LECTURE 17. Prof. Paul

Size: px
Start display at page:

Download "LECTURE 17. Prof. Paul"

Transcription

1 LECTURE 17 Prof. Paul

2 Announcements Exam II, two weeks away Cumulative (you must know concepts from first exam) On your hw I just handed back, (#38) I may have INCORRECTLY stated that it s wrong to use conservation of energy here. Elastic You don t need it

3 Today Glancing collisions Angular motion (review) Linear motions related to angular motions Centripetal acceleration

4 Glancing Collisions Any collision that happens in a plane need both x and y coordinates Asteroid problem is an example of one Posted online Chapter 6, problem 38 Posted online IDENTICAL to other collisions EXCEPT you must break up x & y into components.

5 Chapter 6 problem 38 Two shuffleboard disks of equal mass, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at 5.00 m/s. After the collision, the orange disk moves in a direction that makes an angle of 37.0 with the horizontal axis while the green disk makes an angle of 53.0 with this axis. Determine the speed of each disk after the collision.

6 2D momentum conservation (GLANCING COLLISIONS) Strategy Find sum of changes of momentum in x-direction Find sum of changes of momentum in y-direction Think about which terms are zero (check with picture) Decide if it s Elastic, Inelastic, or perfectly inelastic Elastic: use conservation of energy & conservation of momentum Inelastic: Use conservation of momentum Perfectly inelastic: use conservation of momentum & final velocities are equal in magnitude and direction Solve equations simultaneously for unknown

7 Last time: Angular Relationships Angular displacement ΔΘ = Θ f - Θ i Angular velocity ω avg. = Δθ/Δt Angular acceleration α avg. = Δω/Δt

8 Clicker Question There are 2 points (P & Q) on a disc. Q is further from the center than P. If I spin the disc clockwise: A. P s angular velocity will be greater B. Q s angular velocity will be greater C. P & Q will have the same angular velocity Q

9 Clicker Question There are 2 points (P & Q) on a disc. Q is further from the center than P. If I spin the disc clockwise: A. P s angular velocity will be greater B. Q s angular velocity will be greater C. P & Q will have the same angular velocity Q

10 Clicker Question There are 2 points (P & Q) on a disc. Q is further from the center than P. If I spin the disc clockwise: A. P s path length will be greater B. Q s path length will be greater C. P & Q will have the same path length Q

11 Clicker Question There are 2 points (P & Q) on a disc. Q is further from the center than P. If I spin the disc clockwise: A. P s path length will be greater B. Q s path length will be greater C. P & Q will have the same path length Q

12 Clicker Question There are 2 points (P & Q) on a disc. Q is further from the center than P. If I spin the disc clockwise: A. P s linear velocity will be greater B. Q s linear velocity will be greater C. P & Q will have the same linear velocity Q

13 Clicker Question There are 2 points (P & Q) on a disc. Q is further from the center than P. If I spin the disc clockwise: A. P s linear velocity will be greater B. Q s linear velocity will be greater C. P & Q will have the same linear velocity Q

14 Marching Band clip: pinwheel html

15 Demo Which way will the ball go?

16 You try: Use physics words and Newton s laws to come up with a reason for why the ball travels the way it does.

17 Arc Length (s) Path that a point follows when moving in a circle

18 Arc Length (s) Path that a point follows when moving in a circle S = arc length r = radius

19 Tangential velocity (v t ) Magnitude and direction of instantaneous motion Tangential to circular path

20 Tangential velocity (v t ) Magnitude and direction of instantaneous motion Tangential to circular path

21 Tangential acceleration (a t ) Rate at which a point is changing velocity in the same direction as the tangential velocity

22 Rela%onship Between Angular and Linear Quan%%es Displacements s = θ r Does r change as the disc spins? No Θ S = arc length r = radius Sec%on 7.3

23 You try: Is the angular displacement formula (s =θr) consistent with the formula for Circumference? For a full circle: Θ=2π s=2πr = arclength of entire circle C=2πr C=πd

24 Rela%onship Between Angular and Linear Quan%%es Displacements s = θ r Speeds v t = ω r If the disc spins at constant angular velocity does v t change? Yes! Direc%on changes Θ r = radius Sec%on 7.3

25 Rela%onship Between Angular and Linear Quan%%es Displacements s = θ r Speeds v t = ω r Accelera5ons a t = α r Θ r = radius Sec%on 7.3

