Lecture Discrete dynamic systems

Size: px
Start display at page:

Download "Lecture Discrete dynamic systems"

Transcription

1 Chapter 3 Low-level io Lecture 3.4 Discrete dynamic systems Lecture 3.4 Discrete dynamic systems Suppose that we wish to implement an embedded computer system that behaves analogously to a continuous linear single-input-single-output (SISO) dynamic system. The input and output for the continuous system are continuous functions of time. The corresponding input and output for the embedded system are data, sampled with period T, that form two discrete-time sequences as shown in Figure 3.4. A continuous system can be described by a linear, constant-coefficient differential equation: d n y α n dt n + α d n 1 y n 1 dt n α dy 1 dt + α y = d m x = β m dt m + β d m 1 x m 1 dt m β 1 where α k and β k are constants. The equivalent transfer function is T(s) = Y(s) X(s) dx dt + β x (3.1) = β ms m + β m 1 s m β 1 s 1 + β α n s n + α n 1 s n α 1 s 1 +α (3.2) The corresponding discrete system is described by a difference equation that operates on the sequence of input values to produce the output sequence y(n). The difference equation has the form difference equation y(n) + a 1 y(n 1) a N y(n N) = = b + b 1 x(n 1) b M x(n M) (3.3) for n =, 1, 2,..., where is a sequence of periodically digitized values of the analog input signal, y(n) is a sequence of values that determine the output signal, and a k for k =, 1,..., N and b k for k =, 1,..., M are constants. This equation can also be written in summation form: N M a k y(n k) = b k x(n k) (3.4) k= k= or, solving this for the current output sample y(n), [ y(n) = 1 M ] N b k x(n k) a k y(n k) k= k=1 (3.5) 19 3 August 218, 18:46:

2 Chapter 3 Low-level io Lecture 3.4 Discrete dynamic systems x(t) y(t) Input t Continuous System Output t x(nt) T y(nt) 1T 2T 3T 4T 5T 6T Input t Discrete System 1T 2T 3T 4T 5T 6T Output t y(n) n Sequences n Figure 3.4: continuous systems, discrete systems, and sequences. Notice that the most recent output value y(n) depends on previous values of y and on the previous and current values of the input x. This equation can also be written in summation form: N M a k y(n k) = b k x(n k) (3.6) k= k= or, solving for the current output sample y(n), ( y(n) = 1 M b k x(n k) k= ) N a k y(n k) k=1 (3.7) Notice that the most recent output value, y(n) depends on previous values of y, and on the previous and current value of the input x. The relationship between the constants a k and b k in the difference equation and the corresponding differential equation are described in the following August 218, 18:46:

3 Chapter 3 Low-level io Lecture 3.4 Discrete dynamic systems The z-transform In the analysis of continuous systems, we use the Laplace transform, defined by L (f(t)) = f(t)e st dt (3.8) which leads directly to the familiar property that the Laplace transform of the derivative of a function f(t) (with zero initial conditions) is s times the transform of the function F(s) L(f(t)): ( ) df(t) L = sf(s), (3.9) dt which enables us to find easily the transfer function of a linear continuous system, given its differential equation. For discrete systems a very similar procedure is available. The z- z-transform transform F(z) Z (f(n)) of a sequence f(n), with complex variable z (analogous to s), is defined by 3 Z (f(n)) = f(n)z n. (3.1) n= This leads directly to a property analogous to (3.9) for discrete systems: the z-transform of a function delayed by one sample period is z 1 times the transform of the function F(z): Z (f(n 1)) = z 1 F(z), (3.11) We can easily find the transfer function of a discrete system given its difference equation. For example, the z-transform of the second order difference equation y(n) + a 1 y(n 1) + a 2 y(n 2) = = b + b 1 x(n 1) + b 2 x(n 2) (3.12) is determined by successively applying (3.11) to arrive at ( 1 + a1 z 1 + a 2 z 2) Y(z) = ( b + b 1 z 1 + b 2 z 2) X(z). (3.13) 3 There are many more uses for z-transforms. For more details, see? August 218, 18:46:

