Solving Pell Equations

Size: px
Start display at page:

Download "Solving Pell Equations"

Transcription

1 Solving Pell Equations Matthew Wright May 2, 2006 Departent of Matheatical Sciences Messiah College Grantha, PA Dr. Laarr Wider, advisor

2 This paper is subitted in partial fulfillent of the requireents for departental honors in atheatics. Abstract This paper is an investigation of Pell Equations equations of the for x 2 dy 2 = k where d is a nonsquare, positive integer, k is an integer, and we are looking for integer solutions in x and y. We will provide otivation, both algebraic and geoetric, for this definition of Pell Equations. Next, we will exaine the k = 1 case, proving not only that it is solvable, but also that infinitely any solutions can be obtained easily fro the fundaental solution. We will classify soe Pell Equations as solvable or unsolvable when k 1, exaining in detail the k = 4 case. After explaining several patterns that appear when k = 4 and d 5 (od 8), we will prove the existence of a fundaental solution for these cases. Finally, we will briefly exaine how a coputer ay be used to find solutions, especially the fundaental solution, for Pell Equations. 1

3 Contents 1 Introduction Why ust d be positive? Why ust d be nonsquare? Pell Equation The Equation x 2 dy 2 = 1 is Solvable 6 3 The Fundaental Solution Sequence of Solutions Ordering the Solutions Sallest is Fundaental Define a and b Obtain a Contradiction What About k 1? Identifying Unsolvable Pell Equations If k is a Square Investigation of x 2 dy 2 = Cases when d 5 (od 8) Odd-Even Solution Patterns More Patterns in Solutions The Fundaental Solution Revisited Preliinary Work An Arbitrary Solution (u, v) Define a and b Obtain a Contradiction Prograing 25 8 Table of Solutions 28 References 29 A Listing of PellSolver 30 2

4 1 Introduction In nuber theory, Pell Equations fall in the category of Diophantine equations. Naed after the Greek atheatician Diophantus, Diophantine equations are equations for which integer solutions are desired. Specifically, Pell Equations have the for x 2 dy 2 = k, where d and k are fixed and we are looking for integers x and y that satisfy the equation. Soe atheaticians specify that k = 1, but we will allow k to be any nonzero integer. We further qualify the integer d to be positive and nonsquare. This qualification is helpful because it leaves open the possibility of infinitely any solutions in positive integers x and y. 1.1 Why ust d be positive? If d were negative, such as d = p, then the equation of interest becoes x 2 + py 2 = k, which has the for of an ellipse. This ellipse has x-intercepts at ± k and y-intercepts at k ±. By plotting the ellipse on the Cartesian plane (see Figure 1), we can easily see that p k the integers on the y-axis between 0 and ± are the only possible positive integers that p ight correspond to points on the ellipse with integer coordinates. Therefore, there can be k no ore than solutions in positive integers to the equation p x2 + py 2 = k. k p y k x Figure 1: Equations of the for x 2 + py 2 = 1 have finitely any positive integer solutions (x, y). 1.2 Why ust d be nonsquare? If d is a square, such as d = q 2, where q is a positive integer, then the equation becoes x 2 q 2 y 2 = k, which factors into (x + qy)(x qy) = k (1) 3

5 Since x, y, and q are all positive integers, the left-hand side of (1) ust be two integers whose product is k. For each pair of positive integers and n, > n, such that n = k, there ight exist integers x and y that satisfy { x + qy = x qy = n Therefore, the nuber of positive integer solutions that satisfy (1) is bounded by half the nuber of positive integers which divide k. It could also happen that the equation has no solutions, as in the case x 2 y 2 = 10. We can also see that an equation of the for x 2 q 2 y 2 = k has finitely any integer solutions by the following graphical arguent. First, sketch the graph of the hyperbola x 2 q 2 y 2 = k on the Cartesian plane. Except for a sall region near the origin (the region in Figure 2, for exaple), the hyperbola is very close to its asyptotes. The asyptotes are of the for x + qy = 0 and x qy = 0, so they are lines through the origin with slopes of ±1/q. The hyperbola ight pass through points with integer coefficients near the origin, but it soon gets too close to its asyptotes to pass through any such points. y (q, 1) (2q, 2) k k x Figure 2: The graph of a hyperbola, x 2 q 2 y 2 = k and its asyptotes, x + qy = 0 and x qy = 0. Figure 3 shows a portion of the asyptote x qy = 0 on a grid of points with integer coordinates. Circled points are those closest to the asyptote, but not on the asyptote. The agnification in Figure 3 helps deterine the distance fro any such point to the 4

6 asyptote. Call this distance a. By the Pythagorean Theore, we have (aq) 2 = a a 2 q 2 a 2 = 1 a 2 (q 2 1) = 1 a 2 = 1 q a = q 2 1 Therefore, there are no points with integer coefficients whose distance d fro an asyptote is 0 < d < 1 q 2 1 x qy = 0 aq 1 a Figure 3: The asyptote x qy = 0 on a grid of points with integer coordinates. Let f(x) be the branch of the hyperbola in the first quadrant: x f(x) = 2 k, x k. q 2 We know that li x f(x) = x and f(x) x for any x. So for each ɛ > 0 there exists q q x 0 > 0 such that x > x 0 iplies 0 < f(x) x q < ɛ 1 Let ɛ =. Then there exists x q > 0 such that for all x > x 0, the graph of f(x) is closer than fro its asyptote, but never touches its asyptote. Therefore, f(x) 1 q 2 1 does not pass through any integer coordinates for x > x 0. We see that f(x) ay only pass through integer coordinates when k < x < x 0, so f(x) cannot pass through infinitely any points with integer coordinates. Therefore, x 2 q 2 y 2 = k has finitely any integer solutions. 1.3 Pell Equation Having otivated the choice of d positive and nonsquare, we arrive at the following definition: 5

7 Definition 1. A Pell Equation is an equation of the for x 2 dy 2 = k, where d is a positive nonsquare integer and k is a nonzero integer, for which we attept to find integer solutions x and y. Pell Equations have been of interest to atheaticians for centuries. Archiedes faous cattle proble leads to a Pell Equation. The Indian atheatican Brahagupta in the sixth century had ethods to find solutions to x 2 dy 2 = 1, and he could generate infinitely any solutions fro an initial solution. In Europe, Pierre de Ferat studied the equation and inspired soe of his conteporaries to do the sae. John Pell was an English atheatician who appears to have had a reputation as an algebraist in the iddle of the 17 th century, but he did hardly any work with the equation that bears his nae [2]. Leonhard Euler credited the equation to Pell in a letter to Goldbach in 1730, and the nae stuck [1]. 2 The Equation x 2 dy 2 = 1 is Solvable Pell Equations where k = 1 are of special interest to atheaticians because they have infinitely any solutions. In fact, soe authors define Pell Equations to be of the for x 2 dy 2 = 1, not considering equations where k 1 as our broader definition perits. In this section, we will prove that the equation x 2 dy 2 = 1 has a solution in positive integers x and y. We will begin with the following lea: Lea 1. For a given integer N, there are positive integers u and v for which u v d < 1 N 1 v (2) and u 2 v 2 2 d + 1 (3) To ake the proof easier, we introduce soe notation. For any nuber α, we will denote by α the fractional part of α. That is, α = α α, where α is the greatest integer that does not exceed α. Proof. Consider the N + 1 nubers, all of which are between 0 and 1: d, 2 d,..., N d, (N + 1) d (4) i Also consider the N intervals {t : < t < i+1 }, where 0 i N 1. Each of these intervals N N has width 1/N. Note that together, this set of intervals spans the nubers fro 0 to 1, except for the the nubers i/n, which are the endpoints of the intervals. These boundaries, i/n, never equal any of the nubers in (4) since all of the nubers are irrational. By the pigeonhole principle, if we place the N + 1 nubers in the N intervals, at least one interval ust contain at least two of the nubers. Call two of these nubers q d and s d, with q > s. Call the interval that contains these nubers ( i, ) i+1 N N. Therefore, we have i N < q d < i + 1 i and N N < s d < i + 1 N 6

8 Define p and r to be the integer parts of q d and s d, respectively. Therefore, p q d = q d q d and r = s d = s d s d. Since q > s and d > 1, q d > s d and p > r. Since q and s are each between 1 and N +1, their difference cannot exceed N. Therefore, q s N. Since q d and s d both fall in the sae interval of width 1/N, their difference is less than 1/N. Therefore, q d s d < 1 N ( q ) ( d p s ) 1 d r < N (q s) d (p r) < 1 N (p r) (q s) d < 1 N Let u = p r and v = q s. Then q s = v N, so 1 1. Therefore, we have found two v N integers u and v that satsify u v d < 1 1, or ore iportantly N v u v d 1 v which proves the first part of Lea 1. To prove the second part of Lea 1, we begin with the following identity: Multiplying equations (5) and (6), we have u + v d = (u v d) + 2v d (6) (u + v d) u v d 1 v [(u v d) + 2v d] Beginning with inequality (5), we arrive at the following: so u v d v (5) u 2 dv 2 u v d + 2 d (7) v u v d 1 v u v d u v d 1 v 1 u v d v 1 (8) 7

9 Cobining inequalities (7) and (8), we have u 2 dv 2 u v d + 2 d d v Therefore, we conclude that u 2 dv 2 2 d + 1 and this proves the second part of Lea 1. In proving Lea 1, we began by choosing the first N + 1 consecutive ultiples of d and exaining their fractional parts: d, 2 d,..., N d, (N + 1) d (9) Now, there are infinitely any non-overlapping sets of N +1 consecutive ultiples of d that we could have chosen, and each set works equally well in proving the lea. For exaple, we could have chosen either of the following: (N + 2) d, (N + 3) d,..., (2N + 2) d (2N + 3) d, (2N + 4) d,..., (3N + 3) d In any such set, we can find two nubers whose fractional parts lie in the sae interval. Therefore, each set produces the nubers u and v that satisfy the equations of Lea 1. Since we can choose non-overlapping sets, u and v will be unique to each set. Therefore, we can find infinitely any pairs (u, v) that satisfy u v d < 1 N 1 v and u 2 v 2 2 d + 1 (10) Note that u 2 dv 2 is an integer. Therefore, there are infinitely any solutions to u 2 dv 2 = j, where j is an integer bounded by j 2 d + 1. Since we have finitely any possibilities for j and infinitely any solutions (u, v), there ust be at least one j with infinitely any solutions (u, v). Let k be this particular value of j. Therefore, there are infinitely any solutions (u, v) to u 2 dv 2 = k. The second lea we will use in our proof is the following: Lea 2. If (x 1, y 1 ) and (x 2, y 2 ) are integer solutions of x 2 dy 2 = k such that x 1 x 2 (od k) and y 1 y 2 (od k) Then the equation x 2 dy 2 = 1 has a solution in positive integers. Proof. We have the following two equations: x 2 1 dy 2 1 = k and x 2 2 dy 2 1 = k (11) 8