26 Rela%onship Between Angular and Linear Quan%%es Displacements s = θ r Speeds v t = ω r Accelera%ons a t = α r Remember: Every point on the rota%ng object has the same angular mo%on Every point on the rota%ng object does not have the same linear mo%on Sec%on 7.3

27 Homework Chapter 7 problems: 3, 6, 8, 11 Still putting together study groups. me if you want in!

Momentum Review. Lecture 13 Announcements. Multi-step problems: collision followed by something else. Center of Mass

Momentum Review. Lecture 13 Announcements. Multi-step problems: collision followed by something else. Center of Mass Lecture 13 Announcements 1. While you re waiting for class to start, please fill in the How to use the blueprint equation steps, in your own words.. Exam results: Momentum Review Equations p = mv Conservation

More information

airplanes need Air Rocket Propulsion, 2 Rocket Propulsion Recap: conservation of Momentum

airplanes need Air Rocket Propulsion, 2 Rocket Propulsion Recap: conservation of Momentum Announcements. HW6 due March 4.. Prof. Reitze office hour this week: Friday 3 5 pm 3. Midterm: grades posted in e-learning solutions and grade distribution posted on website if you want to look at your

More information

Physics 111: Week 8 10 Review

Physics 111: Week 8 10 Review Physics 111: Week 8 10 Review Bin Chen NJIT Physics Department Announcements q Common Exam #3 on Nov 19 (Next Monday) from 4:15 pm to 5:45 pm in KUPF 107 q Must bring your NJIT ID q Cell phone and electronic

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Assignment 8 Textbook (Giancoli, 6 th edition), Chapter 7-8: Due on Thursday, November 13, 2008 - Problem 28 - page 189 of the textbook - Problem 40 - page 190 of the textbook

More information

7.1 Describing Circular and Rotational Motion.notebook November 03, 2017

7.1 Describing Circular and Rotational Motion.notebook November 03, 2017 Describing Circular and Rotational Motion Rotational motion is the motion of objects that spin about an axis. Section 7.1 Describing Circular and Rotational Motion We use the angle θ from the positive

More information

What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday.

What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday. What path do the longest sparks take after they leave the wand? Today we ll be doing one more new concept before the test on Wednesday. Centripetal Acceleration and Newtonian Gravitation Reminders: 15

More information

Chapter 3.5. Uniform Circular Motion

Chapter 3.5. Uniform Circular Motion Chapter 3.5 Uniform Circular Motion 3.5 Uniform Circular Motion DEFINITION OF UNIFORM CIRCULAR MOTION Uniform circular motion is the motion of an object traveling at a constant speed on a circular path.

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 20-1 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated

More information

Rotational kinematics

Rotational kinematics Rotational kinematics Suppose you cut a circle out of a piece of paper and then several pieces of string which are just as long as the radius of the paper circle. If you then begin to lay these pieces

More information

Raymond A. Serway Chris Vuille. Chapter Seven. Rota9onal Mo9on and The Law of Gravity

Raymond A. Serway Chris Vuille. Chapter Seven. Rota9onal Mo9on and The Law of Gravity Raymond A. Serway Chris Vuille Chapter Seven Rota9onal Mo9on and The Law of Gravity Rota9onal Mo9on An important part of everyday life Mo9on of the Earth Rota9ng wheels Angular mo9on Expressed in terms

More information

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable

Rigid Object. Chapter 10. Angular Position. Angular Position. A rigid object is one that is nondeformable Rigid Object Chapter 10 Rotation of a Rigid Object about a Fixed Axis A rigid object is one that is nondeformable The relative locations of all particles making up the object remain constant All real objects

More information

LECTURE 15. Prof. Paul

LECTURE 15. Prof. Paul LECTURE 15 Prof. Paul Review Clicker Questions: Review Clicker Questions: (You can talk with others) Mark and David are loading identical cement blocks onto a truck. Mark lifts his block straight up from

More information

When the ball reaches the break in the circle, which path will it follow?