4 Chapter 3 Low-level io Lecture 3.4 Discrete dynamic systems Rearranging, the discrete transfer function is Tustin s method Y(z) X(z) = b + b 1 z 1 + b 2 z a 1 z 1 + a 2 z 2 (3.14) Notice that the transfer function (3.14) and the difference equation (3.12), can be derived from each other by inspection. Notice also that the transfer function of a discrete system is the ratio of two polynomials in z, just as the transfer function of a continuous system is the ratio of two polynomials in s. There are several ways to derive an approximate discrete model from a corresponding continuous model. We will use a popular technique called Tustin s method that approximates a continuous function of time by straight lines connecting the sampled points (i.e. trapezoidal integration). The discrete transfer function is found from the continuous transfer function using Tustin s method by making the following substitution: s = 2 ( ) 1 z 1 T 1 + z 1 (3.15) and rewriting the transfer function in the form of equation (3.14). Here, T is the sample period Example Consider a continuous first order system described by the transfer function: Y(s) X(s) = 1, where τ is the time constant. (3.16) τs + 1 We want to find the corresponding discrete-time transfer function and difference equation. Substituting Equation 3.15 into the transfer function, we have: where α is a constant: from which the difference equation can be inferred (see Equations 3.12 to 3.14 above): August 218, 18:46:

5 Chapter 3 Low-level io Lecture 3.4 Discrete dynamic systems Notice again that the current value of the output y(n) depends on the previous output, y(n 1), and on the current and previous inputs, and x(n 1). Notice also that the coefficients depend on the time constant τ in the original continuous system and on the sample period T. During each sample period, the value of the current value of the input is measured and the current value of the output y(n) is computed. Suppose that the time constant τ = 2, the sample period T = 1, and that the input is a unit step ( = 1 for all n), and the initial condition y() =. Then, from our solution for y(n), and we can compute the output sequence: y(n) =.6y(n 1) +.4 (3.17) Figure 3.5 shows plots of the input and output sequences. The dotted line is the exact solution y(t/t) of the original continuous differential equation. As you can see, in this example, Tustin s method is very close to the exact solution at the sample points The biquad cascade Although we could implement Equation 6.3 as shown, the sensitivity of the output to the coefficients leads to numerical inaccuracies as the order of the system N becomes large. We will solve this problem by breaking the Nth order system it into a series of n s second-order systems. The technique is called a biquad cascade and is illustrated in Figure 3.6. biquad cascade August 218, 18:46:

6 Chapter 3 Low-level io Lecture 3.4 Discrete dynamic systems y(n) n n Figure 3.5 Input x(nt) Nth Order System Output y(nt) Input x(nt)... 2nd 2nd 2nd 2nd Order Order Order Order 1 2 n s -1 n s Output y(nt) Figure 3.6: a biquad cascade August 218, 18:46:

7 Chapter 3 Low-level io Lecture 3.4 Discrete dynamic systems Notice that the output of each second-order section (biquad) 4 is the input to the subsequent section. Each biquad implements the same second-order difference equation, but with different coefficients, inputs, and outputs. For example, the current output y i (n) from the ith section would be: y i (n) = 1 i ( bi x i (n) + b 1i x i (n 1) + b 2i x i (n 2) + a 1i y i (n 1) a 2i y i (n 2) ). (3.18) Of course, a first or second order transfer function would require only one biquad. Depending on the value of N, some of the coefficients of at least one biquad may be zero. We will implement a function to handle any value of N. There are a variety of algorithms for breaking a transfer function into biquadric sections. Matlab s Signal Processing Toolbox contains a function tf2sos (transfer function to second order sections) for this purpose Discrete-time controllers For reference, Table 3.4 contains Tustin equivalents for some common continuous-time controllers. The Matlab Control Toolbox contains a function c2d that computes the Tustin equivalent discrete system sysd from the continuous system sys, as follows. sysd = c2d(sys, T, 'tustin') 4 Biquad is short for biquadratic. The biquad transfer function has second-order polynomials in both numerator and denominator August 218, 18:46:

