Assignment. Find connections between your own research and intraseasonal variability in the tropics

Size: px
Start display at page:

Download "Assignment. Find connections between your own research and intraseasonal variability in the tropics"

Transcription

1

2

3 Assignment Find connections between your own research and intraseasonal variability in the tropics a 15-minute oral summary with 5-minutes additional to answer questions and A 1-5 page written summary Please confirm your topic selection with me by March 29.

4 Internet Directory roundy/atm523 Contains the syllabus and will include pdfs of these notes

5 Background Animation

6 Dissect the Data Seasonal cycle Cycle is not sinusoidal, so Harmonics Includes periods of 365, 365/2, 365/3, and 365/4 days (first 4 harmonics)

7 Seasonal Cycle Low level flow Upper level flow Vertical structure at equator and 10N Winds Relative Humidity

8 Time longitude diagram of CLAUS Tb (2.5S 7.5N), January April 1987

9 Intraseasonal Mode Vocabulary Madden Julian Oscillation Kelvin wave (oceanic or atmospheric) Equatorial Rossby wave Mixed Rossby Gravity wave Inertio Gravity wave Easterly Wave

10 Intraseasonal Mode ITCZ/SPCZ/SACZ Monsoon trough Trade wind trough Gill Model Westerly Wind Burst Trade surge Baroclinic modes Vocabulary Rossby wave response

11 OBSERVATIONS OF KELVIN WAVES AND THE MJO Time longitude diagram of CLAUS Tb (2.5S 7.5N), January April 1987 MJO (5 m s-1) Kelvin waves (15 m s-1)

12 Simple Models of Wave Motion in the Tropics Full Equations of Motion and Scaling Equatorial Beta Plane Shallow Water (Following Matsuno (1966), JMSJ Boussinesq Model (Following Roundy and Janiga 2011)

13 u' t 2Ωv'sin(φ) + 2Ωw'cos(ϕ) = 1 p' ρ x

14 u' t 2Ωv'sin(φ) + 2Ωw'cos(ϕ) = 1 p' ρ x v' t + 2Ωu'sin(φ) = 1 p' ρ y

15 u' p' t 2Ωv'sin(φ) + 2Ωw'cos(ϕ) = 1 ρ x v' p' t + 2Ωu'sin(φ) = 1 ρ y w' t 2Ωu'cos(φ) + 1 ρ 0 p' z = s'

16 u' p' t 2Ωv'sin(φ) + 2Ωw'cos(ϕ) = 1 ρ x v' p' t + 2Ωu'sin(φ) = 1 ρ y w' t 2Ωu'cos(φ) + 1 ρ 0 p' z = 0

17 u' t 2Ωv'sin(φ) + 2Ωw'cos(ϕ) = 1 p' ρ x v' t + 2Ωu'sin(φ) = 1 p' ρ y w' t 2Ωu'cos(φ) + 1 ρ 0 p' z = 0 1 p' ρ t + gh e u' x + v' = 0 y

18 Shallow Water Model Assume a constant density shallow fluid of mean depth h e

19 f βy u t βyv'= 1 p' ρ x v' t + βyu'= 1 p' ρ y 1 p' ρ t + gh u' e x + v' = 0 y u' v' 1 ρ p' = u ˆ (y) v ˆ (y) p ˆ (y) exp i(kx νt) [ ]

20 f βy u' t βyv'= 1 p' ρ x v' t + βyu'= 1 p' ρ y 1 p' ρ t + gh u' e x + v' = 0 y u' u ˆ (y) v' = ˆ v (y) 1 ρ p' p ˆ (y) exp[ i(kx νt) ]

21 f βy u' t βyv'= 1 p' ρ x v' t + βyu'= 1 p' ρ y 1 p' ρ t + gh u' e x + v' = 0 y u' u ˆ (y) v' = ˆ v (y) exp i(kx νt) 1 ρ p' p ˆ (y) [ ] iνˆ u βy ˆ v = ikˆ p iνv ˆ + βyˆ u = ˆ p y iνˆ p + gh e ikˆ u + v ˆ = 0 y See Holton Chapter 11 (tropical dynamics) for solutions

22 Mixed Rossby-Gravity Wave Theoretical Structure Wind, Pressure (contours), Divergence, red negative

23 Kelvin Wave Theoretical Structure Wind, Pressure (contours), Divergence, blue negative

24 Boussinesq Model N(z) = g dρ ρ 0 dz 1/ 2 s = g ( ρ ρ) 0 ρ 0

25 u' t βyv'+2ωw'+ 1 ρ 0 p x = 0 (1)

26 u' t βyv'+2ωw'+ 1 p ρ 0 x = 0 (1) v' t + βyu'+ 1 p ρ 0 y = 0 (2)

27 u' t βyv'+2ωw'+ 1 p ρ 0 x = 0 (1) v' t + βyu'+ 1 p ρ 0 y = 0 (2) w' 2Ωu'+ 1 p' t ρ 0 z = s (3)

28 u' t βyv'+2ωw'+ 1 p ρ 0 x = 0 (1) v' t + βyu'+ 1 p ρ 0 y = 0 (2) w' 2Ωu'+ 1 p' t ρ 0 z = s (3) u' x + v' y + w' z = 0 (4)

29 u' t βyv'+2ωw'+ 1 p ρ 0 x = 0 (1) v' t + βyu'+ 1 p ρ 0 y = 0 (2) w' 2Ωu'+ 1 p' t ρ 0 z = s (3) u' x + v' y + w' z = 0 (4) s' t + N 2 w'= 0 (5)

30 (6) ( ( )) (6) ( u',v',w',ρ 1 0 p',s' ) = ( u ˆ, v ˆ, w ˆ, p ˆ, s ˆ )exp i kx + lz νt