When the ball reaches the break in the circle, which path will it follow? Checking Understanding: Circular Motion Dynamics When the ball reaches the break in the circle, which path will it follow? Slide 6-21 Answer When the ball reaches the break in the circle, which path will

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Circular Motion 04-2 1 Exam 1: Next Tuesday (9/23/14) In Stolkin (here!) at the usual lecture time Material covered: Textbook chapters 1 4.3 s up through 9/16

More information

Physics 218 Lecture 19

Physics 218 Lecture 19 Physics 218 Lecture 19 Dr. David Toback Physics 218, Lecture XIX 1 Checklist for Today Things due Last Thursday: Read Chapters 12 & 13 Things that were due Monday: Chapter 10 & 11 HW on WebCT Things that

More information

Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 4 Newton s Three Laws, Free Body Diagrams, Friction Chapter 5 (except

More information

Quick review of Ch. 6 & 7. Quiz to follow

Quick review of Ch. 6 & 7. Quiz to follow Quick review of Ch. 6 & 7 Quiz to follow Energy and energy conservation Work:W = Fscosθ Work changes kinetic energy: Kinetic Energy: KE = 1 2 mv2 W = KE f KE 0 = 1 mv 2 1 mv 2 2 f 2 0 Conservative forces

More information

Honors Physics Review

Honors Physics Review Honors Physics Review Work, Power, & Energy (Chapter 5) o Free Body [Force] Diagrams Energy Work Kinetic energy Gravitational Potential Energy (using g = 9.81 m/s 2 ) Elastic Potential Energy Hooke s Law

More information

Rotation Basics. I. Angular Position A. Background

Rotation Basics. I. Angular Position A. Background Rotation Basics I. Angular Position A. Background Consider a student who is riding on a merry-go-round. We can represent the student s location by using either Cartesian coordinates or by using cylindrical

More information

Recap I. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration:

Recap I. Angular position: Angular displacement: s. Angular velocity: Angular Acceleration: Recap I Angular position: Angular displacement: s Angular velocity: Angular Acceleration: Every point on a rotating rigid object has the same angular, but not the same linear motion! Recap II Circular

More information

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum

More information

Review of physics concepts for Exam 3. April, 2019

Review of physics concepts for Exam 3. April, 2019 Review of physics concepts for Exam 3 April, 2019 Reminders: 1. The vector sum of all forces = (the total inertial mass ) *a 2. Gravity F = mg; E=mgh 3. Friction along a surface Ff = (friction coefficient)

More information

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks!

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks! Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 ( weeks!) Physics 101:

More information

Announcements 14 Oct 2014

Announcements 14 Oct 2014 Announcements 14 Oct 2014 1. Prayer Colton - Lecture 13 - pg 1 Which of the problems from last night's HW assignment would you most like me to discuss in class today? Colton - Lecture 13 - pg 2 Center

More information

Review for Exam 2. Exam Informa+on 11/24/14 Monday 7:30 PM All Sec+ons à MPHY 205 (this room, 30 min a.er class ends) Dura+on à 1 hour 15 min

Review for Exam 2. Exam Informa+on 11/24/14 Monday 7:30 PM All Sec+ons à MPHY 205 (this room, 30 min a.er class ends) Dura+on à 1 hour 15 min Review for Exam 2 Exam Informa+on 11/24/14 Monday 7:30 PM All Sec+ons 505-509 à MPHY 205 (this room, 30 min a.er class ends) Dura+on à 1 hour 15 min Ø Know your instructor s name (S+egler) and your sec+on

More information

1 Problems 1-3 A disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t

1 Problems 1-3 A disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t Slide 1 / 30 1 Problems 1-3 disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t etermine the angular velocity of the disc at t= 2 s 2 rad/s 4 rad/s 6 rad/s 8 rad/s

More information

Slide 1 / 30. Slide 2 / 30. Slide 3 / m/s -1 m/s

Slide 1 / 30. Slide 2 / 30. Slide 3 / m/s -1 m/s 1 Problems 1-3 disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t Slide 1 / 30 etermine the angular velocity of the disc at t= 2 s 2 rad/s 4 rad/s 6 rad/s 8 rad/s

More information

Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from:

Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Test Wednesday, March 15 th 7pm, Bring your calculator and #2 pencil with a good eraser! 20 Multiple choice questions from: Chapter 4 Newton s Three Laws, Free Body Diagrams, Friction Chapter 5 (except

More information

New Course Webpage (To be setup by this weekend) h>p://people.physics.tamu.edu/tyana/phys218/

New Course Webpage (To be setup by this weekend) h>p://people.physics.tamu.edu/tyana/phys218/ Important Informa+on Instructor: Dr. Ty S(egler Office: ENPH 211 (Office Hours TBD) Email: tyana@physics.tamu.edu New Course Webpage (To be setup by this weekend) h>p://people.physics.tamu.edu/tyana/phys218/