10 Multiplying the equations together, we have (x 2 1 dy1)(x dy2) 2 = k 2 x 2 1x 2 2 dx 2 1y2 2 dx 2 2y1 2 + d 2 y1y = k 2 ( ) ( x 2 1 x 2 2 2dx 1 x 2 y 1 y 2 + d 2 y1y d x 2 1 y2 2 2dx 1 x 2 y 1 y 2 + x 2 2y1) 2 = k 2 (x 1 x 2 dy 1 y 2 ) 2 d (x 1 y 2 x 2 y 1 ) 2 = k 2 ( ) 2 ( ) 2 x1 x 2 dy 1 y 2 x1 y 2 x 2 y 1 d = 1 (12) k k Equation (12) has the desired for, so the lea is proved if we can show that the quantities in parentheses are integers. Since x 1 x 2 (od k) and y 1 y 2 (od k), then x 1 x 2 dy 1 y 2 x 1 x 1 dy 1 y 1 = x 2 1 dy 2 1 But x 2 1 y 2 1 = k and k 0 (od k), so x 2 1 dy (od k). Therefore, x 1 x 2 dy 1 y 2 x 2 1 dy (od k) (13) Also, we see that x 1 y 2 x 2 y 1 (od k), which iplies that x 1 y 2 x 2 y 1 0 (od k) (14) Cobining the results of equations (13) and (14), we see that the quantities in parentheses in equation (12) are integers, so ( x1 x 2 dy 1 y 2, x ) 1y 2 x 2 y 1 k k is an integer solution of x 2 dy 2 = 1 and we have proved Lea 2. We are now ready to prove the ain theore of this section: Theore 1. The equation x 2 dy 2 = 1 has a solution in positive integers x and y for all positive, nonsquare integers d. Proof. We have found a value of k for which there exist infinitely any solutions (u, v) of u 2 dv 2 = k. There are only k 2 unique ordered pairs odulo k. Since we have ore than k solutions (each of which is an ordered pair), at least two of the ust be equivalent odulo k. Call these two pairs (x i, y i ) and (x j, y j ), with x i x j and y i y j (od k). By Lea 2, the equation x 2 dy 2 = 1 has a solution in positive integers. 9

11 3 The Fundaental Solution In the previous section we proved that there exists a positive integer solution (x, y) to the equation x 2 dy 2 = 1 when d is positive and nonsquare, In this section we will see that there is a solution, known as the fundaental solution, fro which all other positive integer solutions ay be obtained. Specifically, we will prove that the fundaental solution is sallest positive integer solution to x 2 dy 2 = 1. We will also see how all other positive integer solutions can be obtained fro the fundaental solution. 3.1 Sequence of Solutions Fro any solution of x 2 dy 2 = 1, we can obtain infinitely any solutions. Suppose (x 1, y 1 ) is a solution of x 2 dy 2 = 1. We can obtain another solution by the following process: x 2 1 dy 2 1 = 1 (x 1 + y 1 d)(x1 y 1 d) = 1 (x 1 + y 1 d) 2 (x 1 y 1 d) 2 = 1 ) ) (x x 1 y 1 d + dy 21 (x 21 2x 1 y 1 d + dy 21 = 1 ( (x dy1) 2 + (2x 1 y 1 ) ) ( d (x dy1) 2 (2x 1 y 1 ) ) d = 1 ( ) x dy1 2 2 d (2x1 y 1 ) 2 = 1 We have again obtained the for of a Pell Equation, and we can see that (x dy1, 2 2x 1 y 1 ) is a solution. Applying the process again, we can obtain yet another solution, and so on, obtaining as any solutions as we desire. Alternately, suppose we consider integer powers of (x 1 + y 1 d): ( ) n x 1 + y 1 d = x n 1 + C 1 dx n 1 1 y 1 + C 2 dx n 2 1 y1 2 + C 3 d 3/2 x n 3 1 y d n/2 y1 n = ( x n 1 + C 2 dx n 2 1 y1 2 + ) + d ( C 1 x n 1 1 y 1 + C 3 x n 3 1 y1 3 + ) = x n + y n d where C i are the binoial coefficients: C i = ( ) n i = n!. Since each integer power can be (n i)!i! written in a for siilar to the original, we define x n and y n as follows: x n + y n d = (x 1 + y 1 d ) n (15) We will now prove the following theore: ) Theore 2. If x 1 > 1, y 1 1, and (x n + y n d y n+1 > y n for positive n. = ( x 1 + y 1 d ) n, then xn+1 > x n and 10

12 Proof by Induction. Initial Case: We find that x 2 = x dy1 2 and y 2 = 2x 1 y 1. Since x 1 > 1, y 1 1, and d is a positive integer, it is clear that x 2 > x 1 and y 2 > y 1. Induction: Assue we have a solution (x n, y n ) with x n and y n positive integers greater than 1. We have: ( ) n+1 x n+1 + y n+1 d = x 1 + y 1 d ) ) n = (x 1 + y 1 d (x 1 + y 1 d ) ) = (x 1 + y 1 d (x n + y n d = (x 1 x n + dy 1 y n ) + (x 1 y n + x n y 1 ) d Therefore, x n+1 = x 1 x n +dy 1 y n and y n+1 = x 1 y n +x n y 1. Note that x 1 x n > x n and dy 1 y n > 0. Thus, x n+1 = x 1 x n + dy 1 y n > x n. Also, x 1 y n > y n and x n y 1 > 0, so y n+1 = x 1 y n + x n y 1 > y n. Therefore, we have x n+1 > x n and y n+1 > y n. We have established that the sequences {x n } and {y n } are strictly increasing when defined according to equation (15). This suggests that if we want the integer powers of (x 1 + y 1 d) to generate all positive integer solutions of x 2 dy 2 = 1, then x 1 and y 1 should be as sall as possible. First, however, we ust answer the question: Does the solution with the sallest value of x also contain the sallest value of y? 3.2 Ordering the Solutions To answer the question posed above, we ust exaine the ordering of the solutions. It turns out that the solution with the sallest value of x does contain the sallest value of y. Specifically, we will prove the following theore: Theore 3. If p, q, r, and s are positive integers for which p > r and then q > s and p + q d > r + s d. p 2 dq 2 = r 2 ds 2 = k (16) Proof. Since p > r and r 1, it follows that p 2 > r 2. We can rewrite equation (16) as p 2 r 2 = d(q 2 s 2 ). Since p 2 r 2 > 0 and d > 0, it follows that q 2 s 2 > 0, and q 2 > s 2. Therefore, q > s. Next, we have p > r and q > s. Since d is positive, q d > s d. It follows that p + q d > r + s d. Therefore, we now define x 1 and y 1 so that both are positive integers and x 1 is the sallest positive integer x satisfying the equation x 2 d 2 = 1. We know fro Theore 3 that y 1 is the sallest positive integer y satisfying the equation, so (x 1, y 1 ) is the sallest positive integer solution to x 2 dy 2 = 1. 11

13 3.3 Sallest is Fundaental In this section, we will show that any arbitrary positive integer solution of x 2 dy 2 = 1 can be obtained fro the sallest positive integer solution. Specifically, suppose that u > 0, v > 0, and u 2 dv 2 = 1. We will show that there exists a positive integer such that u + v d = (x 1 + y 1 d). Since x 1 is the sallest positive integer satisfying x 2 dy 2 = 1, it ust be true that u x 1. If u > x 1, then by Theore 3, u + v d > x 1 + y 1 d. If u = x1, then clearly v = y 1, and u + v d = x 1 + y 1 d. Therefore, we have u + v d x 1 + y 1 d (17) Next, we will define the positive integer by the condition ) ( (x 1 + y 1 d u + v ) ( ) +1 d < x 1 + y 1 d (18) That is, the th solution generated fro (x 1, y 1 ) is the largest solution not exceeding (u.v). Another way of stating equation (18) is x + y d u + v d < x+1 + y +1 d We will now asseble an iportant inequality in three parts. First, consider (x 1 + y 1 d) : (x 1 + y 1 d) 1 = (x 1 + y (x 1 y 1 d) 1 d) (x 1 y = (x 1 y 1 d) (19) 1 d) (x 2 1 dy1) 2 Since x 2 1 dy 2 1 = 1, the denoinator in (19) is 1, and we have (x 1 + y 1 d) = (x 1 y 1 d) Therefore, (u + v d)(x 1 + y 1 d) = (u + v d)(x 1 y 1 d) Second, the following begins with the left inequality of (18): (x 1 + y 1 d) (u + v d) (x 1 + y 1 d) (x 1 + y 1 d) (u + v d)(x 1 + y 1 d) 1 (u + v d)(x 1 + y 1 d) (20) (21) Third, the following begins with the right inequality of (18): (u + v d) < (x 1 + y 1 d) +1 (u + v d)(x 1 y 1 d) < (x 1 + y 1 d) +1 (x 1 y 1 d) (u + v d)(x 1 y 1 d) < (x 1 + y 1 d) +1 (x 1 + y 1 d) (u + v d)(x 1 y 1 d) < (x 1 + y 1 d) (22) 12

14 Cobining equation (20) with inequalities (21) and (22), we have the following inequality: 1 (u + v d)(x 1 + y 1 d) = (u + v d)(x 1 y 1 d) < (x 1 + y 1 d) (23) Inequality (23) is key to the rest of the proof. Specifically, we will show that the leftost inequality is in fact an equality. That is, we will show that 1 = (u + v d)(x 1 + y 1 d). 3.4 Define a and b Suppose that a and b are integers deterined by a + b d = (u + v d)(x 1 y 1 d) (24) We will ake three observations. First, we will show that a 2 db 2 = 1. a + b d = (u + v d)(x 1 y 1 d) a + b d = (u + v d)(x y d) a + b d = (ux dvy ) + d(vx uy ) (25) By equation (25), we can see that a 2 db 2 = 1 as follows: a 2 db 2 = (ux dvy ) 2 d(vx uy ) 2 [ = (ux dvy ) + ] [ d(vx uy ) (ux dvy ) ] d(vx uy ) = (u + v d)(x y d)(x + y d)(u v d) = (u 2 dv 2 )(x 2 dy 2 ) = 1 Second, we will show that a b d = (a + b d) 1 > 0. To begin, a 2 db 2 = 1 (a + b d)(a b d) = 1 (26) (a b d) = (a + b d) 1 Fro inequality (23), we know that 1 (u + v d)(x 1 y 1 d). Cobining this with the definition of a + b d fro (24), we see that 1 a + b d which iplies that a + b d is positive. The ultiplicative inverse of a + b d ust also be positive, so fro equation (26), we see (a b d) = (a + b d) 1 > 0. (27) Third, we will show that a b d 1 a + b d. We know fro equation (26) that (a + b d)(a b d) = 1, and we just stated that 1 (a + b d). The ultiplicative inverse of a + b d, which is a b d, ust be less than one. Threrefore, a b d 1 a + b d. (28) 13