31 iνˆ u βyv ˆ + 2Ωw ˆ + ikˆ p = 0 (7) iνˆ v + βyˆ u + ˆ p y = 0 (8) iνw ˆ 2Ωˆ u + ilˆ p = s ˆ (9) ikˆ u + v ˆ y + il w ˆ = 0 (10) iνˆ s + N 2 w ˆ = 0 (11)

32 2 v ˆ y + 2 l 4iβylΩ ˆ v N 2 + 4Ω 2 ν 2 y + 2 ν 2 k 2 ( N 2 ν 2 ) kβ ( ν N 2 ν 2 ) N 2 + 4Ω 2 ν 2 v ˆ + 2iΩlβ N 2 + 4Ω 2 ν 2 ˆ v l 2 β 2 y 2 N 2 + 4Ω 2 ν 2 ˆ v = 0

33 v ˆ = η(y)exp i 2 Γy 2 Γ 2βlΩ N 2 + 4Ω 2 ν 2

34 2 η l 2 ν 2 + k 2 ( N 2 ν 2 ) + kβ y ν N 2 ν 2 2 N 2 + 4Ω 2 ν 2 ( ) + y 2 β 2 l 2 ( N 2 ν 2 ) ( N 2 + 4Ω 2 ν 2 ) 2 η = 0

35 ( N 2 ν 2 ) 1/ 2 βl k 2 kβ + l2 ν 2 ν N 2 ν 2 = 2n + 1

36

37

38 How Do Equatorial Waves Actually Behave? Analysis of observations

39 Morphology of a Tropical Mesoscale Convective Complex in the eastern Atlantic during GATE (from Zipser et al. 1981) Storm Motion

40 Observed Kelvin wave morphology (from Straub and Kiladis 2003) Wave Motion

41 Two day (WIG) wave cloud morphology (from Takayabu et al. 1996)

42 from Morita et al., 2006

43 Basic Fourier Analysis Assume some time series x(t) that includes various quasi-periodic processes How can we compare activity at different frequencies or filter activity in a specific frequency band from the rest of the signal?

44 Fourier Analysis Used to find out how much activity in a given frequency is found in a time series, and to filter for that activity Basic underlying principle: sin(2πft + ϕ) = asin2πft + bcos2πft

45 Fourier Analysis Used to find out how much activity in a given frequency is found in a time series, and to filter for that activity Basic underlying principle: sin(2πft + ϕ) = asin2πft + bcos2πft sin(2πft + ϕ) = sin2πft cosϕ + cos2πft sinϕ

46 X(µ) = 1 T T x(t)exp i 2π(µ 1)(t 1) t=1 ( ) Fourier Transform of x

47 X(µ) = 1 T T x(t)exp i 2π(µ 1)(t 1) t=1 ( ) Fourier Transform of x X(t) = 1 T T µ=1 ( )( t 1) /T X(µ) * exp( i * 2π µ 1 )...1 t T Inverse Transform

48 X(µ) = 1 T T x(t)exp i 2π(µ 1)(t 1) t=1 ( ) Fourier Transform of x i = 1 r = x 2 + y 2 Polar Coordinates tanθ = y / x

49 X(µ) = 1 T T x(t)exp i 2π(µ 1)(t 1) t=1 ( ) Fourier Transform of x i = 1 r = x 2 + y 2 Polar Coordinates tanθ = y / x z = rcosθ + irsinθ = r(cosθ + isinθ)

50 X(µ) = 1 T T x(t)exp i 2π(µ 1)(t 1) t=1 ( ) Fourier Transform of x i = 1 r = x 2 + y 2 Polar Coordinates tanθ = y / x z = rcosθ + irsinθ = r(cosθ + isinθ) cosθ + isinθ = e iθ Euler s Formula

51 X(µ) = 1 T T x(t)exp i 2π(µ 1)(t 1) t=1 ( ) Fourier Transform of x i = 1 r = x 2 + y 2 Polar Coordinates tanθ = y / x z = rcosθ + irsinθ = r(cosθ + isinθ) cosθ + isinθ = e iθ Euler s Formula

52 X(µ) = 1 T T x(t)exp i 2π(µ 1)(t 1) t=1 ( ) Fourier Transform of x The power spectrum is just X(µ)X(µ)* Often a signal is buried in noise. To emphasize significant signals, smoothing the spectrum is appropriate. This can include breaking the dataset up into many subsets, calculating the spectra of each subset, and averaging the results.

53 Pure sinusoidal signals Square wave example Harmonics Gibbs ringing phenomenon Aliasing Signals in observed data Seasonal Cycle

54 From Mathworld.wolfram.com

55

56 Red noise White noise Blue noise How to distinguish noise from signal?

57 Some Definitions DFT, FFT, power, complex conjugate Frequency angular Wavenumber

58 Resolution of a Spectrum: Assume a time series length T days Maximum period resolved is length T Minimum period resolved is 2 days Periods resolved are T, T/2, T/3,, 2

59 Tropical Convection Tropical convection varies in space and time, so a spectrum characterizing it should include both zonal wavenumber and frequency. Break the dataset up into many overlapping time segments Take dft for a segment in space, then transform the result again in time. Average power over all segments

60 Symmetry of a Power Spectrum A power spectrum is redundant Second half reflects the first half Lowest Frequencies occur at the beginning and end, with highest at center Wavenumber-frequency spectra actually have four quadrants

61 Add full spectrum

62

63

64

65

66

67

68

69

70

71

72 0.5 Spectral Bands for OLR and PW Filtering TD-type 3 days Frequency (CPD) MRG Kelvin 6 days Period (Days) 0.1 h=50m ER 30 days MJO ISOe Westward Zonal Wavenumber Eastward h=12m *Adapted from Wheeler and Kiladis, 1999

73 Variance Variance is the mean square difference between observed values and the mean value var = ((x mean(x)) 2 ) Knowing the mean climate is necessary but not sufficient to describing weather in a region Variance of OLR also has a seasonal cycle

What is the Madden-Julian Oscillation (MJO)?