More information

Conservation of Angular Momentum

Conservation of Angular Momentum Physics 101 Section 3 March 3 rd : Ch. 10 Announcements: Monday s Review Posted (in Plummer s section (4) Today start Ch. 10. Next Quiz will be next week Test# (Ch. 7-9) will be at 6 PM, March 3, Lockett-6

More information

Holt Physics Chapter 7. Rotational Motion

Holt Physics Chapter 7. Rotational Motion Holt Physics Chapter 7 Rotational Motion Measuring Rotational Motion Spinning objects have rotational motion Axis of rotation is the line about which rotation occurs A point that moves around an axis undergoes

More information

Displacement, Velocity, and Acceleration

Displacement, Velocity, and Acceleration Displacement, Velocity, and Acceleration (WHERE and WHEN?) I m not going to teach you anything today that you don t already know! (basically) Practice: 7.1, 7.5, 7.7, 7.9, 7.11, 7.13 Do you guys remember

More information

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 10. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 10 Physics, 4 th Edition James S. Walker Chapter 10 Rotational Kinematics and Energy Units of Chapter 10 Angular Position, Velocity, and Acceleration Rotational Kinematics Connections

More information

LECTURE 1- ROTATION. Phys 124H- Honors Analytical Physics IB Chapter 10 Professor Noronha-Hostler

LECTURE 1- ROTATION. Phys 124H- Honors Analytical Physics IB Chapter 10 Professor Noronha-Hostler LECTURE 1- ROTATION Phys 124H- Honors Analytical Physics IB Chapter 10 Professor Noronha-Hostler CLASS MATERIALS Your Attention (but attendance is OPTIONAL) i-clicker OPTIONAL- EXTRA CREDIT ONLY Homework

More information

Test Wednesday, Oct. 12 th 7pm, White Hall A-K: B51 L-Z:G09 Bring your calculator! 20 Multiple choice questions from:

Test Wednesday, Oct. 12 th 7pm, White Hall A-K: B51 L-Z:G09 Bring your calculator! 20 Multiple choice questions from: Test Wednesday, Oct. 12 th 7pm, White Hall A-K: B51 L-Z:G09 Bring your calculator! 20 Multiple choice questions from: Chapter 4 Newton s Three Laws, Free Body Diagrams, Friction Chapter 5 (except 5.4 and

More information

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents Physics 121 for Majors Today s Class You will see how motion in a circle is mathematically similar to motion in a straight line. You will learn that there is a centripetal acceleration (and force) and

More information

In physics, motion in circles is just as important as motion along lines, but there are all

In physics, motion in circles is just as important as motion along lines, but there are all Chapter 6 Round and Round: Circular Motion In This Chapter Converting angles Handling period and frequency Working with angular frequency Using angular acceleration In physics, motion in circles is just

More information

Physics 1A. Lecture 10B

Physics 1A. Lecture 10B Physics 1A Lecture 10B Review of Last Lecture Rotational motion is independent of translational motion A free object rotates around its center of mass Objects can rotate around different axes Natural unit

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapter 8 Accelerated Circular Motion 8.1 Rotational Motion and Angular Displacement A new unit, radians, is really useful for angles. Radian measure θ(radians) = s = rθ s (arc length) r (radius) (s in

More information

Announcements Oct 27, 2009

Announcements Oct 27, 2009 Announcements Oct 7, 009 1. HW 14 due tonight. Reminder: some of your HW answers will need to be written in scientific notation. Do this with e notation, not with x signs. a. 6.57E33 correct format b.

More information

If rigid body = few particles I = m i. If rigid body = too-many-to-count particles I = I COM. KE rot. = 1 2 Iω 2

If rigid body = few particles I = m i. If rigid body = too-many-to-count particles I = I COM. KE rot. = 1 2 Iω 2 2 If rigid body = few particles I = m i r i If rigid body = too-many-to-count particles Sum Integral Parallel Axis Theorem I = I COM + Mh 2 Energy of rota,onal mo,on KE rot = 1 2 Iω 2 [ KE trans = 1 2

More information

Physics 131: Lecture 15. Today s Agenda

Physics 131: Lecture 15. Today s Agenda Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant t forces Impulse-momentum thm Conservation of Linear momentum External/Internal

More information

Physics 8 Friday, November 4, 2011

Physics 8 Friday, November 4, 2011 Physics 8 Friday, November 4, 2011 Please turn in Homework 7. I will hand out solutions once everyone is here. The handout also includes HW8 and a page or two of updates to the equation sheet needed to