15 This copletes our three observations about a and b. In order for the inequality (28) to hold, b ust be greater than or equal to zero. Here s why: a b d a + b d b d b d 0 2b d 0 b Fro inequality (27), we have a b d > 0 which iplies a > b d. Since b 0, it follows that b d 0, and a > 0. Therefore, we have the following conditions on a and b: a > 0 and b 0. (29) 3.5 Obtain a Contradiction By equation (24) and inequality (22), we have: a + b d = (u + v d)(x 1 y 1 d) < (x 1 + y 1 d) a + b d < x 1 + y 1 d (30) Since a + b d x 1 + y 1 d, then by the contrapositive of Theore 3, a and b are not both positive integers. (Note that everything else in the hypothesis of 3 ust be true: we defined x 1 and y 1 to be positive integers, and we know that a 2 +b 2 d = x 2 1+y 2 1 d = 1. Additionally, if a is positive, a > x 1 since x 1 is the sallest x-value that satisfies x 2 dy 2 = 1 and a x 1 since a = x 1 would iply a + b d = x 1 + y 1 d, which is false.) We know that a > 0 and b 0 fro equation (29). The only way to satisfy these conditions and ake a and b not both positive is to let b = 0. In this case, a = 1 since a 2 db 2 = 1. Therefore, by the defintion of a and b in equation (24), we have a + b d = (u + v d)(x 1 y 1 d) 1 = (u + v d)(x 1 y 1 d) 1 = (u + v d)(x 1 + y 1 d). (31) By equation (31), (u + v d) = (x 1 + y 1 d). We have now proved the following theore: Theore 4. If (x, y) = (u, v) is a positive integer solution of x 2 dy 2 = 1, then there exists a positive integer such that u + v d = (x 1 + y 1 d), where (x 1, y 1 ) is the fundaental solution of x 2 dy 2 = 1. Proof. The proof is contained in section

16 4 What About k 1? We have proved the existence of a fundaental solution for equations of the for x 2 dy 2 = 1, but what happens for other values of k? Soeties solutions exist for particular values of d and k, and other ties no solution can be found. With a definition and a theore we can quickly identify any Pell Equations that have no solution at all. 4.1 Identifying Unsolvable Pell Equations Definition 2. An integer a is a quadratic residue odulo if there exists an integer n, 0 < n <, such that n 2 a (od ). If no such integer n exists, then a is a quadratic nonresidue odulo. Theore 5. If k is a quadratic nonresidue odulo d, then the Pell Equation x 2 dy 2 = k has no integer solution. Proof. First, rewrite the Pell Equation as: y 2 = x2 k. (32) d The right-hand side of equation (32) ust be an integer if it is to be a perfect square. This iplies that x 2 k ust be divisible by d, or x 2 k 0 (od d). In other words, x can only be a solution if x 2 k (od d). But this can only happen if k is a quadratic residue odulo d. If k is a quadratic nonresidue odulo d, then no integer x exists such that x 2 k (od d), and there cannot possibly be an integer y that satisfies equation (32). Therefore, the Pell Equation x 2 dy 2 = k has no integer solution if k is a quadratic nonresidue odulo d. Theore 5 can identify Pell Equations for which no integer solution exists. The inverse of Theore 5 is not true. For exaple, 7 1 is a quadratic residue odulo 3, but the equation x 2 3y 2 = 7 does not have an integer solution. 1 Additionally, the proof of Theore 5 can help us search for solutions to a Pell Equation. Suppose we wish to look for a solution to x 2 dy 2 = k by choosing an x-value and checking to see if the corresponding y-value is an integer. Which x-values should we test? Provided that k is a quadratic residue odulo d, the proof above suggests that we should only choose x-values whose square is congruent to k odulo d. Our task is especially easy if d is a prie, say d = p. Since Z p, the set of integers odulo p, is a field, there are exactly two integers in Z p whose squares are congruent to k odulo d. Specifically, if one of these two integers is, the other is p. Therefore, the set of x-values that ake the right-hand side of equation (32) an integer are: {, p, p +, 2p, 2p +, 3p,...} 1 The fact that x 2 3y 2 = 7 has no solution can be verified by considering the integers odulo 4. The only quadratic residues odulo 4 are 0 and 1, so x 2 and y 2 ust each be congruent to either 0 or 1 odulo 4. In this case, x 2 3y 2 will never be congruent to 3 odulo 4. Therefore, x 2 3y

17 Our task would then be to test each of these values until we (hopefully) find one that akes (x 2 k)/d a perfect square. 4.2 If k is a Square While the previous section identified any Pell Equations without solutions, we can also identify any Pell Equations with k 1 that have solutions. Consider the following theore: Theore 6. If k is a perfect square, then the Pell Equation x 2 dy 2 = k is solvable in integers for all positive, nonsquare integers d. Proof. Since k is a perfect square, let k = 2. Theore 1 says that the equation x 2 dy 2 = 1 is solvable in integers for all positive, nonsquare integers d. Let (u, v) be a solution, and we have: u 2 dv 2 = 1 (33) Multiply both sides of equation (33) by 2 to obtain: 2 (u 2 dv 2 ) = u 2 d 2 v 2 = 2 (u) 2 d(v) 2 = k Therefore, (u, v) is a solution to x 2 dy 2 = k where x = 2. We see that beginning with any solution of x 2 dy 2 = 1 we can produce a solution of x 2 dy 2 = k siply by ultiplying our given solution by. In fact, Pell Equations with k square have infinitely any solutions. Pell Equations where k = 1 have infinitely any solutions, each of which corresponds to a solution in the case where k is a square. 5 Investigation of x 2 dy 2 = 4 Having proved that equations of the for x 2 dy 2 = 4 have integer solutions, we will now investigate patterns that occur in such solutions. Since 4 = 2 2, we know by Theore 6 that if (u, v) is a solution of x 2 dy 2 = 1, then (2u, 2v) is a solution of x 2 dy 2 = 4. This ethod of finding solutions obtains only even solutions. Might odd solutions ever exist to Pell Equations with k = 4? The following theore liits the values of d for which odd solutions ight appear: Theore 7. If x 2 dy 2 = 4 can be solved for odd integers x and y, then d 5 (od 8). 16

18 Proof. Let x and y be odd integers such that x 2 dy 2 = 4. Note that the square of any odd integer is congruent to 1 (od 8), so x 2 y 2 1 (od 8). Therefore, d 5 (od 8). x 2 dy 2 = 4 1 d 4 (od 8) d 3 (od 8) d 5 (od 8) Theore 7 says that if odd solutions exist, then d 5 (od 8), but it does not provide any exaples of odd solutions. We will investigate equations x 2 dy 2 = 4 with d 5 (od 8) to see if odd solutions actually exist. 5.1 Cases when d 5 (od 8) It is not difficult to find odd integers x and y that satisfy an equation of the for x 2 dy 2 = 4 with d 5 (od 8). Considering the case d = 5, we find that the first solution is x = 3, y = 1. The eleven sallest positive integer solutions appear in Table 1. x y Table 1: Solutions to x 2 5y 2 = 4 Observe in Table 1 that every third solution is even, while the other solutions are odd. Furtherore, the even solutions are those guaranteed by Theore 6; that is, they are twice the integer solutions of x 2 5y 2 = 1. For exaple, (18, 8) is a solution of x 2 5y 2 = 4, and (9, 4) is a solution of x 2 5y 2 = 1. Does this pattern of odd and even solutions continue, and does it exist in the solutions for other Pell Equations with d 5 (od 8) and k = 4? Exaining the solutions to equations with d = 13 and d = 21 (see Tables 2 and 3), we again see the pattern of two odd solutions followed by one even solution. Again, each even solution corresponds to a solution of the equation with k = 1. Why ight this be? 17

19 x y Table 2: Solutions to x 2 13y 2 = 4 x y Table 3: Solutions to x 2 21y 2 = Odd-Even Solution Patterns In this section, we will use the convention that (x 1, y 1 ) is the sallest positive integer solution to x 2 dy 2 = 4. Suppose that (x n, y n ) satisfies x 2 n dy 2 n = 4 n. Then, (x 2 1 dy 2 1)(x 2 n dy 2 n) = 4 4 n (x 1 + y 1 d)(xn + y n d)(x1 y 1 d)(xn y n d) = 4 n+1 ( (x 1 x n + dy 1 y n ) + (x 1 y n + x n y 1 ) ) ( d (x 1 x n + dy 1 y n ) (x 1 y n + x n y 1 ) ) d = 4 n+1 (x 1 x n + dy 1 y n ) 2 d(x 1 y n + x n y 1 ) 2 = 4 n+1 Therefore, we see that solutions (x n, y n ) of x 2 n dy 2 n = 4 n can be found recursively by x n+1 = x 1 x n + dy 1 y n and y n+1 = x 1 y n + x n y 1. (34) 18

20 Note that since (x n, y n ) satisfy x 2 n dyn 2 = 4 n, solutions to x 2 dy 2 = 4 are given by y n ) 2. n 1 ( xn, 2 n 1 The following theore, then, explains the pattern of odd and even solutions that we have seen in soe Pell Equations with d 5 (od 8) and k = 4: Theore 8. Suppose that d 5 (od 8) and the sallest positive integer solution of x 2 dy 2 = 4 is (x 1, y 1 ), with x 1 and y 1 both odd. With x n and y n as defined in equation (34), the first solution to be divisible by 2 n occurs at n = 3 and provides a solution of x 2 dy 2 = 1. Proof. First, we have x 2 1 dy 2 1 = 4 with x 1 and y 1 both odd. By equation (34) and the fact that the square of any odd integer is congruent to 1 (od 8), x 2 and y 2 are congruent to: x 2 x y y 2 2x 1 y 1 2 or 6 In either case, x 2 and y 2 contain exactly one factor of two, so we can divide by two and obtain ( ) x 2 2 ( 2 d y2 ) 2 2 = 4, and we have the second odd solution to x 2 dy 2 = 4. Next, x 3 and y 3 are congruent to: x 3 x 1 x 2 + 5y 1 y 2 x 1 (x y 2 1) + 5y 1 (2x 1 y 1 ) x x 1 y x 1 y 2 1 x 1 + 5x 1 + 2x 1 8x 1 0 and y 3 y 1 x 2 + x 1 y 2 y 1 (x y 2 1) + x 1 (2x 1 y 1 ) x 2 1y 1 + 5y x 2 1y 1 y 1 + 5y 1 + 2y 1 8y 1 0 We see that x 3 and y 3 both contain a factor of 2 3. Thus, we can divide the by 4 to obtain a solution to x 2 dy 2 = 4, or by 8 to obtain a solution to x 2 dy 2 = 1. Furtherore, we can observe that x 3 and y 3 do not both contain factors of 16. If they did, then x 3 /8 and y 3 /8 would both be even, and we would not have a solution of x 2 dy 2 = 1. Since ( ) x 3 2 ( 8 d y3 ) 2 8 = 1, one of x3 and y 3 has a factor of 8 and not 16. The next theore shows that if the initial solution of x 2 dy 2 = 4 is odd, then every third solution corresponds to a solution of x 2 dy 2 = 1. Theore 9. If x n and y n are solutions of x 2 n dy 2 n = 4 n, with d 5 (od 8), and x 1 and y 1 (the sallest such solution) are both odd, and x k and y k satisfy ( xk 2 k ) 2 d ( yk 2 k ) 2 = 1, then x k+3 and y k+3 are the next solution to provide a solution to x 2 dy 2 = 1. 19