What is the Madden-Julian Oscillation (MJO)? What is the Madden-Julian Oscillation (MJO)? Planetary scale, 30 90 day oscillation in zonal wind, precipitation, surface pressure, humidity, etc., that propagates slowly eastward Wavelength = 12,000 20,000

More information

Introduction to tropical meteorology and deep convection

Introduction to tropical meteorology and deep convection Introduction to tropical meteorology and deep convection TMD Lecture 1 Roger K. Smith University of Munich A satpix tour of the tropics The zonal mean circulation (Hadley circulation), Inter- Tropical

More information

convectively coupled equatorial waves; wavelet analysis; non-traditional Coriolis terms

convectively coupled equatorial waves; wavelet analysis; non-traditional Coriolis terms Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 14 117, April 212 B Analysis of vertically propagating convectively coupled equatorial waves using observations and a

More information

Fourier Analysis. 19th October 2015

Fourier Analysis. 19th October 2015 Fourier Analysis Hilary Weller 19th October 2015 This is brief introduction to Fourier analysis and how it is used in atmospheric and oceanic science, for: Analysing data (eg climate

More information

Free and convectively coupled equatorial waves diagnosis using 3-D Normal Modes

Free and convectively coupled equatorial waves diagnosis using 3-D Normal Modes Free and convectively coupled equatorial waves diagnosis using 3-D Normal Modes Carlos A. F. Marques and J.M. Castanheira CESAM & Department of Physics University of Aveiro Portugal MODES Workshop - Boulder

More information

Analysis of Convectively Coupled Kelvin Waves in the Indian Ocean MJO

Analysis of Convectively Coupled Kelvin Waves in the Indian Ocean MJO 1342 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 65 Analysis of Convectively Coupled Kelvin Waves in the Indian Ocean MJO PAUL E. ROUNDY University at Albany, State University

More information

Introduction of products for Climate System Monitoring

Introduction of products for Climate System Monitoring Introduction of products for Climate System Monitoring 1 Typical flow of making one month forecast Textbook P.66 Observed data Atmospheric and Oceanic conditions Analysis Numerical model Ensemble forecast

More information

Introduction to tropical meteorology and deep convection

Introduction to tropical meteorology and deep convection Introduction to tropical meteorology and deep convection Roger K. Smith University of Munich A satpix tour of the tropics The zonal mean circulation (Hadley circulation), Inter- Tropical Convergence Zone

More information

Introduction of climate monitoring and analysis products for one-month forecast

Introduction of climate monitoring and analysis products for one-month forecast Introduction of climate monitoring and analysis products for one-month forecast TCC Training Seminar on One-month Forecast on 13 November 2018 10:30 11:00 1 Typical flow of making one-month forecast Observed

More information

Understanding the local and global impacts of model physics changes

Understanding the local and global impacts of model physics changes ECMWF Annual Seminar 2008 MJR 1 Understanding the local and global impacts of model physics changes Mark Rodwell Work with Thomas Jung 4 September 2008 Thanks to: MJR 2 Motivation The real world and GCMs

More information

Variability of West African Weather Systems. Chris Thorncroft Department of Atmospheric and Environmental Sciences University at Albany

Variability of West African Weather Systems. Chris Thorncroft Department of Atmospheric and Environmental Sciences University at Albany Variability of West African Weather Systems Chris Thorncroft Department of Atmospheric and Environmental Sciences University at Albany Variability of West African Weather Systems (1) Convectively Coupled

More information

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017

Gravity Waves. Lecture 5: Waves in Atmosphere. Waves in the Atmosphere and Oceans. Internal Gravity (Buoyancy) Waves 2/9/2017 Lecture 5: Waves in Atmosphere Perturbation Method Properties of Wave Shallow Water Model Gravity Waves Rossby Waves Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature

More information

Equatorially Trapped Waves in Shallow Water

Equatorially Trapped Waves in Shallow Water ! Revised November 20, 2012 6:08 PM! 1 Equatorially Trapped Waves in Shallow Water David Randall Introduction Matsuno (1966; Fig. 1) studied the linearized shallow water equations applied to an equatorial

More information

A Case Study of an Outbreak of Twin Tropical Cyclones

A Case Study of an Outbreak of Twin Tropical Cyclones MARCH 2009 S C H R E C K A N D M O L I N A R I 863 A Case Study of an Outbreak of Twin Tropical Cyclones CARL J. SCHRECK III AND JOHN MOLINARI Department of Earth and Atmospheric Sciences, University at

More information

Geophysical Research Letters

Geophysical Research Letters RESEARCH LETTER Key Points: CCEW phase speeds tend to shift as one would expect based on Doppler effects Observed CCEW amplitudes vary strongly by season and basin Observed CCEWs equivalent depths are

More information

Testing the Hypothesis that the MJO is a Mixed Rossby Gravity Wave Packet

Testing the Hypothesis that the MJO is a Mixed Rossby Gravity Wave Packet 226 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 68 Testing the Hypothesis that the MJO is a Mixed Rossby Gravity Wave Packet DA YANG AND ANDREW P. INGERSOLL Division of Geological

More information

Impact of ENSO on seasonal variations of Kelvin Waves and mixed Rossby-Gravity Waves

Impact of ENSO on seasonal variations of Kelvin Waves and mixed Rossby-Gravity Waves IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Impact of ENSO on seasonal variations of Kelvin Waves and mixed Rossby-Gravity Waves To cite this article: Saeful Rakhman et al

