the integers mod q, a finite field (in the language of ring theory X is the quotient of the univariate polynomial ring by the ideal generated by (T 2 3)). The multiplication operation in X is defined by: Since q > 2, and are in X (in fact are in X, but by abuse of language we identify and with their images in X under the natural ring homomorphism from to X which sends the square root of 3 to T). Any product of two numbers in X is in X, but it's not a group under multiplication because not every element x has an inverse y such that xy = 1 (in fact X is a ring and the set of non-zero elements of X is a group if and only if does not contain a square root of 3). If we consider only the elements that have inverses, we get a group X* of size at most q 2 1 (since 0 has no inverse). Now, since, and, we have in X, which by equation (1) gives. Squaring both sides gives, showing that ω is invertible with inverse and so lies in X*, and moreover has an order dividing 2 p. In fact the order must equal 2 p, since and so the order does not divide 2 p 1. Since the order of an element is at most the order (size) of the group, we conclude that. But since q is the smallest prime factor of the composite M p, we must have, yielding the contradiction 2 p < 2 p 1. So M p is prime. 4 of 7 8/17/11 9:52 AM

5 Necessity In the other direction, we suppose M p is prime and show. We rely on a simplification of a proof by Öystein J. R. Ödseth. [5] First, notice that 3 is a quadratic non-residue mod M p, since 2 p 1 for odd p > 1 only takes on the value 7 mod 12, and so the Legendre symbol properties tell us (3 M p ) is 1. Euler's criterion then gives us: On the other hand, 2 is a quadratic residue mod M p, since. Euler's criterion again gives: and so Next, define, and define X* similarly as before as the multiplicative group of. We will use the following lemmas: (from Proofs of Fermat's little theorem#proof_using_the_binomial_theorem) for every integer a (Fermat's little theorem) Then, in the group X* we have: We chose σ such that ω = (6 + σ) 2 / 24. Consequently, we can use this to compute group X*: in the where we use the fact that 5 of 7 8/17/11 9:52 AM

6 Since, all that remains is to multiply both sides of this equation by and use : Since s p 2 is an integer and is zero in X*, it is also zero mod M p. Applications The Lucas Lehmer test is the primality test used by the Great Internet Mersenne Prime Search to locate large primes, and has been successful in locating many of the largest primes known to date. [6] The test is considered valuable because it can provably test a very large number for primality within affordable time and, in contrast to the equivalently fast Pépin's test for any Fermat number, can be tried on a large search space of numbers with the required form before reaching computational limits. See also References Mersenne's conjecture Lucas Lehmer Riesel test GIMPS 1. ^ The Largest Known Prime by Year: A Brief History ( 2. ^ Colquitt, W. N.; Welsh, L., Jr. (1991), "A New Mersenne Prime", Mathematics of Computation 56 (194): , "The use of the FFT speeds up the asymptotic time for the Lucas Lehmer test for M p from O(p 3 ) to O(p 2 log p log log p) bit operations." 3. ^ J. W. Bruce (1993). "A Really Trivial Proof of the Lucas Lehmer Test". The American Mathematical Monthly 100 (4): ^ Jason Wojciechowski. Mersenne Primes, An Introduction and Overview ( /math/smithnum/project.ps) ^ Öystein J. R. Ödseth. A note on primality tests for N = h 2 n 1 ( /papers/luc.pdf). Department of Mathematics, University of Bergen. 6. ^ What are Mersenne primes? How are they useful? ( Frequently Asked Questions. GIMPS Home Page. Crandall, Richard; Pomerance, Carl (2001), "Section 4.2.1: The Lucas Lehmer test", Prime Numbers: A Computational Perspective (1st ed.), Berlin: Springer, p , ISBN External links Weisstein, Eric W., "Lucas Lehmer test ( 6 of 7 8/17/11 9:52 AM

7 " from MathWorld. GIMPS (The Great Internet Mersenne Prime Search) ( A proof of Lucas Lehmer Reix test (for Fermat numbers) ( Lucas Lehmer test ( at MersenneWiki Retrieved from " Categories: Primality tests This page was last modified on 28 July 2011 at 16:33. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of use for details. Wikipedia is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. 7 of 7 8/17/11 9:52 AM

PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION. Predrag Terzic Podgorica, Montenegro

PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION. Predrag Terzic Podgorica, Montenegro PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION Predrag Terzic Podgorica, Montenegro pedja.terzic@hotmail.com Abstract. We present deterministic primality test for Fermat numbers, F

More information

Corollary 4.2 (Pepin s Test, 1877). Let F k = 2 2k + 1, the kth Fermat number, where k 1. Then F k is prime iff 3 F k 1

Corollary 4.2 (Pepin s Test, 1877). Let F k = 2 2k + 1, the kth Fermat number, where k 1. Then F k is prime iff 3 F k 1 4. Primality testing 4.1. Introduction. Factorisation is concerned with the problem of developing efficient algorithms to express a given positive integer n > 1 as a product of powers of distinct primes.