21 Proof. As in the previous proof, we use the recursion defined in equation (34) to obtain successive solutions to x 2 n dy 2 n = 4 n. We obtain the following congruences: x k+1 x 1 x k + 5y 1 y k y k+1 x 1 y k + y 1 x k x k+2 6x k + 2x 1 y 1 y k y k+2 2x 1 x k y 1 + 6y k x k+3 8x 1 x k + 8y 1 y k 0 y k+3 8x k y 1 + 8x 1 y k 0 Since ( ) x k 2 ( 2 d yk ) 2 k 2 = 1, we know that k xk and y k each contain k ultiples of 2, and they do not both contain k + 1 ultiples of 2. With the first iteration, x k+1 and y k+1 both contain exactly k ultiples of 2, providing the odd solution ( x k+1, y ) k+1 2 k 2 to x 2 dy 2 = 4. At the k second iteration, we gain a factor of 2, so x k+2 and y k+2 both contain exactly k + 1 factors of 2, providing a solution to x 2 dy 2 = 4. At the third iteration, the coefficients of 8 indicate that both x k+3 and y k+3 have three ore factors of 2 than x k and y k. We see that x k+3 and 2 y k+3 k+3 are both integers, and they satisfy x 2 dy 2 = 1. Therefore, every third solution of 2 k+3 x 2 dy 2 = 4 is even, and can be divided by two to obtain a solution of x 2 dy 2 = 1. Corollary 1. If x 1 and y 1 are both odd, then x 3i and y 3i always provide a solution to x 2 dy 2 = 1 for any positive integer i. Proof. Theore 8 says that if x 1 and y 1 are both odd, then the first even solution of x 2 dy 2 = 4 is (x 3, y 3 ). Theore 9 says that if (x k, y k ) is an even solution of x 2 dy 2 = 4, then the next even solution is (x k+3, y k+3 ). Therefore, all of the even solutions occur with subscripts that are ultiples of 3. In other words, (x 3i, y 3i ) is always an even solution, so it can be divided by 2 to obtain ( x 3i, ) y 3i 2 2 ), which is a solution of x 2 dy 2 = More Patterns in Solutions If we exaine solutions to Pell Equations x 2 dy 2 = 4 for any values of d, d 5 (od 8), we encounter any patterns. Table 4 lists the sallest positive integer solution for the first 30 Pell Equations of this for (5 d 237). First, we observe that for soe values of d, the sallest solution is even. These cases are indicated in bold in Table 4. In these cases, Theores 8 and 9 do not apply, since they require that x 1 and y 1 be odd. The author does not know why the sallest positive integer solution of x 2 dy 2 = 4 is even for soe values of d 5 (od 8), but such values of d appear to be scattered haphazardly through Table 4. Additionally, in these cases, the only solutions to x 2 dy 2 = 4 are those that are twice the solutions to x 2 dy 2 = 1. Notice that each odd integer greater than 1 appears as an x-value in the solution for soe d in the table. Also notice that these odd integers also appear as y-values in the solution for 20

22 d x y d x y d x y Table 4: Solutions to x 2 dy 2 = 4 for d 5 (od 8) d following the row in which they appeared as an x-value. We can explain these occurrances by the following two theores: Theore 10. Let be odd and d = 2 4. Then d 5 (od 8) and (x, y) = (, 1) is the solution to x 2 dy 2 = 4. Proof. Since is odd, 2 1 (od 8). Then d = (od 8). Let (x, y) = (, 1), and it follows that: x 2 dy 2 = 2 ( 2 4)(1) 2 = = 4 Therefore, (x, y) = (, 1) is the solution of x 2 dy 2 = 4 with d = 2 4. The previous proof explains why the list of solutions of x 2 dy 2 = 4, d 5 (od 8), contains solutions (, 1) for every odd integer (see Table 4). The next theore explains the solutions ( 2 + 2, ). Theore 11. Let be odd and d = Then d 5 (od 8) and (x, y) = ( 2 + 2, ) is the solution to x 2 dy 2 = 4. Proof. Since is odd, 2 1 (od 8). Then d = (od 8). Let (x, y) = ( 2 + 2, ), and it follows that: x 2 dy 2 = ( 2 + 2) 2 ( 2 + 4) 2 = = 4 Therefore, (x, y) = ( 2 + 2, ) is the solution of x 2 dy 2 = 4 with d = The Fundaental Solution Revisited We will now prove the ost exciting result of our work with x 2 dy 2 = 4. There exists a fundaental solution to x 2 dy 2 = 4, d 5 (od 8) fro which all other solutions can be obtained. This proof is siilar to the proof fro section 3 of the existence of a fundaental solution for equations of the for x 2 dy 2 = 1. 21

23 6.1 Preliinary Work Fro any solution to x 2 dy 2 = 4, we can obtain another solution as follows. Let (x 1, y 1 ) be a solution. Then, x 2 1 dy 2 1 = 4 (x 1 + y 1 d)(x1 y 1 d) = 4 (x 1 + y 1 d) 2 (x 1 y 1 d) 2 = 4 2 ) ) (x x 1 y 1 d + dy 21 (x 21 2x 1 y 1 d + dy 21 = 4 2 ( (x dy1) 2 + (2x 1 y 1 ) ) ( d (x dy1) 2 (2x 1 y 1 ) ) d = 4 2 ( x dy1) 2 2 d (2x1 y 1 ) 2 = 4 2 ( ) x dy1 2 2 ( ) 2 2x1 y 1 d = Therefore, for any solution (x 1, y 1 ) of x 2 dy 2 = 4, define x n and y n such that x n + y n d = (x 1 + y 1 d) n 2 n 1. (35) It follows that (x n y n d) = (x 1 y 1 d) n 2 n 1 and x 2 n dy 2 n = 4. Moreover, x n+1 > x n and y n+1 > y n ). As in section 3, this suggests that if x 1 and y 1 are to generate all the other solutions, then they should be as sall as possible. Therefore, we will define (x 1, y 1 ) to be a positive integer solution to x 2 dy 2 = 4, d 5 (od 8), with x 1 as sall as possible. Recall fro Theore 3 that if (p, q) and (r, s) are both positive integer solutions to x 2 dy 2 = 4 and p > r, then q > s and p + q d > r + s d. This helps us order the solutions of x 2 dy 2 = 4, since the solution with the th -sallest x-value also contains the th -sallest y-value. 6.2 An Arbitrary Solution (u, v) Suppose that (u, v) is an arbitrary positive integer solution of x 2 dy 2 = 4. Since x 1 is the sallest positive integer x satisfying x 2 dy 2 = 4, then u x 1. If u > x 1, then u + v d > x 1 + y 1 d by the above paragraph. If u = x1, then clearly v = y 1 and u + v d = x 1 + y 1 d. Therefore, we have u + v d x 1 + y 1 d. As in Section 3, we define the positive integer so that the th solution generated fro (x 1, y 1 ) is the largest not exceeding (u, v). That is, x + y d u + v d < x+1 + y +1 d (x 1 + y 1 d) u + v d < (x 1 + y 1 d) +1 (36)

24 Working with inequality (36): (x 1 + y 1 d) u + v d < (x 1 + y 1 d) (x 1 y 1 d) (x 1 + y 1 d) (u + v d) (x 1 y 1 d) < (x 1 + y 1 d) +1 (x 1 y 1 d) (u + v d) (x 1 y 1 d) 4 < (x y 1 d) 4 2 (u + v d) (x 1 y 1 d) 2 < x 1 + y 1 d (37) Our task is now to show that the left-hand inequality of (37) is, in fact, an equality. 6.3 Define a and b Suppose that a and b are the positive integers deterined by a + b d = (u + v d) (x 1 y 1 d) 2. (38) In Section 3.3, it was obvious that a and b ust be integers, but this tie it is not obvious, since we are dividing by 2. We can prove that a and b ust be integers as follows: a + b d = (u + v d) 1 2 (x 1 y 1 d) 2 1 a + b d = 1 2 (u + v d)(x y d) a + b d = ux dvy 2 + vx uy d 2 Since (u, v) and (x, y ) both satisfy x 2 dy 2 = 4 and d 5 (od 8), u and v have the sae parity, and x and y have the sae parity. If either (u, v) or (x, y ) are even, then (ux dvy, vx uy ) is even. Otherwise, both (u, v) and (x, y ) are both odd, but (ux dvy, vx uy ) is still even. Therefore, a = ux dvy and b = vx uy are both 2 2 integers. 23

25 Consider a 2 db 2 : ( ) 2 ( ) 2 a 2 db 2 ux dvy vx uy = d 2 2 = 1 ( (ux dvy ) + ) ( d(vx uy ) (ux dvy ) ) d(vx uy ) 4 = 1 ((u + v ) ) d)(x y d) ((x + y d)(u v d) 4 = 1 4 (u2 dv 2 )(x 2 dy 2 ) = = 4 Therefore, x 2 db 2 = 4. Since a 2 db 2 = 4, we have (a b d)(a + b d) = 4, so a + b d and a b d have the sae sign. However, 2 a + b d by inequality (37). Therefore, a + b d and a b d are both positive, and since their product is 4, we have: 0 < a b d 2 and 2 a + b d. (39) We will now show that a ust be positive and b ust be nonnegative. Fro the inequalities in (39), we have: a b d a + b d b d b d 0 2b d 0 b Therefore, b is nonnegative. Since 0 < a b d, we have b d < a, and it follows that 0 b d < a. This iplies that 0 < a, so a is positive. 6.4 Obtain a Contradiction We will now obtain a contradiction to coplete our proof. Cobining the definition of a and b fro equation (38) with inequality (36), we have a+b d < x 1 +y 1 d. This does not satisfy the conclusion of Theore 3, so soething in the hypothesis of the theore ust be false. That is, it cannot be true that a, b, x 1, and y 1 are positive integers for which a 2 db 2 = 4, x 2 1 dy 2 1 = 4, and a > x 1. However, it is true that a 2 db 2 = 4 and x 2 1 dy 2 1 = 4, and a, x 1, and y 1 are positive integers. We know that since a is a positive integer, then a > x 1 by the iniality of x 1. The only possibility is that b is not positive. Therefore, b = 0. 24