8 Chapter 3 Low-level io Lecture 3.4 Discrete dynamic systems Table 3.4: Tustin equivalents for common continuous-time controllers. Usage of z is contextual, meaning a zero in continuous transfer functions and meaning the z-transform z in discrete transfer functions. phase lag/lead PI PID continuous discrete differential equation k s + z s + p k b + b 1 z 1 + a 1 z ( 1 ) dy dx dt + py = k dt + zx K p + K i s b + b 1 z 1 + a 1 z 1 K p + K i s + K ds b + b 1 z 1 + b 2 z 2 + a 1 z 1 + a 2 z 2 t t y = K p x + K i x dt y = K p x + K i x dt + K d dx dt difference equation y(n) = a 1 y(n 1) + b + b 1 x(n 1) y(n) = a 1 y(n 1) + b + b 1 x(n 1) y(n) = a 1 y(n 1) a 2 y(n 2) + b + b 1 x(n 1) + b 2 x(n 2) a 1 (pt 2)/(pT + 2) 1 a 2 1 b k(zt + 2)/(pT + 2) K p + K i T/2 K p + K i T/2 + 2K d /T b 1 k(zt 2)/(pT + 2) K p + K i T/2 K i T 4K d /T b 2 K p + K i T/2 + 2K d /T August 218, 18:46:

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical

More information

Need for transformation?

Need for transformation? Z-TRANSFORM In today s class Z-transform Unilateral Z-transform Bilateral Z-transform Region of Convergence Inverse Z-transform Power Series method Partial Fraction method Solution of difference equations

More information

25. Chain Rule. Now, f is a function of t only. Expand by multiplication:

25. Chain Rule. Now, f is a function of t only. Expand by multiplication: 25. Chain Rule The Chain Rule is present in all differentiation. If z = f(x, y) represents a two-variable function, then it is plausible to consider the cases when x and y may be functions of other variable(s).

More information

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2 CHEE 39 Tutorial 3 Solutions. Using partial fraction expansions, find the causal function f whose Laplace transform is given by: F (s) 0 f(t)e st dt (.) F (s) = s(s+) ; Solution: Note that the polynomial

More information

Lecture 2. Introduction to Systems (Lathi )

Lecture 2. Introduction to Systems (Lathi ) Lecture 2 Introduction to Systems (Lathi 1.6-1.8) Pier Luigi Dragotti Department of Electrical & Electronic Engineering Imperial College London URL: www.commsp.ee.ic.ac.uk/~pld/teaching/ E-mail: p.dragotti@imperial.ac.uk

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Chemical Engineering 436 Laplace Transforms (1)

Chemical Engineering 436 Laplace Transforms (1) Chemical Engineering 436 Laplace Transforms () Why Laplace Transforms?? ) Converts differential equations to algebraic equations- facilitates combination of multiple components in a system to get the total

More information

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes Transfer Functions 2.6 Introduction In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace transform model of a linear engineering system. (A linear engineering

More information

Honors Differential Equations

Honors Differential Equations MIT OpenCourseWare http://ocw.mit.edu 8.034 Honors Differential Equations Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE 20. TRANSFORM

More information

The z-transform Part 2

The z-transform Part 2 http://faculty.kfupm.edu.sa/ee/muqaibel/ The z-transform Part 2 Dr. Ali Hussein Muqaibel The material to be covered in this lecture is as follows: Properties of the z-transform Linearity Initial and final

More information

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals.

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals. Z - Transform The z-transform is a very important tool in describing and analyzing digital systems. It offers the techniques for digital filter design and frequency analysis of digital signals. Definition

More information

A.1 THE SAMPLED TIME DOMAIN AND THE Z TRANSFORM. 0 δ(t)dt = 1, (A.1) δ(t)dt =

A.1 THE SAMPLED TIME DOMAIN AND THE Z TRANSFORM. 0 δ(t)dt = 1, (A.1) δ(t)dt = APPENDIX A THE Z TRANSFORM One of the most useful techniques in engineering or scientific analysis is transforming a problem from the time domain to the frequency domain ( 3). Using a Fourier or Laplace

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

Chapter 3 Convolution Representation

Chapter 3 Convolution Representation Chapter 3 Convolution Representation DT Unit-Impulse Response Consider the DT SISO system: xn [ ] System yn [ ] xn [ ] = δ[ n] If the input signal is and the system has no energy at n = 0, the output yn

More information

MathQuest: Differential Equations

MathQuest: Differential Equations MathQuest: Differential Equations Laplace Tranforms 1. True or False The Laplace transform method is the only way to solve some types of differential equations. (a) True, and I am very confident (b) True,