More information

Fermat s Little Theorem. Fermat s little theorem is a statement about primes that nearly characterizes them.

Fermat s Little Theorem. Fermat s little theorem is a statement about primes that nearly characterizes them. Fermat s Little Theorem Fermat s little theorem is a statement about primes that nearly characterizes them. Theorem: Let p be prime and a be an integer that is not a multiple of p. Then a p 1 1 (mod p).

More information

Chapter 9 Mathematics of Cryptography Part III: Primes and Related Congruence Equations

Chapter 9 Mathematics of Cryptography Part III: Primes and Related Congruence Equations Chapter 9 Mathematics of Cryptography Part III: Primes and Related Congruence Equations Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9.1 Chapter 9 Objectives

More information

Applied Cryptography and Computer Security CSE 664 Spring 2018

Applied Cryptography and Computer Security CSE 664 Spring 2018 Applied Cryptography and Computer Security Lecture 12: Introduction to Number Theory II Department of Computer Science and Engineering University at Buffalo 1 Lecture Outline This time we ll finish the

More information

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0).

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0). LARGE PRIME NUMBERS 1. Fast Modular Exponentiation Given positive integers a, e, and n, the following algorithm quickly computes the reduced power a e % n. (Here x % n denotes the element of {0,, n 1}

More information

A Guide to Arithmetic

A Guide to Arithmetic A Guide to Arithmetic Robin Chapman August 5, 1994 These notes give a very brief resumé of my number theory course. Proofs and examples are omitted. Any suggestions for improvements will be gratefully

More information

Fibonacci Pseudoprimes and their Place in Primality Testing

Fibonacci Pseudoprimes and their Place in Primality Testing Fibonacci Pseudoprimes and their Place in Primality Testing Carly Allen December 2015 Abstract In this paper, we examine the basic building blocks of the Fibonacci Primality Theorem, as well as the theorem

More information

A Proof of the Lucas-Lehmer Test and its Variations by Using a Singular Cubic Curve

A Proof of the Lucas-Lehmer Test and its Variations by Using a Singular Cubic Curve 1 47 6 11 Journal of Integer Sequences, Vol. 1 (018), Article 18.6. A Proof of the Lucas-Lehmer Test and its Variations by Using a Singular Cubic Curve Ömer Küçüksakallı Mathematics Department Middle East

More information

A Few Primality Testing Algorithms

A Few Primality Testing Algorithms A Few Primality Testing Algorithms Donald Brower April 2, 2006 0.1 Introduction These notes will cover a few primality testing algorithms. There are many such, some prove that a number is prime, others

More information

p = This is small enough that its primality is easily verified by trial division. A candidate prime above 1000 p of the form p U + 1 is

p = This is small enough that its primality is easily verified by trial division. A candidate prime above 1000 p of the form p U + 1 is LARGE PRIME NUMBERS 1. Fermat Pseudoprimes Fermat s Little Theorem states that for any positive integer n, if n is prime then b n % n = b for b = 1,..., n 1. In the other direction, all we can say is that

More information

Chapter 6 Randomization Algorithm Theory WS 2012/13 Fabian Kuhn

Chapter 6 Randomization Algorithm Theory WS 2012/13 Fabian Kuhn Chapter 6 Randomization Algorithm Theory WS 2012/13 Fabian Kuhn Randomization Randomized Algorithm: An algorithm that uses (or can use) random coin flips in order to make decisions We will see: randomization

More information

Primes of the Form n! ± 1 and p ± 1

Primes of the Form n! ± 1 and p ± 1 mathematics of computation volume 38, number 158 april 1982, pages 639-643 Primes of the Form n! ± 1 and 2-3-5 p ± 1 By J. P. Buhler, R. E. Crandall and M. A. Penk Abstract. All primes less than 101000

More information

PRIMES is in P. Manindra Agrawal. NUS Singapore / IIT Kanpur

PRIMES is in P. Manindra Agrawal. NUS Singapore / IIT Kanpur PRIMES is in P Manindra Agrawal NUS Singapore / IIT Kanpur The Problem Given number n, test if it is prime efficiently. Efficiently = in time a polynomial in number of digits = (log n) c for some constant