More information

Wave mo(on in the tropics. Shayne McGregor Lecturer (Climate), EAE, Monash Associate Inves(gator (ARC CSS)

Wave mo(on in the tropics. Shayne McGregor Lecturer (Climate), EAE, Monash Associate Inves(gator (ARC CSS) Wave mo(on in the tropics Shayne McGregor Lecturer (Climate), EAE, Monash Associate Inves(gator (ARC CSS) Equatorially trapped waves The linear SWM Equatorial Kelvin waves Other equatorially trapped waves

More information

Large-Scale Dynamical Fields Associated with Convectively Coupled Equatorial Waves

Large-Scale Dynamical Fields Associated with Convectively Coupled Equatorial Waves VOL. 57, NO. 5 JOURNAL OF THE ATMOSPHERIC SCIENCES 1MARCH 2000 Large-Scale Dynamical Fields Associated with Convectively Coupled Equatorial Waves MATTHEW WHEELER NOAA/Aeronomy Laboratory, Boulder, Colorado,

More information

AFRICAN EASTERLY WAVES IN CURRENT AND FUTURE CLIMATES

AFRICAN EASTERLY WAVES IN CURRENT AND FUTURE CLIMATES AFRICAN EASTERLY WAVES IN CURRENT AND FUTURE CLIMATES Victoria Dollar RTG Seminar Research - Spring 2018 April 16, 2018 Victoria Dollar ASU April 16, 2018 1 / 26 Overview Introduction Rossby waves and

More information

Different region of the globe. Lecture 3, 2009, Tropics & thunderstorms. Tropics. Tropics. Streamline 16/04/06. Rossby number

Different region of the globe. Lecture 3, 2009, Tropics & thunderstorms. Tropics. Tropics. Streamline 16/04/06. Rossby number Different region of the globe Lecture 3, 2009, Tropics & thunderstorms. Angular momentum of earth is larger at the equator than the pole => move south W ly momentum increases, moves north E ly momentum

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 24 September 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 24 September 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 24 September 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 25 February 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 25 February 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 25 February 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

Intraseasonal Variability and TC Forecasting

Intraseasonal Variability and TC Forecasting Intraseasonal Variability and TC Forecasting 2017 WMO Class Eric Blake Hurricane Specialist National Hurricane Center 3/1/2017 Outline Madden-Julian Oscillation (MJO) MJO analysis tools Kelvin Waves Brief

More information

Factors for the Simulation of Convectively Coupled Kelvin Waves

Factors for the Simulation of Convectively Coupled Kelvin Waves 15 MAY 2012 S E O E T A L. 3495 Factors for the Simulation of Convectively Coupled Kelvin Waves KYONG-HWAN SEO, JIN-HO CHOI, AND SANG-DAE HAN Division of Earth Environmental System, Department of Atmospheric

More information

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 30 October 2017

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 30 October 2017 ENSO: Recent Evolution, Current Status and Predictions Update prepared by: Climate Prediction Center / NCEP 30 October 2017 Outline Summary Recent Evolution and Current Conditions Oceanic Niño Index (ONI)

More information

Issued by the: Climate Services Division Fiji Meteorological Service Nadi Airport. 27 October 2010 GENERAL STATEMENT

Issued by the: Climate Services Division Fiji Meteorological Service Nadi Airport. 27 October 2010 GENERAL STATEMENT Fiji Meteorological Service (FMS) Tropical Cyclone Guidance for Season 2010/11 for the Fiji and the Southwest Pacific RSMC Region 160E to 120W Equator to 25 South Issued by the: Climate Services Division

More information

Identifying the MJO Skeleton in Observational Data

Identifying the MJO Skeleton in Observational Data . Identifying the MJO Skeleton in Observational Data Sam Stechmann, Wisconsin Andrew Majda, NYU World Weather Open Science Conference August 20, 2014 Montreal, Canada Theoretical prediction of MJO structure

More information

CONVECTIVELY COUPLED EQUATORIAL WAVES

CONVECTIVELY COUPLED EQUATORIAL WAVES CONVECTIVELY COUPLED EQUATORIAL WAVES George N. Kiladis, 1 Matthew C. Wheeler, 2 Patrick T. Haertel, 3 Katherine H. Straub, 4 and Paul E. Roundy 5 Received 4 March 2008; revised 15 September 2008; accepted

More information

Triggered Convection, Gravity Waves, and the MJO: A Shallow-Water Model

Triggered Convection, Gravity Waves, and the MJO: A Shallow-Water Model 2476 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 70 Triggered Convection, Gravity Waves, and the MJO: A Shallow-Water Model DA YANG AND ANDREW P. INGERSOLL Division of Geological

More information

The dominant component of intraseasonal variability in

The dominant component of intraseasonal variability in The Skeleton of Tropical Intraseasonal Oscillations Andrew J. Majda and Samuel N. Stechmann Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences,

More information

Tropical Cyclogenesis within an Equatorial Rossby Wave Packet

Tropical Cyclogenesis within an Equatorial Rossby Wave Packet APRIL 2007 M O L I N A R I E T A L. 1301 Tropical Cyclogenesis within an Equatorial Rossby Wave Packet JOHN MOLINARI, KELLY LOMBARDO,* AND DAVID VOLLARO Department of Earth and Atmospheric Sciences, University

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 5 August 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 5 August 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 9 November 2015

ENSO: Recent Evolution, Current Status and Predictions. Update prepared by: Climate Prediction Center / NCEP 9 November 2015 ENSO: Recent Evolution, Current Status and Predictions Update prepared by: Climate Prediction Center / NCEP 9 November 2015 Outline Summary Recent Evolution and Current Conditions Oceanic Niño Index (ONI)

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 11 November 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 11 November 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 11 November 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 15 July 2013