More information

Ch 6.2: Solution of Initial Value Problems

Ch 6.2: Solution of Initial Value Problems Ch 6.2: Solution of Initial Value Problems! The Laplace transform is named for the French mathematician Laplace, who studied this transform in 1782.! The techniques described in this chapter were developed

More information

Introduction to Digital Control. Week Date Lecture Title

Introduction to Digital Control. Week Date Lecture Title http://elec3004.com Introduction to Digital Control 2016 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date Lecture Title 1 29-Feb Introduction

More information

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform ME45: Control Systems Lecture 2 Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Transfer function Models for systems electrical mechanical electromechanical Block

More information

EE Homework 5 - Solutions

EE Homework 5 - Solutions EE054 - Homework 5 - Solutions 1. We know the general result that the -transform of α n 1 u[n] is with 1 α 1 ROC α < < and the -transform of α n 1 u[ n 1] is 1 α 1 with ROC 0 < α. Using this result, the

More information

Lecture V: Linear difference and differential equations

Lecture V: Linear difference and differential equations Lecture V: Linear difference and differential equations BME 171: Signals and Systems Duke University September 10, 2008 This lecture Plan for the lecture: 1 Discrete-time systems linear difference equations

More information

SAMPLE EXAMINATION PAPER (with numerical answers)

SAMPLE EXAMINATION PAPER (with numerical answers) CID No: IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

Lecture 1 From Continuous-Time to Discrete-Time

Lecture 1 From Continuous-Time to Discrete-Time Lecture From Continuous-Time to Discrete-Time Outline. Continuous and Discrete-Time Signals and Systems................. What is a signal?................................2 What is a system?.............................

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

EE Experiment 11 The Laplace Transform and Control System Characteristics

EE Experiment 11 The Laplace Transform and Control System Characteristics EE216:11 1 EE 216 - Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal

More information

Stability. X(s) Y(s) = (s + 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = +2 and s = -2. Y(s) 8X(s) G 1 G 2

Stability. X(s) Y(s) = (s + 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = +2 and s = -2. Y(s) 8X(s) G 1 G 2 Stability 8X(s) X(s) Y(s) = (s 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = 2 and s = -2 If all poles are in region where s < 0, system is stable in Fourier language s = jω G 0 - x3 x7 Y(s)

More information

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the

More information

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition

More information

Methods for analysis and control of. Lecture 6: Introduction to digital control

Methods for analysis and control of. Lecture 6: Introduction to digital control Methods for analysis and of Lecture 6: to digital O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename 6th May 2009 Outline Some interesting books:

More information

Analysis and Design of Control Systems in the Time Domain

Analysis and Design of Control Systems in the Time Domain Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

More information

Module 4 : Laplace and Z Transform Problem Set 4

Module 4 : Laplace and Z Transform Problem Set 4 Module 4 : Laplace and Z Transform Problem Set 4 Problem 1 The input x(t) and output y(t) of a causal LTI system are related to the block diagram representation shown in the figure. (a) Determine a differential

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

INTRODUCTION TO TRANSFER FUNCTIONS

INTRODUCTION TO TRANSFER FUNCTIONS INTRODUCTION TO TRANSFER FUNCTIONS The transfer function is the ratio of the output Laplace Transform to the input Laplace Transform assuming zero initial conditions. Many important characteristics of

More information

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto

Lecture 7: Laplace Transform and Its Applications Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand Outline Motivation The Laplace Transform The Laplace Transform

More information

MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.)

MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.) MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.) Lecture 19 Lecture 19 MA 201, PDE (2018) 1 / 24 Application of Laplace transform in solving ODEs ODEs with constant coefficients

More information

Control Systems. Frequency domain analysis. L. Lanari

Control Systems. Frequency domain analysis. L. Lanari Control Systems m i l e r p r a in r e v y n is o Frequency domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic

More information

Digital Control System Models. M. Sami Fadali Professor of Electrical Engineering University of Nevada

Digital Control System Models. M. Sami Fadali Professor of Electrical Engineering University of Nevada Digital Control System Models M. Sami Fadali Professor of Electrical Engineering University of Nevada 1 Outline Model of ADC. Model of DAC. Model of ADC, analog subsystem and DAC. Systems with transport

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson JUST THE MATHS UNIT NUMBER 16.3 LAPLACE TRANSFORMS 3 (Differential equations) by A.J.Hobson 16.3.1 Examples of solving differential equations 16.3.2 The general solution of a differential equation 16.3.3