More information

Primality testing: then and now

Primality testing: then and now Primality testing: then and now Mathematics Department Colloquium Boise State University, February 20, 2019 Carl Pomerance Dartmouth College (emeritus) University of Georgia (emeritus) In 1801, Carl Friedrich

More information

A SURVEY OF PRIMALITY TESTS

A SURVEY OF PRIMALITY TESTS A SURVEY OF PRIMALITY TESTS STEFAN LANCE Abstract. In this paper, we show how modular arithmetic and Euler s totient function are applied to elementary number theory. In particular, we use only arithmetic

More information

LARGE PRIME NUMBERS. In sum, Fermat pseudoprimes are reasonable candidates to be prime.

LARGE PRIME NUMBERS. In sum, Fermat pseudoprimes are reasonable candidates to be prime. LARGE PRIME NUMBERS 1. Fermat Pseudoprimes Fermat s Little Theorem states that for any positive integer n, if n is prime then b n % n = b for b = 1,..., n 1. In the other direction, all we can say is that

More information

On the Composite Terms in Sequence Generated from Mersenne-type Recurrence Relations

On the Composite Terms in Sequence Generated from Mersenne-type Recurrence Relations On the Composite Terms in Sequence Generated from Mersenne-type Recurrence Relations Pingyuan Zhou E-mail:zhoupingyuan49@hotmail.com Abstract We conjecture that there is at least one composite term in

More information

Mathematics of Cryptography

Mathematics of Cryptography UNIT - III Mathematics of Cryptography Part III: Primes and Related Congruence Equations 1 Objectives To introduce prime numbers and their applications in cryptography. To discuss some primality test algorithms

More information

Cryptography CS 555. Topic 18: RSA Implementation and Security. CS555 Topic 18 1

Cryptography CS 555. Topic 18: RSA Implementation and Security. CS555 Topic 18 1 Cryptography CS 555 Topic 18: RSA Implementation and Security Topic 18 1 Outline and Readings Outline RSA implementation issues Factoring large numbers Knowing (e,d) enables factoring Prime testing Readings:

More information

NUMBER THEORY. Anwitaman DATTA SCSE, NTU Singapore CX4024. CRYPTOGRAPHY & NETWORK SECURITY 2018, Anwitaman DATTA

NUMBER THEORY. Anwitaman DATTA SCSE, NTU Singapore CX4024. CRYPTOGRAPHY & NETWORK SECURITY 2018, Anwitaman DATTA NUMBER THEORY Anwitaman DATTA SCSE, NTU Singapore Acknowledgement: The following lecture slides are based on, and uses material from the text book Cryptography and Network Security (various eds) by William

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security Outline Quadratic residues Useful tests Digital Signatures CPSC 467b: Cryptography and Computer Security Lecture 14 Michael J. Fischer Department of Computer Science Yale University March 1, 2010 Michael

More information

The New Largest Known Prime is 2 p 1 With p = Who Cares? Sam Wagstaff Computer Sciences and Mathematics.

The New Largest Known Prime is 2 p 1 With p = Who Cares? Sam Wagstaff Computer Sciences and Mathematics. The New Largest Known Prime is 2 p 1 With p = 74207281. Who Cares? Sam Wagstaff Computer Sciences and Mathematics November 10, 2016 Earlier in 2016, Cooper, Woltman, Kurowski, Blosser and GIMPS found this

More information

Part II. Number Theory. Year

Part II. Number Theory. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 Paper 3, Section I 1G 70 Explain what is meant by an Euler pseudoprime and a strong pseudoprime. Show that 65 is an Euler

More information

Instructor: Bobby Kleinberg Lecture Notes, 25 April The Miller-Rabin Randomized Primality Test

Instructor: Bobby Kleinberg Lecture Notes, 25 April The Miller-Rabin Randomized Primality Test Introduction to Algorithms (CS 482) Cornell University Instructor: Bobby Kleinberg Lecture Notes, 25 April 2008 The Miller-Rabin Randomized Primality Test 1 Introduction Primality testing is an important

More information

Advanced Algorithms and Complexity Course Project Report

Advanced Algorithms and Complexity Course Project Report Advanced Algorithms and Complexity Course Project Report Eklavya Sharma (2014A7PS0130P) 26 November 2017 Abstract This document explores the problem of primality testing. It includes an analysis of the

More information

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald)

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald) 1 Euclid s Algorithm Euclid s Algorithm for computing the greatest common divisor belongs to the oldest known computing procedures

More information

Lecture 11 - Basic Number Theory.