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 15 July 2013 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 15 July 2013 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

A Simple Dynamical Model Capturing the Key Features of Central Pacific El Niño (Supporting Information Appendix)

A Simple Dynamical Model Capturing the Key Features of Central Pacific El Niño (Supporting Information Appendix) A Simple Dynamical Model Capturing the Key Features of Central Pacific El Niño (Supporting Information Appendix) Nan Chen and Andrew J. Majda Department of Mathematics, and Center for Atmosphere Ocean

More information

ROSSBY WAVE PROPAGATION

ROSSBY WAVE PROPAGATION ROSSBY WAVE PROPAGATION (PHH lecture 4) The presence of a gradient of PV (or q.-g. p.v.) allows slow wave motions generally called Rossby waves These waves arise through the Rossby restoration mechanism,

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP 23 April 2012 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP 23 April 2012 Outline Overview Recent Evolution and Current Conditions Oceanic Niño Index

More information

The Contribution of Extratropical Waves to the MJO Wind Field

The Contribution of Extratropical Waves to the MJO Wind Field JANUARY 2014 A D A M E S E T A L. 155 The Contribution of Extratropical Waves to the MJO Wind Field ANGEL F. ADAMES AND JÉR ^OME PATOUX Department of Atmospheric Sciences, University of Washington, Seattle,

More information

KUALA LUMPUR MONSOON ACTIVITY CENT

KUALA LUMPUR MONSOON ACTIVITY CENT T KUALA LUMPUR MONSOON ACTIVITY CENT 2 ALAYSIAN METEOROLOGICAL http://www.met.gov.my DEPARTMENT MINISTRY OF SCIENCE. TECHNOLOGY AND INNOVATIO Introduction Atmospheric and oceanic conditions over the tropical

More information

Dynamics of the Atmosphere

Dynamics of the Atmosphere 12.810 Dynamics of the Atmosphere Course description: Discusses the dynamics of the atmosphere, with emphasis on the large scale. Instructor: Paul O Gorman Email: pog@mit.edu Office: 54-1712 Questions:

More information

The Equatorial Response to Higher-Latitude Forcing

The Equatorial Response to Higher-Latitude Forcing VOL. 57, NO. 9 JOURNAL OF THE ATMOSPHERIC SCIENCES 1MAY 2000 The Equatorial Response to Higher-Latitude Forcing BRIAN J. HOSKINS AND GUI-YING YANG Department of Meteorology, University of Reading, Reading,

More information

ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves

ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves Reference: An Introduction to Dynamic Meteorology (4 rd edition), J.R. Holton Atmosphere-Ocean Dynamics, A.E. Gill Fundamentals of Atmospheric

More information

Large-scale disturbances and convection. Željka Fuchs, University of Split

Large-scale disturbances and convection. Željka Fuchs, University of Split Large-scale disturbances and convection Željka Fuchs, University of Split Huatulco airport Tropical disturbances Tropical cyclones Monsoons Easterly waves Madden-Julian oscillation Convectively

More information

A Toy Model of the Instability in the Equatorially Trapped Convectively Coupled Waves on the Equatorial Beta Plane

A Toy Model of the Instability in the Equatorially Trapped Convectively Coupled Waves on the Equatorial Beta Plane A Toy Model of the Instability in the Equatorially Trapped Convectively Coupled Waves on the Equatorial Beta Plane The Harvard community has made this article openly available. Please share how this access

More information

Tropical precipitation variability and convectively coupled equatorial waves. on submonthly time-scales in reanalyses and TRMM JI-EUN KIM

Tropical precipitation variability and convectively coupled equatorial waves. on submonthly time-scales in reanalyses and TRMM JI-EUN KIM 1 1 Tropical precipitation variability and convectively coupled equatorial waves 2 on submonthly time-scales in reanalyses and TRMM 3 4 JI-EUN KIM 5 Department of Atmospheric and Oceanic Sciences, University

More information

Vertical Moist Thermodynamic Structure of the MJO in AIRS Observations: An Update and A Comparison to ECMWF Interim Reanalysis

Vertical Moist Thermodynamic Structure of the MJO in AIRS Observations: An Update and A Comparison to ECMWF Interim Reanalysis Vertical Moist Thermodynamic Structure of the MJO in AIRS Observations: An Update and A Comparison to ECMWF Interim Reanalysis Baijun Tian 1 Duane Waliser 1, Eric Fetzer 1, and Yuk Yung 2 1.Jet Propulsion

More information

Toward Seamless Weather-Climate Prediction with a Global Cloud Resolving Model

Toward Seamless Weather-Climate Prediction with a Global Cloud Resolving Model DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Toward Seamless Weather-Climate Prediction with a Global Cloud Resolving Model PI: Tim Li IPRC/SOEST, University of Hawaii

More information

Can a Simple Two-Layer Model Capture the Structure of Easterly Waves?

Can a Simple Two-Layer Model Capture the Structure of Easterly Waves? Can a Simple Two-Layer Model Capture the Structure of Easterly Waves? Cheryl L. Lacotta 1 Introduction Most tropical storms in the Atlantic, and even many in the eastern Pacific, are due to disturbances

More information

Tropical Cyclogenesis Associated with Kelvin Waves and the Madden Julian Oscillation

Tropical Cyclogenesis Associated with Kelvin Waves and the Madden Julian Oscillation SEPTEMBER 2011 S C H R E C K A N D M O L I N A R I 2723 Tropical Cyclogenesis Associated with Kelvin Waves and the Madden Julian Oscillation CARL J. SCHRECK III Cooperative Institute for Climate and Satellites,

More information

CHAPTER 2 DATA AND METHODS. Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 1850