26 Since we previously showed that a 2 db 2 = 4, we now see that a = 2. Thus, we have: However, it is also true that 2 = a + b d 2 = (u + v d) (x 1 y 1 d) 2 4 = (u + v d) (x 1 y 1 d) 2 1. Therefore, it follows that 4 = x 2 dy 2 = (x 1 y 1 d) (x 1 y 1 d) u + v d = (x 1 + y 1 d) 2 1 and we can finally conclude that u + v d = x + y d by the definition of xn + y n d in equation (35). In suary, we have proved the following theore: Theore 12. If (x, y) = (u, v) is a positive integer solution of x 2 dy 2 = 4, with d 5 (od 8), then there exists a positive integer such that u + v d = (x 1 + y 1 d) 2 1 where (x 1, y 1 ) is the fundaental solution of x 2 dy 2 = 4. Proof. The proof is contained in Section 6. Interestingly, the proof of Theore 12 holds for any odd d, though we know fro Theore 7 that if x 2 dy 2 = 4 can be solved for odd integers x and y, then x 5 (od 8). 7 Prograing In order to quickly find solutions to lots of Pell Equations, I wrote a coputer progra. After the user enters values of d and k, y progra checks any integers x in an attept to find one that akes y an integer. My progra is soewhat ore efficient than an exhaustive search that tests all positive integers x; as discussed in Section 4.1, y progra only tests values of x whose square is congruent to k odulo d. Using such an exhaustive search, y progra can quickly solve Pell Equations that have solutions with x less than a few billion. It is true that ore sophisticated ethods exist to find solutions to Pell Equations. One clever ethod is credited to the eleventh-century Indian atheatician Bhaskara and is the subject of a paper I wrote for Senior Math Seinar titled Bhaskara s Method for Solving Pell Equations [4]. The generally accepted ethod for solving Pell Equations today involves continued fractions, but I have not studied it. 25

27 My progra, PellSolver, has two odes: it can solve a single equation or any equations at once. If the user chooses to solve a single equation, the progra asks for values of d and k, as well as a axiu value of x to test. The progra identifies the Pell Equation as unsolvable if k is a quadratic nonresidue odulo d. Otherwise, the progra tests all values of x whose square is congruent to k odulo d, stopping when it finds an integer solution (x, y) or when x reaches the user-specified axiu. If the search is successful, the progra outputs the sallest positive integer solution to the Pell Equation, as well as the aount of tie it took to find the solution. Solving any equations with a single coand is useful if we wish to investigate patterns in solutions while varying d, k, or both. For exaple, the solutions found to Pell Equations where d 5 (od 8) and k = 4 in Table 4 of Section 5.3 were found using PellSolver. If the user chooses to solve any equations, the progra asks for iniu and axiu values of d. If these values are different, the progra asks for a step by which to increent d to obtain the next equation. For exaple, to solve x 2 dy 2 = 4 for values of d between 5 and 45 with d 5 (od 8), the user would choose d-iniu as 5, d-axiu as 45, and d-step as 8. The progra allows the user to adjust k siilarly, by specifying a inuu, axiu, and a step. Lastly, the progra asks for a axiu value of x as an upper liit to test. For each specified value of k, the progra then attepts to solve x 2 dy 2 = k for each specified value of d. (That is, increenting d and k is accoplished with nested loops, with k being increented in the outer loop and d in the inner loop.) Saple output fro PellSolver follows, with user input in bold: PellSolver Menu: 1. Solve a single equation 2. Solve any equations 3. Quit 1 We will attept to find solutions to equations of the for x^2- dy^2 = k Enter a value for d: 46 Enter a value for k: 1 Enter a ax value for x: Solution: x = 24335, y = 3588 found in 0 s PellSolver Menu: 1. Solve a single equation 2. Solve any equations 3. Quit 1 26

28 We will attept to find solutions to equations of the for x^2- dy^2 = k Enter a value for d: 4 ERROR: d=4 is a perfect square PellSolver Menu: 1. Solve a single equation 2. Solve any equations 3. Quit 2 Enter a in value for d: 50 Enter a ax value for d: 55 Enter a step for d: 1 Enter a in value for k: 1 Enter a ax value for k: 1 Enter a ax value for x: x^2-50y^2 = 1 -- Solution: x = 99, y = 14 x^2-51y^2 = 1 -- Solution: x = 50, y = 7 x^2-52y^2 = 1 -- Solution: x = 649, y = 90 x^2-53y^2 = 1 -- Solution: x = 66249, y = 9100 x^2-54y^2 = 1 -- Solution: x = 485, y = 66 x^2-55y^2 = 1 -- Solution: x = 89, y = 12 The search took 70 illiseconds. The Java source code for y progra is included in Appendix A. 27

29 8 Table of Solutions Table 5 contains the fundaental solutions of the Pell Equations x 2 dy 2 = 1 for nonsquare d < 100. d x y d x y d x y Table 5: Fundaental solutions to x 2 dy 2 = 1 for nonsquare d <

30 References [1] Barbeau, Edward J. Pell s Equation. Springer, [2] Pell, John. Dictionary of Scientific Biography. Vol 10, pg 495. New York: Charles Scribner s Sons. [3] Vanden Eynden, Charles. Eleentary Nuber Theory, second edition. McGraw Hill, [4] Wright, Matthew. Bhaskara s Method for Solving Pell Equations

31 A Listing of PellSolver 1 /* class: PellSolver 2 * author: Matthew Wright 3 * date: 3 April * version: 6 5 */ 6 7 iport java.io.*; 8 iport java.ath.*; 9 iport java.util.*; class PellSolver 12 { 13 public static void ain(string[] args) throws IOException 14 { 15 boolean repeat = true; 16 while(repeat) 17 { 18 Syste.out.println("PellSolver Menu:\n1. Solve a single equation\n"+ 19 "2. Solve any equations\n3. Quit"); 20 BufferedReader in = new BufferedReader(new InputStreaReader(Syste.in)); 21 int choice = (new Integer(in.readLine())).intValue(); 22 switch(choice) 23 { 24 case 1: solveone(); 25 break; 26 case 2: solvemany(); 27 break; 28 default: repeat = false; 29 } 30 }//end while 31 }//end ain() //ethod to solve a single Pell Equation 34 public static void solveone() throws IOException 35 { 36 //variables 37 long ax; 38 boolean debug = false; //Objects 41 BufferedReader in = new BufferedReader(new InputStreaReader(Syste.in)); 42 int d, k; //get input 45 Syste.out.println("We will attept to find solutions to equations of the for"+ 46 "x^2- dy^2 = k"); 47 Syste.out.println("Enter a value for d: "); 48 d = Integer.parseInt(in.readLine()); 49 30

32 50 //d cannot be a square 51 if(math.floor(math.sqrt(d)) - Math.sqrt(d) == 0) 52 { 53 Syste.out.println("ERROR: d="+d+" is a perfect square\n\n"); 54 return; 55 } Syste.out.println("Enter a value for k: "); 58 k = Integer.parseInt(in.readLine()); 59 Syste.out.println("Enter a ax value for x: "); 60 ax = Long.parseLong(in.readLine()); //create a Pell object 63 Pell eq = new Pell(d, k, true); //start tier 66 long begintie = Syste.currentTieMillis(); //look for a solution 69 Pair solution = null; 70 try 71 { 72 solution = eq.sartsearch(0, ax); 73 } 74 catch(quadraticnonresidueexception e) 75 { 76 Syste.out.println("NO SOLUTION because "+k+" is a quadratic nonresidue od "+d+"\n\n"); 77 } //stop tier 80 long tieelapsed = Syste.currentTieMillis() - begintie; //do we have a solution? 83 if(solution == null) 84 { 85 Syste.out.println("Max value reached; no solution found in "+tieelapsed+" s\n\n"); 86 } 87 else 88 { 89 Syste.out.println("Solution: x = "+solution.x+", y = "+solution.y+" found in "+ 90 tieelapsed+" s\n\n"); 91 } }//end solveone() //ethod to solve any Pell Equations 96 public static void solvemany() throws IOException 97 { 98 //variables 99 int d1, //starting value for d 100 d2, //ending value for d 31

33 101 dd=1, //d step (default is 1) 102 k1, //starting value for k 103 k2, //ending value for k 104 dk=1, //k step (default is 1) 105 ax; //ax value for x //use a BufferedReader for input 108 BufferedReader in = new BufferedReader(new InputStreaReader(Syste.in)); //input d 111 Syste.out.println("\nEnter a in value for d: "); 112 d1 = Integer.parseInt(in.readLine()); 113 Syste.out.println("Enter a ax value for d: "); 114 d2 = Integer.parseInt(in.readLine()); 115 if(d1!= d2) 116 { 117 Syste.out.println("Enter a step for d: "); 118 dd = Integer.parseInt(in.readLine()); 119 } //input k 122 Syste.out.println("Enter a in value for k: "); 123 k1 = Integer.parseInt(in.readLine()); 124 Syste.out.println("Enter a ax value for k: "); 125 k2 = Integer.parseInt(in.readLine()); 126 if(k1!= k2) 127 { 128 Syste.out.println("Enter a step for k: "); 129 dk = Integer.parseInt(in.readLine()); 130 } //input ax 133 Syste.out.println("Enter a ax value for x: "); 134 ax = Integer.parseInt(in.readLine()); //start tier 137 long begintie = Syste.currentTieMillis(); //loop k 140 for(;k1 <= k2; k1+=dk) 141 { 142 //loop d 143 for(int di = d1; di <= d2; di+=dd) 144 { 145 //ake sure d is nonsquare 146 if(math.floor(math.sqrt(di)) - Math.sqrt(di) == 0) 147 { 148 continue; 149 } //create a Pell object 32

34 152 Pell eq = new Pell(di, k1, true); //look for a solution 155 Pair solution = null; 156 try 157 { 158 solution = eq.sartsearch(0, ax); 159 //did we find a solution? 160 if(solution == null) 161 { 162 Syste.out.println(eq+"!! Max value reached; no solution found."); 163 } 164 else 165 { 166 Syste.out.println(eq+" -- Solution: x = "+solution.x+", y = "+solution.y); 167 } 168 } 169 catch(quadraticnonresidueexception e) 170 { 171 Syste.out.println(eq+"!! NO SOLUTION because "+k " is a quadratic nonresidue od "+di); 173 } 174 }//end loop d 175 }//end loop k //stop tier 178 long tieelapsed = Syste.currentTieMillis() - begintie; 179 Syste.out.println("The search took "+tieelapsed+" illiseconds.\n\n"); 180 }//end solvemany() 181 }//end class PellSolver class Pell 184 { 185 //data ebers 186 int d, k; 187 boolean output; //constructor 190 public Pell(int d, int k, boolean o) 191 { 192 this.d = d; 193 this.k = k; 194 this.output = o; 195 } //ethod to exhaustively search to find the sallest positive integer solution greater 198 // than start 199 //tests all values of x between start and start + ax 200 //returns null if no solution is found 201 public Pair exhaustivesearch(int start, long ax) 202 { 33

Polygonal Designs: Existence and Construction

Polygonal Designs: Existence and Construction Polygonal Designs: Existence and Construction John Hegean Departent of Matheatics, Stanford University, Stanford, CA 9405 Jeff Langford Departent of Matheatics, Drake University, Des Moines, IA 5011 G

More information

Curious Bounds for Floor Function Sums

Curious Bounds for Floor Function Sums 1 47 6 11 Journal of Integer Sequences, Vol. 1 (018), Article 18.1.8 Curious Bounds for Floor Function Sus Thotsaporn Thanatipanonda and Elaine Wong 1 Science Division Mahidol University International