Lecture 11 - Basic Number Theory. Lecture 11 - Basic Number Theory. Boaz Barak October 20, 2005 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that a divides b,

More information

THE SOLOVAY STRASSEN TEST

THE SOLOVAY STRASSEN TEST THE SOLOVAY STRASSEN TEST KEITH CONRAD 1. Introduction The Jacobi symbol satisfies many formulas that the Legendre symbol does, such as these: for a, b Z and odd m, n Z +, (1) a b mod n ( a n ) = ( b n

More information

Sums of Squares. Bianca Homberg and Minna Liu

Sums of Squares. Bianca Homberg and Minna Liu Sums of Squares Bianca Homberg and Minna Liu June 24, 2010 Abstract For our exploration topic, we researched the sums of squares. Certain properties of numbers that can be written as the sum of two squares

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand 1 Divisibility, prime numbers By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a

More information

Basic elements of number theory

Basic elements of number theory Cryptography Basic elements of number theory Marius Zimand By default all the variables, such as a, b, k, etc., denote integer numbers. Divisibility a 0 divides b if b = a k for some integer k. Notation

More information

SQUARE PATTERNS AND INFINITUDE OF PRIMES

SQUARE PATTERNS AND INFINITUDE OF PRIMES SQUARE PATTERNS AND INFINITUDE OF PRIMES KEITH CONRAD 1. Introduction Numerical data suggest the following patterns for prime numbers p: 1 mod p p = 2 or p 1 mod 4, 2 mod p p = 2 or p 1, 7 mod 8, 2 mod

More information

A Generalization of Wilson s Theorem

A Generalization of Wilson s Theorem A Generalization of Wilson s Theorem R. Andrew Ohana June 3, 2009 Contents 1 Introduction 2 2 Background Algebra 2 2.1 Groups................................. 2 2.2 Rings.................................

More information

Improving the Accuracy of Primality Tests by Enhancing the Miller-Rabin Theorem

Improving the Accuracy of Primality Tests by Enhancing the Miller-Rabin Theorem Improving the Accuracy of Primality Tests by Enhancing the Miller-Rabin Theorem Shyam Narayanan Fourth Annual MIT-PRIMES Conference Mentor: David Corwin Project Proposed by Stefan Wehmeier and Ben Hinkle

More information

Primality Proofs. Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute, IN

Primality Proofs. Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute, IN Primality Proofs Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809 ge@cs.indstate.edu July 30, 2013 Abstract There is an web site [1] that lists

More information

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p.

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. Chapter 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p. If n > 1

More information

Primality testing: then and now

Primality testing: then and now Seventy-five years of Mathematics of Computation ICERM, November 1 3, 2018 Primality testing: then and now Carl Pomerance Dartmouth College, Emeritus University of Georgia, Emeritus In 1801, Carl Friedrich

More information

Algorithms (II) Yu Yu. Shanghai Jiaotong University

Algorithms (II) Yu Yu. Shanghai Jiaotong University Algorithms (II) Yu Yu Shanghai Jiaotong University Chapter 1. Algorithms with Numbers Two seemingly similar problems Factoring: Given a number N, express it as a product of its prime factors. Primality:

More information

arxiv: v1 [math.gm] 6 Oct 2014

arxiv: v1 [math.gm] 6 Oct 2014 Prime number generation and factor elimination Vineet Kumar arxiv:1411.3356v1 [math.gm] 6 Oct 2014 Abstract. We have presented a multivariate polynomial function termed as factor elimination function,by

More information

Chapter 7 Randomization Algorithm Theory WS 2017/18 Fabian Kuhn

Chapter 7 Randomization Algorithm Theory WS 2017/18 Fabian Kuhn Chapter 7 Randomization Algorithm Theory WS 2017/18 Fabian Kuhn Randomization Randomized Algorithm: An algorithm that uses (or can use) random coin flips in order to make decisions We will see: randomization

More information

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2 8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 9 September 30, 2015 CPSC 467, Lecture 9 1/47 Fast Exponentiation Algorithms Number Theory Needed for RSA Elementary Number Theory

More information

Primality testing: variations on a theme of Lucas. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA

Primality testing: variations on a theme of Lucas. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Primality testing: variations on a theme of Lucas Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA In 1801, Carl Friedrich Gauss wrote: The problem of distinguishing prime numbers from composite

More information

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC #A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC Lenny Jones Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania lkjone@ship.edu Received: 9/17/10, Revised:

More information

IRREDUCIBILITY TESTS IN F p [T ]