CHAPTER 2 DATA AND METHODS. Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 1850 CHAPTER 2 DATA AND METHODS Errors using inadequate data are much less than those using no data at all. Charles Babbage, circa 185 2.1 Datasets 2.1.1 OLR The primary data used in this study are the outgoing

More information

196 7 atmospheric oscillations:

196 7 atmospheric oscillations: 196 7 atmospheric oscillations: 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES We now consider the nature of gravity wave propagation in the atmosphere. Atmospheric gravity waves can only exist when the atmosphere

More information

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves A few examples Shallow water equation derivation and solutions Goal: Develop the mathematical foundation of tropical waves Previously: MCS Hovmoller Propagating w/ wave velocity From Chen et al (1996)

More information

The Asian Monsoon in the Superparameterized CCSM and Its Relationship to Tropical Wave Activity

The Asian Monsoon in the Superparameterized CCSM and Its Relationship to Tropical Wave Activity 5134 J O U R N A L O F C L I M A T E VOLUME 24 The Asian Monsoon in the Superparameterized CCSM and Its Relationship to Tropical Wave Activity CHARLOTTE A. DEMOTT Department of Atmospheric Science, Colorado

More information

Tropical Meteorology. Roger K. Smith INDO IR

Tropical Meteorology. Roger K. Smith INDO IR Tropical Meteorology Roger K. Smith INDO IR 01010510 1 GMS IR 01022621 GOES IR 00112909 2 Introduction to the tropics The zonal mean circulation (Hadley circulation) The data network in the tropics (field

More information

Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States

Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States Quasi-equilibrium Theory of Small Perturbations to Radiative- Convective Equilibrium States See CalTech 2005 paper on course web site Free troposphere assumed to have moist adiabatic lapse rate (s* does

More information

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must Lecture 5: Waves in Atmosphere Perturbation Method With this method, all filed variables are separated into two parts: (a) a basic state part and (b) a deviation from the basic state: Perturbation Method

More information

Leveraging the MJO for Predicting Envelopes of Tropical Wave and Synoptic Activity at Multi-Week Lead Times

Leveraging the MJO for Predicting Envelopes of Tropical Wave and Synoptic Activity at Multi-Week Lead Times DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Leveraging the MJO for Predicting Envelopes of Tropical Wave and Synoptic Activity at Multi-Week Lead Times Dr. Duane Waliser

More information

Dynamics and Kinematics

Dynamics and Kinematics Geophysics Fluid Dynamics () Syllabus Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3,

More information

Goals of this Chapter

Goals of this Chapter Waves in the Atmosphere and Oceans Restoring Force Conservation of potential temperature in the presence of positive static stability internal gravity waves Conservation of potential vorticity in the presence

More information

Mixed Rossby Gravity Waves and Western Pacific Tropical Cyclogenesis. Part I: Synoptic Evolution

Mixed Rossby Gravity Waves and Western Pacific Tropical Cyclogenesis. Part I: Synoptic Evolution 15 JULY 2002 DICKINSON AND MOLINARI 2183 Mixed Rossby Gravity Waves and Western Pacific Tropical Cyclogenesis. Part I: Synoptic Evolution MICHAEL DICKINSON AND JOHN MOLINARI Department of Earth and Atmospheric

More information

Geophysics Fluid Dynamics (ESS228)

Geophysics Fluid Dynamics (ESS228) Geophysics Fluid Dynamics (ESS228) Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3, 4,

More information

8/21/08. Modeling the General Circulation of the Atmosphere. Topic 4: Equatorial Wave Dynamics. Moisture and Equatorial Waves

8/21/08. Modeling the General Circulation of the Atmosphere. Topic 4: Equatorial Wave Dynamics. Moisture and Equatorial Waves Modeling the General Circulation of the Atmosphere. Topic 4: Equatorial Wave Dynamics D A R G A N M. W. F R I E R S O N U N I V E R S I T Y O F W A S H I N G T O N, D E P A R T M E N T O F A T M O S P

More information

The Maritime Continent as a Prediction Barrier

The Maritime Continent as a Prediction Barrier The Maritime Continent as a Prediction Barrier for the MJO Augustin Vintzileos EMC/NCEP SAIC Points to take back home. Forecast of the MJO is at, average, skillful for lead times of up to circa 2 weeks.

More information

Attributing Tropical Cyclogenesis to Equatorial Waves in the Western North Pacific

Attributing Tropical Cyclogenesis to Equatorial Waves in the Western North Pacific FEBRUARY 2011 S C H R E C K E T A L. 195 Attributing Tropical Cyclogenesis to Equatorial Waves in the Western North Pacific CARL J. SCHRECK III Cooperative Institute for Climate and Satellites, North Carolina

More information

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition Foreword Preface Preface of the First Edition xiii xv xvii Parti Fundamentals 1. Introduction 1.1 Objective 3 1.2 Importance of Geophysical Fluid Dynamics 4 1.3 Distinguishing Attributes of Geophysical

More information

Moisture modes, cloud-radiative feedbacks and the MJO

Moisture modes, cloud-radiative feedbacks and the MJO Moisture modes, cloud-radiative feedbacks and the MJO Adam Sobel Eric Maloney with bits from Shuguang Wang, Jim Benedict; thanks also Gilles Bellon, Dargan Frierson, Daehyun Kim EUCLIPSE summer school

More information

2006/12/29. MISMO workshop Yokohama, 25 November, 2008

2006/12/29. MISMO workshop Yokohama, 25 November, 2008 Global cloud-resolving simulations of MJO events in November 2006 - January 2007 ---multiscale structure --- 2006/12/29 MTSAT-1R NICAM Tomoe NASUNO, Masaki SATOH, Hiroaki MIURA, NICAM development group