More information

a a a a a a a m a b a b

a a a a a a a m a b a b Algebra / Trig Final Exa Study Guide (Fall Seester) Moncada/Dunphy Inforation About the Final Exa The final exa is cuulative, covering Appendix A (A.1-A.5) and Chapter 1. All probles will be ultiple choice

More information

arxiv: v1 [math.nt] 14 Sep 2014

arxiv: v1 [math.nt] 14 Sep 2014 ROTATION REMAINDERS P. JAMESON GRABER, WASHINGTON AND LEE UNIVERSITY 08 arxiv:1409.411v1 [ath.nt] 14 Sep 014 Abstract. We study properties of an array of nubers, called the triangle, in which each row

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem 36 The Weierstrass Approxiation Theore Recall that the fundaental idea underlying the construction of the real nubers is approxiation by the sipler rational nubers. Firstly, nubers are often deterined

More information

4 = (0.02) 3 13, = 0.25 because = 25. Simi-

4 = (0.02) 3 13, = 0.25 because = 25. Simi- Theore. Let b and be integers greater than. If = (. a a 2 a i ) b,then for any t N, in base (b + t), the fraction has the digital representation = (. a a 2 a i ) b+t, where a i = a i + tk i with k i =

More information

Lecture 21. Interior Point Methods Setup and Algorithm

Lecture 21. Interior Point Methods Setup and Algorithm Lecture 21 Interior Point Methods In 1984, Kararkar introduced a new weakly polynoial tie algorith for solving LPs [Kar84a], [Kar84b]. His algorith was theoretically faster than the ellipsoid ethod and

More information

EXPLICIT CONGRUENCES FOR EULER POLYNOMIALS

EXPLICIT CONGRUENCES FOR EULER POLYNOMIALS EXPLICIT CONGRUENCES FOR EULER POLYNOMIALS Zhi-Wei Sun Departent of Matheatics, Nanjing University Nanjing 10093, People s Republic of China zwsun@nju.edu.cn Abstract In this paper we establish soe explicit

More information

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3 A. Find all ordered pairs a, b) of positive integers for which a + b = 3 08. Answer. The six ordered pairs are 009, 08), 08, 009), 009 337, 674) = 35043, 674), 009 346, 673) = 3584, 673), 674, 009 337)

More information

1 Bounding the Margin

1 Bounding the Margin COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #12 Scribe: Jian Min Si March 14, 2013 1 Bounding the Margin We are continuing the proof of a bound on the generalization error of AdaBoost

More information

Egyptian Mathematics Problem Set

Egyptian Mathematics Problem Set (Send corrections to cbruni@uwaterloo.ca) Egyptian Matheatics Proble Set (i) Use the Egyptian area of a circle A = (8d/9) 2 to copute the areas of the following circles with given diaeter. d = 2. d = 3

More information

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines

Intelligent Systems: Reasoning and Recognition. Perceptrons and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley osig 1 Winter Seester 2018 Lesson 6 27 February 2018 Outline Perceptrons and Support Vector achines Notation...2 Linear odels...3 Lines, Planes

More information

Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval

Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval Unifor Approxiation and Bernstein Polynoials with Coefficients in the Unit Interval Weiang Qian and Marc D. Riedel Electrical and Coputer Engineering, University of Minnesota 200 Union St. S.E. Minneapolis,

More information

ORIGAMI CONSTRUCTIONS OF RINGS OF INTEGERS OF IMAGINARY QUADRATIC FIELDS

ORIGAMI CONSTRUCTIONS OF RINGS OF INTEGERS OF IMAGINARY QUADRATIC FIELDS #A34 INTEGERS 17 (017) ORIGAMI CONSTRUCTIONS OF RINGS OF INTEGERS OF IMAGINARY QUADRATIC FIELDS Jürgen Kritschgau Departent of Matheatics, Iowa State University, Aes, Iowa jkritsch@iastateedu Adriana Salerno

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

The Methods of Solution for Constrained Nonlinear Programming

The Methods of Solution for Constrained Nonlinear Programming Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 01-06 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.co The Methods of Solution for Constrained

More information

Infinitely Many Trees Have Non-Sperner Subtree Poset

Infinitely Many Trees Have Non-Sperner Subtree Poset Order (2007 24:133 138 DOI 10.1007/s11083-007-9064-2 Infinitely Many Trees Have Non-Sperner Subtree Poset Andrew Vince Hua Wang Received: 3 April 2007 / Accepted: 25 August 2007 / Published online: 2 October

More information

Characterization of the Line Complexity of Cellular Automata Generated by Polynomial Transition Rules. Bertrand Stone

Characterization of the Line Complexity of Cellular Automata Generated by Polynomial Transition Rules. Bertrand Stone Characterization of the Line Coplexity of Cellular Autoata Generated by Polynoial Transition Rules Bertrand Stone Abstract Cellular autoata are discrete dynaical systes which consist of changing patterns

More information

On Certain C-Test Words for Free Groups

On Certain C-Test Words for Free Groups Journal of Algebra 247, 509 540 2002 doi:10.1006 jabr.2001.9001, available online at http: www.idealibrary.co on On Certain C-Test Words for Free Groups Donghi Lee Departent of Matheatics, Uni ersity of

More information

3.8 Three Types of Convergence

3.8 Three Types of Convergence 3.8 Three Types of Convergence 3.8 Three Types of Convergence 93 Suppose that we are given a sequence functions {f k } k N on a set X and another function f on X. What does it ean for f k to converge to

More information

List Scheduling and LPT Oliver Braun (09/05/2017)

List Scheduling and LPT Oliver Braun (09/05/2017) List Scheduling and LPT Oliver Braun (09/05/207) We investigate the classical scheduling proble P ax where a set of n independent jobs has to be processed on 2 parallel and identical processors (achines)

More information

The Euler-Maclaurin Formula and Sums of Powers

The Euler-Maclaurin Formula and Sums of Powers DRAFT VOL 79, NO 1, FEBRUARY 26 1 The Euler-Maclaurin Forula and Sus of Powers Michael Z Spivey University of Puget Sound Tacoa, WA 98416 spivey@upsedu Matheaticians have long been intrigued by the su

More information

Analysis of Polynomial & Rational Functions ( summary )

Analysis of Polynomial & Rational Functions ( summary ) Analysis of Polynoial & Rational Functions ( suary ) The standard for of a polynoial function is ( ) where each of the nubers are called the coefficients. The polynoial of is said to have degree n, where

More information

arxiv: v2 [math.nt] 5 Sep 2012

arxiv: v2 [math.nt] 5 Sep 2012 ON STRONGER CONJECTURES THAT IMPLY THE ERDŐS-MOSER CONJECTURE BERND C. KELLNER arxiv:1003.1646v2 [ath.nt] 5 Sep 2012 Abstract. The Erdős-Moser conjecture states that the Diophantine equation S k () = k,

More information

Feature Extraction Techniques

Feature Extraction Techniques Feature Extraction Techniques Unsupervised Learning II Feature Extraction Unsupervised ethods can also be used to find features which can be useful for categorization. There are unsupervised ethods that

More information

PRELIMINARIES This section lists for later sections the necessary preliminaries, which include definitions, notations and lemmas.

PRELIMINARIES This section lists for later sections the necessary preliminaries, which include definitions, notations and lemmas. MORE O SQUARE AD SQUARE ROOT OF A ODE O T TREE Xingbo Wang Departent of Mechatronic Engineering, Foshan University, PRC Guangdong Engineering Center of Inforation Security for Intelligent Manufacturing

More information

A := A i : {A i } S. is an algebra. The same object is obtained when the union in required to be disjoint.

A := A i : {A i } S. is an algebra. The same object is obtained when the union in required to be disjoint. 59 6. ABSTRACT MEASURE THEORY Having developed the Lebesgue integral with respect to the general easures, we now have a general concept with few specific exaples to actually test it on. Indeed, so far

More information

Quadratic Reciprocity. As in the previous notes, we consider the Legendre Symbol, defined by

Quadratic Reciprocity. As in the previous notes, we consider the Legendre Symbol, defined by Math 0 Sring 01 Quadratic Recirocity As in the revious notes we consider the Legendre Sybol defined by $ ˆa & 0 if a 1 if a is a quadratic residue odulo. % 1 if a is a quadratic non residue We also had

More information

Chaotic Coupled Map Lattices

Chaotic Coupled Map Lattices Chaotic Coupled Map Lattices Author: Dustin Keys Advisors: Dr. Robert Indik, Dr. Kevin Lin 1 Introduction When a syste of chaotic aps is coupled in a way that allows the to share inforation about each

More information

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon

Model Fitting. CURM Background Material, Fall 2014 Dr. Doreen De Leon Model Fitting CURM Background Material, Fall 014 Dr. Doreen De Leon 1 Introduction Given a set of data points, we often want to fit a selected odel or type to the data (e.g., we suspect an exponential

More information

Block designs and statistics

Block designs and statistics Bloc designs and statistics Notes for Math 447 May 3, 2011 The ain paraeters of a bloc design are nuber of varieties v, bloc size, nuber of blocs b. A design is built on a set of v eleents. Each eleent

More information

Page 1 Lab 1 Elementary Matrix and Linear Algebra Spring 2011

Page 1 Lab 1 Elementary Matrix and Linear Algebra Spring 2011 Page Lab Eleentary Matri and Linear Algebra Spring 0 Nae Due /03/0 Score /5 Probles through 4 are each worth 4 points.. Go to the Linear Algebra oolkit site ransforing a atri to reduced row echelon for

More information

arxiv:math/ v1 [math.nt] 6 Apr 2005

arxiv:math/ v1 [math.nt] 6 Apr 2005 SOME PROPERTIES OF THE PSEUDO-SMARANDACHE FUNCTION arxiv:ath/05048v [ath.nt] 6 Apr 005 RICHARD PINCH Abstract. Charles Ashbacher [] has posed a nuber of questions relating to the pseudo-sarandache function

More information

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices

13.2 Fully Polynomial Randomized Approximation Scheme for Permanent of Random 0-1 Matrices CS71 Randoness & Coputation Spring 018 Instructor: Alistair Sinclair Lecture 13: February 7 Disclaier: These notes have not been subjected to the usual scrutiny accorded to foral publications. They ay

More information

Math 1600A Lecture 3, Section 002

Math 1600A Lecture 3, Section 002 Math 1600 Lecture 3 1 of 5 Math 1600A Lecture 3, Section 002 Announceents: More texts, solutions anuals and packages coing soon. Read Section 1.3 for next class. Work through recoended hoework questions.