IRREDUCIBILITY TESTS IN F p [T ] IRREDUCIBILITY TESTS IN F p [T ] KEITH CONRAD 1. Introduction Let F p = Z/(p) be a field of prime order. We will discuss a few methods of checking if a polynomial f(t ) F p [T ] is irreducible that are

More information

From Wikipedia, the free encyclopedia

From Wikipedia, the free encyclopedia Monomorphism - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/monomorphism 1 of 3 24/11/2012 02:01 Monomorphism From Wikipedia, the free encyclopedia In the context of abstract algebra or

More information

1 Recommended Reading 1. 2 Public Key/Private Key Cryptography Overview RSA Algorithm... 2

1 Recommended Reading 1. 2 Public Key/Private Key Cryptography Overview RSA Algorithm... 2 Contents 1 Recommended Reading 1 2 Public Key/Private Key Cryptography 1 2.1 Overview............................................. 1 2.2 RSA Algorithm.......................................... 2 3 A Number

More information

CHAPTER 6. Prime Numbers. Definition and Fundamental Results

CHAPTER 6. Prime Numbers. Definition and Fundamental Results CHAPTER 6 Prime Numbers Part VI of PJE. Definition and Fundamental Results 6.1. Definition. (PJE definition 23.1.1) An integer p is prime if p > 1 and the only positive divisors of p are 1 and p. If n

More information

1. Algebra 1.7. Prime numbers

1. Algebra 1.7. Prime numbers 1. ALGEBRA 30 1. Algebra 1.7. Prime numbers Definition Let n Z, with n 2. If n is not a prime number, then n is called a composite number. We look for a way to test if a given positive integer is prime

More information

CSE 521: Design and Analysis of Algorithms I

CSE 521: Design and Analysis of Algorithms I CSE 521: Design and Analysis of Algorithms I Randomized Algorithms: Primality Testing Paul Beame 1 Randomized Algorithms QuickSelect and Quicksort Algorithms random choices make them fast and simple but

More information

PRIMALITY TESTING. Professor : Mr. Mohammad Amin Shokrollahi Assistant : Mahdi Cheraghchi. By TAHIRI JOUTI Kamal

PRIMALITY TESTING. Professor : Mr. Mohammad Amin Shokrollahi Assistant : Mahdi Cheraghchi. By TAHIRI JOUTI Kamal PRIMALITY TESTING Professor : Mr. Mohammad Amin Shokrollahi Assistant : Mahdi Cheraghchi By TAHIRI JOUTI Kamal TABLE OF CONTENTS I- FUNDAMENTALS FROM NOMBER THEORY FOR RANDOMIZED ALGORITHMS:.page 4 1)

More information

ECEN 5022 Cryptography

ECEN 5022 Cryptography Elementary Algebra and Number Theory University of Colorado Spring 2008 Divisibility, Primes Definition. N denotes the set {1, 2, 3,...} of natural numbers and Z denotes the set of integers {..., 2, 1,

More information

THE MILLER RABIN TEST

THE MILLER RABIN TEST THE MILLER RABIN TEST KEITH CONRAD 1. Introduction The Miller Rabin test is the most widely used probabilistic primality test. For odd composite n > 1 at least 75% of numbers from to 1 to n 1 are witnesses

More information

Primality Testing- Is Randomization worth Practicing?

Primality Testing- Is Randomization worth Practicing? Primality Testing- Is Randomization worth Practicing? Shubham Sahai Srivastava Indian Institute of Technology, Kanpur ssahai@cse.iitk.ac.in April 5, 2014 Shubham Sahai Srivastava (IITK) Primality Test

More information

Pseudoprimes and Carmichael Numbers

Pseudoprimes and Carmichael Numbers Pseudoprimes and Carmichael Numbers Emily Riemer MATH0420 May 3, 2016 1 Fermat s Little Theorem and Primality Fermat s Little Theorem is foundational to the study of Carmichael numbers and many classes

More information

COMS W4995 Introduction to Cryptography September 29, Lecture 8: Number Theory

COMS W4995 Introduction to Cryptography September 29, Lecture 8: Number Theory COMS W4995 Introduction to Cryptography September 29, 2005 Lecture 8: Number Theory Lecturer: Tal Malkin Scribes: Elli Androulaki, Mohit Vazirani Summary This lecture focuses on some basic Number Theory.

More information

God may not play dice with the universe, but something strange is going on with the prime numbers.