More information

The Planetary Circulation System

The Planetary Circulation System 12 The Planetary Circulation System Learning Goals After studying this chapter, students should be able to: 1. describe and account for the global patterns of pressure, wind patterns and ocean currents

More information

Equatorial Waves and Air Sea Interaction in the Boreal Summer Intraseasonal Oscillation

Equatorial Waves and Air Sea Interaction in the Boreal Summer Intraseasonal Oscillation 1JULY 2001 KEMBALL-COOK AND WANG 2923 Equatorial Waves and Air Sea Interaction in the Boreal Summer Intraseasonal Oscillation SUSAN KEMBALL-COOK* AND BIN WANG Department of Meteorology, School of Ocean

More information

Lecture #3: Gravity Waves in GCMs. Charles McLandress (Banff Summer School 7-13 May 2005)

Lecture #3: Gravity Waves in GCMs. Charles McLandress (Banff Summer School 7-13 May 2005) Lecture #3: Gravity Waves in GCMs Charles McLandress (Banff Summer School 7-13 May 2005) 1 Outline of Lecture 1. Role of GWs in the middle atmosphere 2. Background theory 3. Resolved GWs in GCMs 4. Parameterized

More information

Anticorrelated intensity change of the quasi-biweekly and day oscillations over the South China Sea

Anticorrelated intensity change of the quasi-biweekly and day oscillations over the South China Sea Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L16702, doi:10.1029/2008gl034449, 2008 Anticorrelated intensity change of the quasi-biweekly and 30 50-day oscillations over the South

More information

Excitation of Intraseasonal Variability in the Equatorial Atmosphere by Yanai Wave Groups via WISHE-Induced Convection

Excitation of Intraseasonal Variability in the Equatorial Atmosphere by Yanai Wave Groups via WISHE-Induced Convection 210 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 68 Excitation of Intraseasonal Variability in the Equatorial Atmosphere by Yanai Wave Groups via WISHE-Induced Convection AVIV SOLODOCH

More information

Characteristics of Kelvin waves and Mixed Rossby-Gravity waves in opposite QBO phases

Characteristics of Kelvin waves and Mixed Rossby-Gravity waves in opposite QBO phases Home Search Collections Journals About Contact us My IOPscience Characteristics of Kelvin waves and Mixed Rossby-Gravity waves in opposite QBO phases This content has been downloaded from IOPscience. Please

More information

Baroclinic wave. Atmospheric Dynamics: lecture 14 18/12/15. Topics. Chapter 9: Baroclinic waves and cyclogenesis. What is a baroclinic wave?

Baroclinic wave. Atmospheric Dynamics: lecture 14 18/12/15. Topics. Chapter 9: Baroclinic waves and cyclogenesis. What is a baroclinic wave? Atmospheric Dynamics: lecture 14 (http://www.staff.science.uu.nl/~delde102/) Topics Chapter 9: Baroclinic waves and cyclogenesis What is a baroclinic wave? Quasi-geostrophic equations Omega equation Original

More information

Seasonality and Regionality of the Madden Julian Oscillation, Kelvin Wave, and Equatorial Rossby Wave

Seasonality and Regionality of the Madden Julian Oscillation, Kelvin Wave, and Equatorial Rossby Wave 4400 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 64 Seasonality and Regionality of the Madden Julian Oscillation, Kelvin Wave, and Equatorial Rossby Wave HIROHIKO MASUNAGA* Colorado

More information

Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation

Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: AGCM simulation of sources and propagation Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jd010374, 2009 Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere:

More information

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP July 26, 2004

ENSO Cycle: Recent Evolution, Current Status and Predictions. Update prepared by Climate Prediction Center / NCEP July 26, 2004 ENSO Cycle: Recent Evolution, Current Status and Predictions Update prepared by Climate Prediction Center / NCEP July 26, 2004 Outline Overview Recent Evolution and Current Conditions Oceanic NiZo Index

More information

NOTES AND CORRESPONDENCE. On the Vertical Scale of Gravity Waves Excited by Localized Thermal Forcing

NOTES AND CORRESPONDENCE. On the Vertical Scale of Gravity Waves Excited by Localized Thermal Forcing 15 JUNE 00 NOTES AND CORRESPONDENCE 019 NOTES AND CORRESPONDENCE On the Vertical Scale of Gravity Waves Excited by Localized Thermal Forcing J. R. HOLTON, J.H.BERES, AND X. ZHOU Department of Atmospheric

More information

Impact of Madden-Julian Oscillation (MJO) on global distribution of total water vapor and column ozone

Impact of Madden-Julian Oscillation (MJO) on global distribution of total water vapor and column ozone IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Impact of Madden-Julian Oscillation (MJO) on global distribution of total water vapor and column ozone To cite this article: Irvan

More information

Origin of the Summertime Synoptic-Scale Wave Train in the Western North Pacific*

Origin of the Summertime Synoptic-Scale Wave Train in the Western North Pacific* MARCH 2006 L I 1093 Origin of the Summertime Synoptic-Scale Wave Train in the Western North Pacific* TIM LI International Pacific Research Center and Department of Meteorology, University of Hawaii at

More information

The Quasi-Biennial Oscillation Analysis of the Resolved Wave Forcing

The Quasi-Biennial Oscillation Analysis of the Resolved Wave Forcing The Quasi-Biennial Oscillation Analysis of the Resolved Wave Forcing Thomas Krismer, Marco Giorgetta Max Planck Institute for Meteorology Hamburg Introduction 1) The Quasi Biennial Oscillation is driven

More information

UPDATE OF REGIONAL WEATHER AND SMOKE HAZE (December 2017)

UPDATE OF REGIONAL WEATHER AND SMOKE HAZE (December 2017) UPDATE OF REGIONAL WEATHER AND SMOKE HAZE (December 2017) 1. Review of Regional Weather Conditions for November 2017 1.1 In November 2017, Southeast Asia experienced inter-monsoon conditions in the first