More information

An EGZ generalization for 5 colors

An EGZ generalization for 5 colors An EGZ generalization for 5 colors David Grynkiewicz and Andrew Schultz July 6, 00 Abstract Let g zs(, k) (g zs(, k + 1)) be the inial integer such that any coloring of the integers fro U U k 1,..., g

More information

A Bernstein-Markov Theorem for Normed Spaces

A Bernstein-Markov Theorem for Normed Spaces A Bernstein-Markov Theore for Nored Spaces Lawrence A. Harris Departent of Matheatics, University of Kentucky Lexington, Kentucky 40506-0027 Abstract Let X and Y be real nored linear spaces and let φ :

More information

An Approach to Conic Sections

An Approach to Conic Sections n pproach to Conic ections Jia. F. Weng 1998 1 Introduction. The study of conic sections can be traced back to ancient Greek atheaticians, usually to pplonious (ca. 220-190 bc) [2]. The nae conic section

More information

ADVANCES ON THE BESSIS- MOUSSA-VILLANI TRACE CONJECTURE

ADVANCES ON THE BESSIS- MOUSSA-VILLANI TRACE CONJECTURE ADVANCES ON THE BESSIS- MOUSSA-VILLANI TRACE CONJECTURE CHRISTOPHER J. HILLAR Abstract. A long-standing conjecture asserts that the polynoial p(t = Tr(A + tb ] has nonnegative coefficients whenever is

More information

MULTIPLAYER ROCK-PAPER-SCISSORS

MULTIPLAYER ROCK-PAPER-SCISSORS MULTIPLAYER ROCK-PAPER-SCISSORS CHARLOTTE ATEN Contents 1. Introduction 1 2. RPS Magas 3 3. Ites as a Function of Players and Vice Versa 5 4. Algebraic Properties of RPS Magas 6 References 6 1. Introduction

More information

Chapter 6 1-D Continuous Groups

Chapter 6 1-D Continuous Groups Chapter 6 1-D Continuous Groups Continuous groups consist of group eleents labelled by one or ore continuous variables, say a 1, a 2,, a r, where each variable has a well- defined range. This chapter explores:

More information

PREPRINT 2006:17. Inequalities of the Brunn-Minkowski Type for Gaussian Measures CHRISTER BORELL

PREPRINT 2006:17. Inequalities of the Brunn-Minkowski Type for Gaussian Measures CHRISTER BORELL PREPRINT 2006:7 Inequalities of the Brunn-Minkowski Type for Gaussian Measures CHRISTER BORELL Departent of Matheatical Sciences Division of Matheatics CHALMERS UNIVERSITY OF TECHNOLOGY GÖTEBORG UNIVERSITY

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fitting of Data David Eberly, Geoetric Tools, Redond WA 98052 https://www.geoetrictools.co/ This work is licensed under the Creative Coons Attribution 4.0 International License. To view a

More information

. The univariate situation. It is well-known for a long tie that denoinators of Pade approxiants can be considered as orthogonal polynoials with respe

. The univariate situation. It is well-known for a long tie that denoinators of Pade approxiants can be considered as orthogonal polynoials with respe PROPERTIES OF MULTIVARIATE HOMOGENEOUS ORTHOGONAL POLYNOMIALS Brahi Benouahane y Annie Cuyt? Keywords Abstract It is well-known that the denoinators of Pade approxiants can be considered as orthogonal

More information

lecture 36: Linear Multistep Mehods: Zero Stability

lecture 36: Linear Multistep Mehods: Zero Stability 95 lecture 36: Linear Multistep Mehods: Zero Stability 5.6 Linear ultistep ethods: zero stability Does consistency iply convergence for linear ultistep ethods? This is always the case for one-step ethods,

More information

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs

Algorithms for parallel processor scheduling with distinct due windows and unit-time jobs BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 57, No. 3, 2009 Algoriths for parallel processor scheduling with distinct due windows and unit-tie obs A. JANIAK 1, W.A. JANIAK 2, and

More information

COS 424: Interacting with Data. Written Exercises

COS 424: Interacting with Data. Written Exercises COS 424: Interacting with Data Hoework #4 Spring 2007 Regression Due: Wednesday, April 18 Written Exercises See the course website for iportant inforation about collaboration and late policies, as well

More information

Solutions of some selected problems of Homework 4

Solutions of some selected problems of Homework 4 Solutions of soe selected probles of Hoework 4 Sangchul Lee May 7, 2018 Proble 1 Let there be light A professor has two light bulbs in his garage. When both are burned out, they are replaced, and the next

More information

Lecture 21 Principle of Inclusion and Exclusion

Lecture 21 Principle of Inclusion and Exclusion Lecture 21 Principle of Inclusion and Exclusion Holden Lee and Yoni Miller 5/6/11 1 Introduction and first exaples We start off with an exaple Exaple 11: At Sunnydale High School there are 28 students

More information

Generalized eigenfunctions and a Borel Theorem on the Sierpinski Gasket.

Generalized eigenfunctions and a Borel Theorem on the Sierpinski Gasket. Generalized eigenfunctions and a Borel Theore on the Sierpinski Gasket. Kasso A. Okoudjou, Luke G. Rogers, and Robert S. Strichartz May 26, 2006 1 Introduction There is a well developed theory (see [5,

More information

Midterm 1 Sample Solution

Midterm 1 Sample Solution Midter 1 Saple Solution NOTE: Throughout the exa a siple graph is an undirected, unweighted graph with no ultiple edges (i.e., no exact repeats of the sae edge) and no self-loops (i.e., no edges fro a

More information

arxiv: v1 [cs.ds] 29 Jan 2012

arxiv: v1 [cs.ds] 29 Jan 2012 A parallel approxiation algorith for ixed packing covering seidefinite progras arxiv:1201.6090v1 [cs.ds] 29 Jan 2012 Rahul Jain National U. Singapore January 28, 2012 Abstract Penghui Yao National U. Singapore

More information

In this chapter, we consider several graph-theoretic and probabilistic models

In this chapter, we consider several graph-theoretic and probabilistic models THREE ONE GRAPH-THEORETIC AND STATISTICAL MODELS 3.1 INTRODUCTION In this chapter, we consider several graph-theoretic and probabilistic odels for a social network, which we do under different assuptions

More information

Support Vector Machines MIT Course Notes Cynthia Rudin

Support Vector Machines MIT Course Notes Cynthia Rudin Support Vector Machines MIT 5.097 Course Notes Cynthia Rudin Credit: Ng, Hastie, Tibshirani, Friedan Thanks: Şeyda Ertekin Let s start with soe intuition about argins. The argin of an exaple x i = distance

More information

Chapter II TRIANGULAR NUMBERS

Chapter II TRIANGULAR NUMBERS Chapter II TRIANGULAR NUMBERS Part of this work contained in this chapter has resulted in the following publications: Gopalan, M.A. and Jayakuar, P. "Note on triangular nubers in arithetic progression",

More information

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Ato Thoas S. Kuntzlean Mark Ellison John Tippin Departent of Cheistry Departent of Cheistry Departent

More information

Putnam 1997 (Problems and Solutions)

Putnam 1997 (Problems and Solutions) Putna 997 (Probles and Solutions) A. A rectangle, HOMF, has sides HO =and OM =5. A triangle ABC has H as the intersection of the altitudes, O the center of the circuscribed circle, M the idpoint of BC,

More information

1. INTRODUCTION AND RESULTS

1. INTRODUCTION AND RESULTS SOME IDENTITIES INVOLVING THE FIBONACCI NUMBERS AND LUCAS NUMBERS Wenpeng Zhang Research Center for Basic Science, Xi an Jiaotong University Xi an Shaanxi, People s Republic of China (Subitted August 00

More information

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields

Finite fields. and we ve used it in various examples and homework problems. In these notes I will introduce more finite fields Finite fields I talked in class about the field with two eleents F 2 = {, } and we ve used it in various eaples and hoework probles. In these notes I will introduce ore finite fields F p = {,,...,p } for

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 11 10/15/2008 ABSTRACT INTEGRATION I

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 11 10/15/2008 ABSTRACT INTEGRATION I MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 11 10/15/2008 ABSTRACT INTEGRATION I Contents 1. Preliinaries 2. The ain result 3. The Rieann integral 4. The integral of a nonnegative

More information

Math Real Analysis The Henstock-Kurzweil Integral

Math Real Analysis The Henstock-Kurzweil Integral Math 402 - Real Analysis The Henstock-Kurzweil Integral Steven Kao & Jocelyn Gonzales April 28, 2015 1 Introduction to the Henstock-Kurzweil Integral Although the Rieann integral is the priary integration

More information

6.2 Grid Search of Chi-Square Space

6.2 Grid Search of Chi-Square Space 6.2 Grid Search of Chi-Square Space exaple data fro a Gaussian-shaped peak are given and plotted initial coefficient guesses are ade the basic grid search strateg is outlined an actual anual search is

More information

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13

CSE525: Randomized Algorithms and Probabilistic Analysis May 16, Lecture 13 CSE55: Randoied Algoriths and obabilistic Analysis May 6, Lecture Lecturer: Anna Karlin Scribe: Noah Siegel, Jonathan Shi Rando walks and Markov chains This lecture discusses Markov chains, which capture

More information

OBJECTIVES INTRODUCTION

OBJECTIVES INTRODUCTION M7 Chapter 3 Section 1 OBJECTIVES Suarize data using easures of central tendency, such as the ean, edian, ode, and idrange. Describe data using the easures of variation, such as the range, variance, and

More information

Combinatorial Primality Test

Combinatorial Primality Test Cobinatorial Priality Test Maheswara Rao Valluri School of Matheatical and Coputing Sciences Fiji National University, Derrick Capus, Suva, Fiji E-ail: aheswara.valluri@fnu.ac.fj Abstract This paper provides

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Processes: A Friendly Introduction for Electrical and oputer Engineers Roy D. Yates and David J. Goodan Proble Solutions : Yates and Goodan,1..3 1.3.1 1.4.6 1.4.7 1.4.8 1..6

More information

PELL S EQUATION, II KEITH CONRAD

PELL S EQUATION, II KEITH CONRAD PELL S EQUATION, II KEITH CONRAD 1. Introduction In Part I we met Pell s equation x dy = 1 for nonsquare positive integers d. We stated Lagrange s theorem that every Pell equation has a nontrivial solution

More information

Birthday Paradox Calculations and Approximation

Birthday Paradox Calculations and Approximation Birthday Paradox Calculations and Approxiation Joshua E. Hill InfoGard Laboratories -March- v. Birthday Proble In the birthday proble, we have a group of n randoly selected people. If we assue that birthdays

More information

International Mathematical Olympiad. Preliminary Selection Contest 2009 Hong Kong. Outline of Solutions

International Mathematical Olympiad. Preliminary Selection Contest 2009 Hong Kong. Outline of Solutions International Matheatical Olypiad Preliinary Selection ontest 009 Hong Kong Outline of Solutions nswers:. 03809. 0 3. 0. 333. 00099 00. 37 7. 3 8. 3 9. 3 0. 8 3. 009 00. 3 3. 3. 89. 8077. 000 7. 30 8.