God may not play dice with the universe, but something strange is going on with the prime numbers. Primes: Definitions God may not play dice with the universe, but something strange is going on with the prime numbers. P. Erdös (attributed by Carl Pomerance) Def: A prime integer is a number whose only

More information

Number Theory and Algebra: A Brief Introduction

Number Theory and Algebra: A Brief Introduction Number Theory and Algebra: A Brief Introduction Indian Statistical Institute Kolkata May 15, 2017 Elementary Number Theory: Modular Arithmetic Definition Let n be a positive integer and a and b two integers.

More information

Factorization & Primality Testing

Factorization & Primality Testing Factorization & Primality Testing C etin Kaya Koc http://cs.ucsb.edu/~koc koc@cs.ucsb.edu Koc (http://cs.ucsb.edu/~ koc) ucsb ccs 130h explore crypto fall 2014 1/1 Primes Natural (counting) numbers: N

More information

MATH 310: Homework 7

MATH 310: Homework 7 1 MATH 310: Homework 7 Due Thursday, 12/1 in class Reading: Davenport III.1, III.2, III.3, III.4, III.5 1. Show that x is a root of unity modulo m if and only if (x, m 1. (Hint: Use Euler s theorem and

More information

Selected Chapters from Number Theory and Algebra

Selected Chapters from Number Theory and Algebra Selected Chapters from Number Theory and Algebra A project under construction Franz Rothe Department of Mathematics University of North Carolina at Charlotte Charlotte, NC 83 frothe@uncc.edu December 8,

More information

CPSC 518 Introduction to Computer Algebra Asymptotically Fast Integer Multiplication

CPSC 518 Introduction to Computer Algebra Asymptotically Fast Integer Multiplication CPSC 518 Introduction to Computer Algebra Asymptotically Fast Integer Multiplication 1 Introduction We have now seen that the Fast Fourier Transform can be applied to perform polynomial multiplication

More information

1 The Fundamental Theorem of Arithmetic. A positive integer N has a unique prime power decomposition. Primality Testing. and. Integer Factorisation

1 The Fundamental Theorem of Arithmetic. A positive integer N has a unique prime power decomposition. Primality Testing. and. Integer Factorisation 1 The Fundamental Theorem of Arithmetic A positive integer N has a unique prime power decomposition 2 Primality Testing Integer Factorisation (Gauss 1801, but probably known to Euclid) The Computational

More information

MATH 25 CLASS 21 NOTES, NOV Contents. 2. Subgroups 2 3. Isomorphisms 4

MATH 25 CLASS 21 NOTES, NOV Contents. 2. Subgroups 2 3. Isomorphisms 4 MATH 25 CLASS 21 NOTES, NOV 7 2011 Contents 1. Groups: definition 1 2. Subgroups 2 3. Isomorphisms 4 1. Groups: definition Even though we have been learning number theory without using any other parts

More information

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Introduction to Quantum Information Processing QIC 71 / CS 768 / PH 767 / CO 681 / AM 871 Lecture 8 (217) Jon Yard QNC 3126 jyard@uwaterloo.ca http://math.uwaterloo.ca/~jyard/qic71 1 Recap of: Eigenvalue

More information

Implementation of the DKSS Algorithm for Multiplication of Large Numbers

Implementation of the DKSS Algorithm for Multiplication of Large Numbers Implementation of the DKSS Algorithm for Multiplication of Large Numbers Christoph Lüders Universität Bonn The International Symposium on Symbolic and Algebraic Computation, July 6 9, 2015, Bath, United

More information

This is a recursive algorithm. The procedure is guaranteed to terminate, since the second argument decreases each time.

This is a recursive algorithm. The procedure is guaranteed to terminate, since the second argument decreases each time. 8 Modular Arithmetic We introduce an operator mod. Let d be a positive integer. For c a nonnegative integer, the value c mod d is the remainder when c is divided by d. For example, c mod d = 0 if and only

More information

RSA Key Generation. Required Reading. W. Stallings, "Cryptography and Network-Security, Chapter 8.3 Testing for Primality

RSA Key Generation. Required Reading. W. Stallings, Cryptography and Network-Security, Chapter 8.3 Testing for Primality ECE646 Lecture RSA Key Generation Required Reading W. Stallings, "Cryptography and Network-Security, Chapter 8.3 Testing for Primality A.Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography

More information

CRC Press has granted the following specific permissions for the electronic version of this book:

CRC Press has granted the following specific permissions for the electronic version of this book: This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996. For further information, see www.cacr.math.uwaterloo.ca/hac CRC Press has