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts Signals A signal is a pattern of variation of a physical quantity as a function of time, space, distance, position, temperature, pressure, etc. These quantities are usually

More information

MODELING OF CONTROL SYSTEMS

MODELING OF CONTROL SYSTEMS 1 MODELING OF CONTROL SYSTEMS Feb-15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace

More information

Recursive, Infinite Impulse Response (IIR) Digital Filters:

Recursive, Infinite Impulse Response (IIR) Digital Filters: Recursive, Infinite Impulse Response (IIR) Digital Filters: Filters defined by Laplace Domain transfer functions (analog devices) can be easily converted to Z domain transfer functions (digital, sampled

More information

MATHEMATICAL MODELING OF CONTROL SYSTEMS

MATHEMATICAL MODELING OF CONTROL SYSTEMS 1 MATHEMATICAL MODELING OF CONTROL SYSTEMS Sep-14 Dr. Mohammed Morsy Outline Introduction Transfer function and impulse response function Laplace Transform Review Automatic control systems Signal Flow

More information

ENGIN 211, Engineering Math. Laplace Transforms

ENGIN 211, Engineering Math. Laplace Transforms ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

Use: Analysis of systems, simple convolution, shorthand for e jw, stability. Motivation easier to write. Or X(z) = Z {x(n)}

Use: Analysis of systems, simple convolution, shorthand for e jw, stability. Motivation easier to write. Or X(z) = Z {x(n)} 1 VI. Z Transform Ch 24 Use: Analysis of systems, simple convolution, shorthand for e jw, stability. A. Definition: X(z) = x(n) z z - transforms Motivation easier to write Or Note if X(z) = Z {x(n)} z

More information

Course Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be).

Course Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be). ECE4520/5520: Multivariable Control Systems I. 1 1 Course Background 1.1: From time to frequency domain Loosely speaking, control is the process of getting something to do what you want it to do (or not

More information

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu

Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu Chapter : Time-Domain Representations of Linear Time-Invariant Systems Chih-Wei Liu Outline Characteristics of Systems Described by Differential and Difference Equations Block Diagram Representations State-Variable

More information

Fourier Transform 4: z-transform (part 2) & Introduction to 2D Fourier Analysis

Fourier Transform 4: z-transform (part 2) & Introduction to 2D Fourier Analysis 052600 VU Signal and Image Processing Fourier Transform 4: z-transform (part 2) & Introduction to 2D Fourier Analysis Torsten Möller + Hrvoje Bogunović + Raphael Sahann torsten.moeller@univie.ac.at hrvoje.bogunovic@meduniwien.ac.at

More information

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics 3.33pt Chain Rule MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Spring 2019 Single Variable Chain Rule Suppose y = g(x) and z = f (y) then dz dx = d (f (g(x))) dx = f (g(x))g (x)

More information

V. IIR Digital Filters

V. IIR Digital Filters Digital Signal Processing 5 March 5, V. IIR Digital Filters (Deleted in 7 Syllabus). (dded in 7 Syllabus). 7 Syllabus: nalog filter approximations Butterworth and Chebyshev, Design of IIR digital filters

More information

z-transforms Definition of the z-transform Chapter

z-transforms Definition of the z-transform Chapter z-transforms Chapter 7 In the study of discrete-time signal and systems, we have thus far considered the time-domain and the frequency domain. The z- domain gives us a third representation. All three domains

More information

LTI system response. Daniele Carnevale. Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata

LTI system response. Daniele Carnevale. Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata LTI system response Daniele Carnevale Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata Fondamenti di Automatica e Controlli Automatici A.A. 2014-2015 1 / 15 Laplace

More information

Digital Control & Digital Filters. Lectures 21 & 22

Digital Control & Digital Filters. Lectures 21 & 22 Digital Controls & Digital Filters Lectures 2 & 22, Professor Department of Electrical and Computer Engineering Colorado State University Spring 205 Review of Analog Filters-Cont. Types of Analog Filters:

More information

Solving Differential Equations Using MATLAB

Solving Differential Equations Using MATLAB Solving Differential Equations Using MATLAB Abraham Asfaw aasfaw.student@manhattan.edu November 28, 2011 1 Introduction In this lecture, we will follow up on lecture 2 with a discussion of solutions to

More information

Control Systems. Laplace domain analysis

Control Systems. Laplace domain analysis Control Systems Laplace domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic equations define an Input/Output

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

The Method of Laplace Transforms.