More information

Stability Ordinates of Adams Predictor-Corrector Methods

Stability Ordinates of Adams Predictor-Corrector Methods BIT anuscript No. will be inserted by the editor Stability Ordinates of Adas Predictor-Corrector Methods Michelle L. Ghrist Jonah A. Reeger Bengt Fornberg Received: date / Accepted: date Abstract How far

More information

Congruences and Modular Arithmetic

Congruences and Modular Arithmetic Congruenes and Modular Aritheti 6-17-2016 a is ongruent to b od n eans that n a b. Notation: a = b (od n). Congruene od n is an equivalene relation. Hene, ongruenes have any of the sae properties as ordinary

More information

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science

A Better Algorithm For an Ancient Scheduling Problem. David R. Karger Steven J. Phillips Eric Torng. Department of Computer Science A Better Algorith For an Ancient Scheduling Proble David R. Karger Steven J. Phillips Eric Torng Departent of Coputer Science Stanford University Stanford, CA 9435-4 Abstract One of the oldest and siplest

More information

Beyond Mere Convergence

Beyond Mere Convergence Beyond Mere Convergence Jaes A. Sellers Departent of Matheatics The Pennsylvania State University 07 Whitore Laboratory University Park, PA 680 sellers@ath.psu.edu February 5, 00 REVISED Abstract In this

More information

arxiv:math/ v1 [math.nt] 15 Jul 2003

arxiv:math/ v1 [math.nt] 15 Jul 2003 arxiv:ath/0307203v [ath.nt] 5 Jul 2003 A quantitative version of the Roth-Ridout theore Toohiro Yaada, 606-8502, Faculty of Science, Kyoto University, Kitashirakawaoiwakecho, Sakyoku, Kyoto-City, Kyoto,

More information

Computable Shell Decomposition Bounds

Computable Shell Decomposition Bounds Coputable Shell Decoposition Bounds John Langford TTI-Chicago jcl@cs.cu.edu David McAllester TTI-Chicago dac@autoreason.co Editor: Leslie Pack Kaelbling and David Cohn Abstract Haussler, Kearns, Seung

More information

MODULAR HYPERBOLAS AND THE CONGRUENCE ax 1 x 2 x k + bx k+1 x k+2 x 2k c (mod m)

MODULAR HYPERBOLAS AND THE CONGRUENCE ax 1 x 2 x k + bx k+1 x k+2 x 2k c (mod m) #A37 INTEGERS 8 (208) MODULAR HYPERBOLAS AND THE CONGRUENCE ax x 2 x k + bx k+ x k+2 x 2k c (od ) Anwar Ayyad Departent of Matheatics, Al Azhar University, Gaza Strip, Palestine anwarayyad@yahoo.co Todd

More information

Descent polynomials. Mohamed Omar Department of Mathematics, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA , USA,

Descent polynomials. Mohamed Omar Department of Mathematics, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA , USA, Descent polynoials arxiv:1710.11033v2 [ath.co] 13 Nov 2017 Alexander Diaz-Lopez Departent of Matheatics and Statistics, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA, alexander.diaz-lopez@villanova.edu

More information

Time-frequency plane behavioural studies of harmonic and chirp functions with fractional Fourier transform (FRFT)

Time-frequency plane behavioural studies of harmonic and chirp functions with fractional Fourier transform (FRFT) Maejo International Journal of Science and Technology Full Paper ISSN 95-7873 Available online at www.ijst.ju.ac.th Tie-frequency plane behavioural studies of haronic and chirp functions with fractional

More information

Kernel Methods and Support Vector Machines

Kernel Methods and Support Vector Machines Intelligent Systes: Reasoning and Recognition Jaes L. Crowley ENSIAG 2 / osig 1 Second Seester 2012/2013 Lesson 20 2 ay 2013 Kernel ethods and Support Vector achines Contents Kernel Functions...2 Quadratic

More information

Bernoulli Numbers. Junior Number Theory Seminar University of Texas at Austin September 6th, 2005 Matilde N. Lalín. m 1 ( ) m + 1 k. B m.

Bernoulli Numbers. Junior Number Theory Seminar University of Texas at Austin September 6th, 2005 Matilde N. Lalín. m 1 ( ) m + 1 k. B m. Bernoulli Nubers Junior Nuber Theory Seinar University of Texas at Austin Septeber 6th, 5 Matilde N. Lalín I will ostly follow []. Definition and soe identities Definition 1 Bernoulli nubers are defined

More information

Calculus with the TI-89. Sample Activity: Exploration 6. Brendan Kelly

Calculus with the TI-89. Sample Activity: Exploration 6. Brendan Kelly Calculus with the TI-89 Saple Activity: Exploration 6 Brendan Kelly EXPLORATION 6 The Derivative as a Liit THE BETTMANN ARCHIVE Isaac Newton, Karl Gauss, and Archiedes are rated by historians of atheatics

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

1 Rademacher Complexity Bounds

1 Rademacher Complexity Bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #10 Scribe: Max Goer March 07, 2013 1 Radeacher Coplexity Bounds Recall the following theore fro last lecture: Theore 1. With probability

More information

THE SUPER CATALAN NUMBERS S(m, m + s) FOR s 3 AND SOME INTEGER FACTORIAL RATIOS. 1. Introduction. = (2n)!

THE SUPER CATALAN NUMBERS S(m, m + s) FOR s 3 AND SOME INTEGER FACTORIAL RATIOS. 1. Introduction. = (2n)! THE SUPER CATALAN NUMBERS S(, + s FOR s 3 AND SOME INTEGER FACTORIAL RATIOS XIN CHEN AND JANE WANG Abstract. We give a cobinatorial interpretation for the super Catalan nuber S(, + s for s 3 using lattice

More information

1 Proof of learning bounds

1 Proof of learning bounds COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #4 Scribe: Akshay Mittal February 13, 2013 1 Proof of learning bounds For intuition of the following theore, suppose there exists a

More information

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta

USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS. By: Ian Blokland, Augustana Campus, University of Alberta 1 USEFUL HINTS FOR SOLVING PHYSICS OLYMPIAD PROBLEMS By: Ian Bloland, Augustana Capus, University of Alberta For: Physics Olypiad Weeend, April 6, 008, UofA Introduction: Physicists often attept to solve

More information

E0 370 Statistical Learning Theory Lecture 5 (Aug 25, 2011)

E0 370 Statistical Learning Theory Lecture 5 (Aug 25, 2011) E0 370 Statistical Learning Theory Lecture 5 Aug 5, 0 Covering Nubers, Pseudo-Diension, and Fat-Shattering Diension Lecturer: Shivani Agarwal Scribe: Shivani Agarwal Introduction So far we have seen how

More information

M ath. Res. Lett. 15 (2008), no. 2, c International Press 2008 SUM-PRODUCT ESTIMATES VIA DIRECTED EXPANDERS. Van H. Vu. 1.

M ath. Res. Lett. 15 (2008), no. 2, c International Press 2008 SUM-PRODUCT ESTIMATES VIA DIRECTED EXPANDERS. Van H. Vu. 1. M ath. Res. Lett. 15 (2008), no. 2, 375 388 c International Press 2008 SUM-PRODUCT ESTIMATES VIA DIRECTED EXPANDERS Van H. Vu Abstract. Let F q be a finite field of order q and P be a polynoial in F q[x

More information

A note on the multiplication of sparse matrices

A note on the multiplication of sparse matrices Cent. Eur. J. Cop. Sci. 41) 2014 1-11 DOI: 10.2478/s13537-014-0201-x Central European Journal of Coputer Science A note on the ultiplication of sparse atrices Research Article Keivan Borna 12, Sohrab Aboozarkhani

More information

arxiv: v1 [cs.ds] 3 Feb 2014

arxiv: v1 [cs.ds] 3 Feb 2014 arxiv:40.043v [cs.ds] 3 Feb 04 A Bound on the Expected Optiality of Rando Feasible Solutions to Cobinatorial Optiization Probles Evan A. Sultani The Johns Hopins University APL evan@sultani.co http://www.sultani.co/

More information

On Conditions for Linearity of Optimal Estimation

On Conditions for Linearity of Optimal Estimation On Conditions for Linearity of Optial Estiation Erah Akyol, Kuar Viswanatha and Kenneth Rose {eakyol, kuar, rose}@ece.ucsb.edu Departent of Electrical and Coputer Engineering University of California at

More information

Least squares fitting with elliptic paraboloids

Least squares fitting with elliptic paraboloids MATHEMATICAL COMMUNICATIONS 409 Math. Coun. 18(013), 409 415 Least squares fitting with elliptic paraboloids Heluth Späth 1, 1 Departent of Matheatics, University of Oldenburg, Postfach 503, D-6 111 Oldenburg,

More information

THE ROTATION NUMBER OF PRIMITIVE VE SEQUENCES. Citation Osaka Journal of Mathematics. 52(3)

THE ROTATION NUMBER OF PRIMITIVE VE SEQUENCES. Citation Osaka Journal of Mathematics. 52(3) Title THE ROTATION NUMBER OF PRIMITIVE VE SEQUENCES Author(s) Suyaa, Yusuke Citation Osaka Journal of Matheatics 52(3) Issue 205-07 Date Tet Version publisher URL http://hdlhandlenet/094/57655 DOI Rights

More information

Force and dynamics with a spring, analytic approach

Force and dynamics with a spring, analytic approach Force and dynaics with a spring, analytic approach It ay strie you as strange that the first force we will discuss will be that of a spring. It is not one of the four Universal forces and we don t use

More information

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization

13 Harmonic oscillator revisited: Dirac s approach and introduction to Second Quantization 3 Haronic oscillator revisited: Dirac s approach and introduction to Second Quantization. Dirac cae up with a ore elegant way to solve the haronic oscillator proble. We will now study this approach. The

More information

On the Use of A Priori Information for Sparse Signal Approximations

On the Use of A Priori Information for Sparse Signal Approximations ITS TECHNICAL REPORT NO. 3/4 On the Use of A Priori Inforation for Sparse Signal Approxiations Oscar Divorra Escoda, Lorenzo Granai and Pierre Vandergheynst Signal Processing Institute ITS) Ecole Polytechnique

More information

Bernoulli numbers and generalized factorial sums

Bernoulli numbers and generalized factorial sums Bernoulli nubers and generalized factorial sus Paul Thoas Young Departent of Matheatics, College of Charleston Charleston, SC 29424 paul@ath.cofc.edu June 25, 2010 Abstract We prove a pair of identities

More information

arxiv: v1 [math.co] 19 Apr 2017

arxiv: v1 [math.co] 19 Apr 2017 PROOF OF CHAPOTON S CONJECTURE ON NEWTON POLYTOPES OF q-ehrhart POLYNOMIALS arxiv:1704.0561v1 [ath.co] 19 Apr 017 JANG SOO KIM AND U-KEUN SONG Abstract. Recently, Chapoton found a q-analog of Ehrhart polynoials,

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Fast Montgomery-like Square Root Computation over GF(2 m ) for All Trinomials

Fast Montgomery-like Square Root Computation over GF(2 m ) for All Trinomials Fast Montgoery-like Square Root Coputation over GF( ) for All Trinoials Yin Li a, Yu Zhang a, a Departent of Coputer Science and Technology, Xinyang Noral University, Henan, P.R.China Abstract This letter

More information