More information

Integer multiplication with generalized Fermat primes

Integer multiplication with generalized Fermat primes Integer multiplication with generalized Fermat primes CARAMEL Team, LORIA, University of Lorraine Supervised by: Emmanuel Thomé and Jérémie Detrey Journées nationales du Calcul Formel 2015 (Cluny) November

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 9 February 6, 2012 CPSC 467b, Lecture 9 1/53 Euler s Theorem Generating RSA Modulus Finding primes by guess and check Density of

More information

COMPUTER ARITHMETIC. 13/05/2010 cryptography - math background pp. 1 / 162

COMPUTER ARITHMETIC. 13/05/2010 cryptography - math background pp. 1 / 162 COMPUTER ARITHMETIC 13/05/2010 cryptography - math background pp. 1 / 162 RECALL OF COMPUTER ARITHMETIC computers implement some types of arithmetic for instance, addition, subtratction, multiplication

More information

Three Ways to Test Irreducibility

Three Ways to Test Irreducibility Three Ways to Test Irreducibility Richard P. Brent Australian National University joint work with Paul Zimmermann INRIA, Nancy France 12 Feb 2009 Outline Polynomials over finite fields Irreducibility criteria

More information

Commutative Rings and Fields

Commutative Rings and Fields Commutative Rings and Fields 1-22-2017 Different algebraic systems are used in linear algebra. The most important are commutative rings with identity and fields. Definition. A ring is a set R with two

More information

The Impossibility of Certain Types of Carmichael Numbers

The Impossibility of Certain Types of Carmichael Numbers The Impossibility of Certain Types of Carmichael Numbers Thomas Wright Abstract This paper proves that if a Carmichael number is composed of primes p i, then the LCM of the p i 1 s can never be of the

More information

With Question/Answer Animations. Chapter 4

With Question/Answer Animations. Chapter 4 With Question/Answer Animations Chapter 4 Chapter Motivation Number theory is the part of mathematics devoted to the study of the integers and their properties. Key ideas in number theory include divisibility

More information

Frequency Domain Finite Field Arithmetic for Elliptic Curve Cryptography

Frequency Domain Finite Field Arithmetic for Elliptic Curve Cryptography Frequency Domain Finite Field Arithmetic for Elliptic Curve Cryptography Selçuk Baktır, Berk Sunar {selcuk,sunar}@wpi.edu Department of Electrical & Computer Engineering Worcester Polytechnic Institute

More information

Ma/CS 6a Class 4: Primality Testing

Ma/CS 6a Class 4: Primality Testing Ma/CS 6a Class 4: Primality Testing By Adam Sheffer Reminder: Euler s Totient Function Euler s totient φ(n) is defined as follows: Given n N, then φ n = x 1 x < n and GCD x, n = 1. In more words: φ n is

More information

Table of Contents. 2013, Pearson Education, Inc.

Table of Contents. 2013, Pearson Education, Inc. Table of Contents Chapter 1 What is Number Theory? 1 Chapter Pythagorean Triples 5 Chapter 3 Pythagorean Triples and the Unit Circle 11 Chapter 4 Sums of Higher Powers and Fermat s Last Theorem 16 Chapter

More information

ABSOLUTE VALUES AND VALUATIONS

ABSOLUTE VALUES AND VALUATIONS ABSOLUTE VALUES AND VALUATIONS YIFAN WU, wuyifan@umich.edu Abstract. We introduce the basis notions, properties and results of absolute values, valuations, discrete valuation rings and higher unit groups.

More information

ALG 4.0 Number Theory Algorithms:

ALG 4.0 Number Theory Algorithms: Algorithms Professor John Reif ALG 4.0 Number Theory Algorithms: (a) GCD (b) Multiplicative Inverse (c) Fermat & Euler's Theorems (d) Public Key Cryptographic Systems (e) Primality Testing Greatest Common

More information

Generalized Lucas Sequences Part II

Generalized Lucas Sequences Part II Introduction Generalized Lucas Sequences Part II Daryl DeFord Washington State University February 4, 2013 Introduction Èdouard Lucas: The theory of recurrent sequences is an inexhaustible mine which contains

More information

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively 6 Prime Numbers Part VI of PJE 6.1 Fundamental Results Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively D (p) = { p 1 1 p}. Otherwise

More information

Theoretical Cryptography, Lecture 13

Theoretical Cryptography, Lecture 13 Theoretical Cryptography, Lecture 13 Instructor: Manuel Blum Scribe: Ryan Williams March 1, 2006 1 Today Proof that Z p has a generator Overview of Integer Factoring Discrete Logarithm and Quadratic Residues