The Method of Laplace Transforms. The Method of Laplace Transforms. James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 25, 217 Outline 1 The Laplace Transform 2 Inverting

More information

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control

More information

APPLICATIONS FOR ROBOTICS

APPLICATIONS FOR ROBOTICS Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

CH.6 Laplace Transform

CH.6 Laplace Transform CH.6 Laplace Transform Where does the Laplace transform come from? How to solve this mistery that where the Laplace transform come from? The starting point is thinking about power series. The power series

More information

Module 4. Related web links and videos. 1. FT and ZT

Module 4. Related web links and videos. 1.  FT and ZT Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link

More information

Notice the minus sign on the adder: it indicates that the lower input is subtracted rather than added.

Notice the minus sign on the adder: it indicates that the lower input is subtracted rather than added. 6.003 Homework Due at the beginning of recitation on Wednesday, February 17, 010. Problems 1. Black s Equation Consider the general form of a feedback problem: + F G Notice the minus sign on the adder:

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

Chapter 2: Problem Solutions

Chapter 2: Problem Solutions Chapter 2: Problem Solutions Discrete Time Processing of Continuous Time Signals Sampling à Problem 2.1. Problem: Consider a sinusoidal signal and let us sample it at a frequency F s 2kHz. xt 3cos1000t

More information

Review Problems for Exam 2

Review Problems for Exam 2 Review Problems for Exam 2 This is a list of problems to help you review the material which will be covered in the final. Go over the problem carefully. Keep in mind that I am going to put some problems

More information

Laplace Transform Theory - 1

Laplace Transform Theory - 1 Laplace Transform Theory - 1 Existence of Laplace Transforms Before continuing our use of Laplace transforms for solving DEs, it is worth digressing through a quick investigation of which functions actually

More information

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable.

Noise - irrelevant data; variability in a quantity that has no meaning or significance. In most cases this is modeled as a random variable. 1.1 Signals and Systems Signals convey information. Systems respond to (or process) information. Engineers desire mathematical models for signals and systems in order to solve design problems efficiently

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

e st f (t) dt = e st tf(t) dt = L {t f(t)} s Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 [E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter?

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter? UNIT - III PART A. Mention the important features of the IIR filters? i) The physically realizable IIR filters does not have linear phase. ii) The IIR filter specification includes the desired characteristics

More information

( ) ( = ) = ( ) ( ) ( )

( ) ( = ) = ( ) ( ) ( ) ( ) Vρ C st s T t 0 wc Ti s T s Q s (8) K T ( s) Q ( s) + Ti ( s) (0) τs+ τs+ V ρ K and τ wc w T (s)g (s)q (s) + G (s)t(s) i G and G are transfer functions and independent of the inputs, Q and T i. Note

More information

Bayesian controller versus traditional controllers 1

Bayesian controller versus traditional controllers 1 Bayesian controller versus traditional controllers 1 Rainer Deventer 1, Joachim Denzler 1, and Heinrich Niemann 1 1 University Erlangen-Nürnberg, Chair for Pattern recognition, 91058 Erlangen, Martensstr.

More information

Introduction & Laplace Transforms Lectures 1 & 2

Introduction & Laplace Transforms Lectures 1 & 2 Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively

More information

Question: Total. Points:

Question: Total. Points: MATH 308 May 23, 2011 Final Exam Name: ID: Question: 1 2 3 4 5 6 7 8 9 Total Points: 0 20 20 20 20 20 20 20 20 160 Score: There are 9 problems on 9 pages in this exam (not counting the cover sheet). Make

More information

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K.