More information

CHAPTER 5. WAVES AT LOW LATITUDES 73 Figure 5.1: Configuration of a one-layer fluid model with a + fu

CHAPTER 5. WAVES AT LOW LATITUDES 73 Figure 5.1: Configuration of a one-layer fluid model with a  + fu Chapter 5 WAVES AT LOW LATITUDES Acharacteristic of the atmosphere is its shallow depth; 99% of the mass lies below a height of 30 km whereas the mean earth radius is 6,380 km. Over this 30 km which extends

More information

The Influence of Intraseasonal Variations on Medium- to Extended-Range Weather Forecasts over South America

The Influence of Intraseasonal Variations on Medium- to Extended-Range Weather Forecasts over South America 486 MONTHLY WEATHER REVIEW The Influence of Intraseasonal Variations on Medium- to Extended-Range Weather Forecasts over South America CHARLES JONES Institute for Computational Earth System Science (ICESS),

More information

MJO skeleton and conceptual models

MJO skeleton and conceptual models MJO skeleton and conceptual models To appear in: Encyclopedia of Atmospheric Science, 2nd Edition October 1, 2 Andrew J. Majda Courant Institute of Mathematical Sciences, New York University Samuel N.

More information

Waves in Planetary Atmospheres R. L. Walterscheid

Waves in Planetary Atmospheres R. L. Walterscheid Waves in Planetary Atmospheres R. L. Walterscheid 2008 The Aerospace Corporation The Wave Zoo Lighthill, Comm. Pure Appl. Math., 20, 1967 Wave-Deformed Antarctic Vortex Courtesy of VORCORE Project, Vial

More information

Multi-scale interactions of equatorial waves associated with tropical cyclogenesis over the western North Pacific

Multi-scale interactions of equatorial waves associated with tropical cyclogenesis over the western North Pacific Climate Dynamics https://doi.org/10.1007/s00382-018-4307-z Multi-scale interactions of equatorial waves associated with tropical cyclogenesis over the western North Pacific Haikun Zhao 1,2 Xianan Jiang

More information

The Madden Julian Oscillation in the ECMWF monthly forecasting system

The Madden Julian Oscillation in the ECMWF monthly forecasting system The Madden Julian Oscillation in the ECMWF monthly forecasting system Frédéric Vitart ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom F.Vitart@ecmwf.int ABSTRACT A monthly forecasting system has

More information

Theoretical and Modeling Issues Related to ISO/MJO

Theoretical and Modeling Issues Related to ISO/MJO Theoretical and Modeling Issues Related to ISO/MJO Tim Li Department of Meteorology and IPRC University of Hawaii DYNAMO workshop, April 13-14, Boulder, Colorado 1. MJO Initiation issue: Role of air- sea

More information

Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño Southern Oscillation (ENSO)

Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño Southern Oscillation (ENSO) Simple Mathematical, Dynamical Stochastic Models Capturing the Observed Diversity of the El Niño Southern Oscillation (ENSO) Lecture 5: A Simple Stochastic Model for El Niño with Westerly Wind Bursts Andrew

More information

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany WAVES IN THE OCEANS Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany Keywords: Wind waves, dispersion, internal waves, inertial oscillations, inertial waves,

More information

August Description of an MJO forecast metric.

August Description of an MJO forecast metric. 1956-30 Targeted Training Activity: Seasonal Predictability in Tropical Regions to be followed by Workshop on Multi-scale Predictions of the Asian and African Summer Monsoon 4-15 August 2008 Description

More information

Chapter 8. Multiscale Temporal Mean Features of Perturbation Kinetic Energy and Its Budget in the Tropics: Review and Computation

Chapter 8. Multiscale Temporal Mean Features of Perturbation Kinetic Energy and Its Budget in the Tropics: Review and Computation CHAPTER 8 C H E N E T A L. 8.1 Chapter 8 Multiscale Temporal Mean Features of Perturbation Kinetic Energy and Its Budget in the Tropics: Review and Computation BAODE CHEN Key Laboratory of Numerical Modeling

More information

El Niño, South American Monsoon, and Atlantic Niño links as detected by a. TOPEX/Jason Observations

El Niño, South American Monsoon, and Atlantic Niño links as detected by a. TOPEX/Jason Observations El Niño, South American Monsoon, and Atlantic Niño links as detected by a decade of QuikSCAT, TRMM and TOPEX/Jason Observations Rong Fu 1, Lei Huang 1, Hui Wang 2, Paola Arias 1 1 Jackson School of Geosciences,

More information

MJO modeling and Prediction

MJO modeling and Prediction MJO modeling and Prediction In-Sik Kang Seoul National University, Korea Madden & Julian Oscillation (MJO) index Composite: OLR & U850 RMM index based on Leading PCs of Combined EOF (OLR, U850, U200) P-1

More information

Impact of Resolution on Extended-Range Multi-Scale Simulations

Impact of Resolution on Extended-Range Multi-Scale Simulations DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Impact of Resolution on Extended-Range Multi-Scale Simulations Carolyn A. Reynolds Naval Research Laboratory Monterey,

More information

Interactions Between the Stratosphere and Troposphere

Interactions Between the Stratosphere and Troposphere Interactions Between the Stratosphere and Troposphere A personal perspective Scott Osprey Courtesy of Verena Schenzinger The Wave-Driven Circulation Global structure of Temperature and Wind Temperature

More information

2. Baroclinic Instability and Midlatitude Dynamics

2. Baroclinic Instability and Midlatitude Dynamics 2. Baroclinic Instability and Midlatitude Dynamics Midlatitude Jet Stream Climatology (Atlantic and Pacific) Copyright 26 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without

More information