More information

CPSC 467b: Cryptography and Computer Security

CPSC 467b: Cryptography and Computer Security CPSC 467b: Cryptography and Computer Security Michael J. Fischer Lecture 8 February 1, 2012 CPSC 467b, Lecture 8 1/42 Number Theory Needed for RSA Z n : The integers mod n Modular arithmetic GCD Relatively

More information

Some Facts from Number Theory

Some Facts from Number Theory Computer Science 52 Some Facts from Number Theory Fall Semester, 2014 These notes are adapted from a document that was prepared for a different course several years ago. They may be helpful as a summary

More information

LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS

LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS LECTURE 5: APPLICATIONS TO CRYPTOGRAPHY AND COMPUTATIONS Modular arithmetics that we have discussed in the previous lectures is very useful in Cryptography and Computer Science. Here we discuss several

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

Discrete Mathematics and Probability Theory Fall 2018 Alistair Sinclair and Yun Song Note 6

Discrete Mathematics and Probability Theory Fall 2018 Alistair Sinclair and Yun Song Note 6 CS 70 Discrete Mathematics and Probability Theory Fall 2018 Alistair Sinclair and Yun Song Note 6 1 Modular Arithmetic In several settings, such as error-correcting codes and cryptography, we sometimes

More information

π π π points:= { seq([n*cos(pi/4*n), N*sin(Pi/4*N)], N=0..120) }:

π π π points:= { seq([n*cos(pi/4*n), N*sin(Pi/4*N)], N=0..120) }: ITEGER SPIRAL Several years ago we found a way to conveniently plot all positive integers as points along an Archimedes spiral. We want here to examine this problem in more detail. We begin by defining

More information

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2,

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2, SOLUTIONS TO PROBLEM SET 1 Section 1.3 Exercise 4. We see that 1 1 2 = 1 2, 1 1 2 + 1 2 3 = 2 3, 1 1 2 + 1 2 3 + 1 3 4 = 3 4, and is reasonable to conjecture n k=1 We will prove this formula by induction.

More information

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z:

NUMBER SYSTEMS. Number theory is the study of the integers. We denote the set of integers by Z: NUMBER SYSTEMS Number theory is the study of the integers. We denote the set of integers by Z: Z = {..., 3, 2, 1, 0, 1, 2, 3,... }. The integers have two operations defined on them, addition and multiplication,

More information

Euler s ϕ function. Carl Pomerance Dartmouth College

Euler s ϕ function. Carl Pomerance Dartmouth College Euler s ϕ function Carl Pomerance Dartmouth College Euler s ϕ function: ϕ(n) is the number of integers m [1, n] with m coprime to n. Or, it is the order of the unit group of the ring Z/nZ. Euler: If a

More information

Number Theory Homework.

Number Theory Homework. Number Theory Homewor. 1. The Theorems of Fermat, Euler, and Wilson. 1.1. Fermat s Theorem. The following is a special case of a result we have seen earlier, but as it will come up several times in this

More information

CSCI Honor seminar in algorithms Homework 2 Solution

CSCI Honor seminar in algorithms Homework 2 Solution CSCI 493.55 Honor seminar in algorithms Homework 2 Solution Saad Mneimneh Visiting Professor Hunter College of CUNY Problem 1: Rabin-Karp string matching Consider a binary string s of length n and another

More information

CIS 551 / TCOM 401 Computer and Network Security

CIS 551 / TCOM 401 Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2008 Lecture 15 3/20/08 CIS/TCOM 551 1 Announcements Project 3 available on the web. Get the handout in class today. Project 3 is due April 4th It

More information

Three Ways to Test Irreducibility

Three Ways to Test Irreducibility Outline Three Ways to Test Irreducibility Richard P. Brent Australian National University joint work with Paul Zimmermann INRIA, Nancy France 8 Dec 2008 Polynomials over finite fields Irreducibility criteria

More information

Chapter 5. Modular arithmetic. 5.1 The modular ring

Chapter 5. Modular arithmetic. 5.1 The modular ring Chapter 5 Modular arithmetic 5.1 The modular ring Definition 5.1. Suppose n N and x, y Z. Then we say that x, y are equivalent modulo n, and we write x y mod n if n x y. It is evident that equivalence

More information

Math 229: Introduction to Analytic Number Theory Elementary approaches I: Variations on a theme of Euclid

Math 229: Introduction to Analytic Number Theory Elementary approaches I: Variations on a theme of Euclid Math 229: Introduction to Analytic Number Theory Elementary approaches I: Variations on a theme of Euclid Like much of mathematics, the history of the distribution of primes begins with Euclid: Theorem

More information