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K. 4 Laplace transforms 4. Definition and basic properties The Laplace transform is a useful tool for solving differential equations, in particular initial value problems. It also provides an example of integral

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1 Signals A signal is a pattern of variation of a physical quantity, often as a function of time (but also space, distance, position, etc). These quantities are usually the

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 19: Lattice Filters Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 2008 K. E. Barner (Univ. of Delaware) ELEG

More information

Laplace Transform Problems

Laplace Transform Problems AP Calculus BC Name: Laplace Transformation Day 3 2 January 206 Laplace Transform Problems Example problems using the Laplace Transform.. Solve the differential equation y! y = e t, with the initial value

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

Task 1 (24%): PID-control, the SIMC method

Task 1 (24%): PID-control, the SIMC method Final Exam Course SCE1106 Control theory with implementation (theory part) Wednesday December 18, 2014 kl. 9.00-12.00 SKIP THIS PAGE AND REPLACE WITH STANDARD EXAM FRONT PAGE IN WORD FILE December 16,

More information

One-Sided Laplace Transform and Differential Equations

One-Sided Laplace Transform and Differential Equations One-Sided Laplace Transform and Differential Equations As in the dcrete-time case, the one-sided transform allows us to take initial conditions into account. Preliminaries The one-sided Laplace transform

More information

Chapter 31. The Laplace Transform The Laplace Transform. The Laplace transform of the function f(t) is defined. e st f(t) dt, L[f(t)] =

Chapter 31. The Laplace Transform The Laplace Transform. The Laplace transform of the function f(t) is defined. e st f(t) dt, L[f(t)] = Chapter 3 The Laplace Transform 3. The Laplace Transform The Laplace transform of the function f(t) is defined L[f(t)] = e st f(t) dt, for all values of s for which the integral exists. The Laplace transform

More information

Analog LTI system Digital LTI system

Analog LTI system Digital LTI system Sampling Decimation Seismometer Amplifier AAA filter DAA filter Analog LTI system Digital LTI system Filtering (Digital Systems) input output filter xn [ ] X ~ [ k] Convolution of Sequences hn [ ] yn [

More information

EECE 460 : Control System Design

EECE 460 : Control System Design EECE 460 : Control System Design SISO Pole Placement Guy A. Dumont UBC EECE January 2011 Guy A. Dumont (UBC EECE) EECE 460: Pole Placement January 2011 1 / 29 Contents 1 Preview 2 Polynomial Pole Placement

More information

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS DESIGN OF CMOS ANALOG INEGRAED CIRCUIS Franco Maloberti Integrated Microsistems Laboratory University of Pavia Discrete ime Signal Processing F. Maloberti: Design of CMOS Analog Integrated Circuits Discrete

More information

CMPT 889: Lecture 5 Filters

CMPT 889: Lecture 5 Filters CMPT 889: Lecture 5 Filters Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 7, 2009 1 Digital Filters Any medium through which a signal passes may be regarded

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predator - Prey Model Trajectories and the nonlinear conservation law James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline

More information

21-256: Partial differentiation

21-256: Partial differentiation 21-256: Partial differentiation Clive Newstead, Thursday 5th June 2014 This is a summary of the important results about partial derivatives and the chain rule that you should know. Partial derivatives

More information

Transform Solutions to LTI Systems Part 3

Transform Solutions to LTI Systems Part 3 Transform Solutions to LTI Systems Part 3 Example of second order system solution: Same example with increased damping: k=5 N/m, b=6 Ns/m, F=2 N, m=1 Kg Given x(0) = 0, x (0) = 0, find x(t). The revised

More information

Lecture 3 January 23

Lecture 3 January 23 EE 123: Digital Signal Processing Spring 2007 Lecture 3 January 23 Lecturer: Prof. Anant Sahai Scribe: Dominic Antonelli 3.1 Outline These notes cover the following topics: Eigenvectors and Eigenvalues

More information

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 Dr. E. Jacobs The main texts for this course are Calculus by James Stewart and Fundamentals of Differential Equations by Nagle, Saff

More information

Digital Filters. Linearity and Time Invariance. Linear Time-Invariant (LTI) Filters: CMPT 889: Lecture 5 Filters

Digital Filters. Linearity and Time Invariance. Linear Time-Invariant (LTI) Filters: CMPT 889: Lecture 5 Filters Digital Filters CMPT 889: Lecture 5 Filters Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University October 7, 29 Any medium through which a signal passes may be regarded as

More information

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593

LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593 LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593 ELECTRICAL ENGINEERING DEPARTMENT JIS COLLEGE OF ENGINEERING (AN AUTONOMOUS INSTITUTE) KALYANI, NADIA CONTROL SYSTEM I LAB. MANUAL EE 593 EXPERIMENT

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information