More information

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y Projectile Motion! An object may move in both the x and y directions simultaneously! The form of two-dimensional motion we will deal with is called projectile motion Assumptions of Projectile Motion! The

More information

Linear vs. Rotational Motion

Linear vs. Rotational Motion Linear vs. Rotational Motion Every term in a linear equation has a similar term in the analogous rotational equation. Displacements: s = r θ v t ω Speeds: v t = ω r Accelerations: a t = α r Every point

More information

Notes. Displacement, Velocity, and Acceleration. Displacement, Velocity, and Acceleration. *Angular* Displacement, Velocity, and Acceleration

Notes. Displacement, Velocity, and Acceleration. Displacement, Velocity, and Acceleration. *Angular* Displacement, Velocity, and Acceleration Displacement, Velocity, and Acceleration (WHERE and WHEN?) I m not going to teach you anything today that you don t already know! (basically) Practice: 7.1, 7.5, 7.7, 7.9, 7.11, 7.13 Notes Thanks for your

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics 1 Linear Motion Rotational Motion all variables considered positive if motion in counterclockwise direction displacement velocity acceleration angular displacement (Δθ) angular velocity

More information

Physics 8 Friday, October 20, 2017

Physics 8 Friday, October 20, 2017 Physics 8 Friday, October 20, 2017 HW06 is due Monday (instead of today), since we still have some rotation ideas to cover in class. Pick up the HW07 handout (due next Friday). It is mainly rotation, plus

More information

Uniform Circular Motion

Uniform Circular Motion Uniform Circular Motion INTRODUCTION Uniform circular motion is the motion of an object traveling at a constant (uniform) speed in a circular path. Besides the speed, there are several other variables

More information

Phys101 Lectures 19, 20 Rotational Motion

Phys101 Lectures 19, 20 Rotational Motion Phys101 Lectures 19, 20 Rotational Motion Key points: Angular and Linear Quantities Rotational Dynamics; Torque and Moment of Inertia Rotational Kinetic Energy Ref: 10-1,2,3,4,5,6,8,9. Page 1 Angular Quantities

More information

Circular Motion Kinematics 8.01 W03D1

Circular Motion Kinematics 8.01 W03D1 Circular Motion Kinematics 8.01 W03D1 Announcements Open up the Daily Concept Questions page on the MITx 8.01x Webpage. Problem Set 2 due Tue Week 3 at 9 pm Week 3 Prepset due Friday Week 3 at 8:30 am

More information

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed.

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. 1. Distance around a circle? circumference 2. Distance from one side of circle to the opposite

More information

Inelastic Collisions. Experiment Number 8 Physics 109 Fall 2017

Inelastic Collisions. Experiment Number 8 Physics 109 Fall 2017 Inelastic Collisions Experiment Number 8 Physics 109 Fall 2017 Midterm Exam Scores 6 5 4 Number 3 2 1 0 0-49 50-59 60-69 70-79 Score Range 80-89 90-100 Outline Ballistic Pendulum Physics of Rotation Angular

More information

Momentum. Physics 211 Syracuse University, Physics 211 Spring 2017 Walter Freeman. February 28, W. Freeman Momentum February 28, / 15

Momentum. Physics 211 Syracuse University, Physics 211 Spring 2017 Walter Freeman. February 28, W. Freeman Momentum February 28, / 15 Momentum Physics 211 Syracuse University, Physics 211 Spring 2017 Walter Freeman February 28, 2017 W. Freeman Momentum February 28, 2017 1 / 15 Announcements Extra homework help hours today: 5:10-6:50

More information

Physics 111: Mechanics Lecture 9

Physics 111: Mechanics Lecture 9 Physics 111: Mechanics Lecture 9 Bin Chen NJIT Physics Department Circular Motion q 3.4 Motion in a Circle q 5.4 Dynamics of Circular Motion If it weren t for the spinning, all the galaxies would collapse

More information

Kinematics. 1. Introduction to Kinematics. 2. Position and displacement

Kinematics. 1. Introduction to Kinematics. 2. Position and displacement Kinematics 1. Introduction to Kinematics. Scalars & vectors 2. Position & displacement 3. Velocity 4. Acceleration 5. Uniform linear motion 6. Uniformly accelerated motion 7. Uniform circular motion 1.

More information

Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10

Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10 Last Time: Finish Ch 9 Start Ch 10 Today: Chapter 10 Monday Ch 9 examples Rota:on of a rigid body Torque and angular accelera:on Today Solving problems with torque Work and power with torque Angular momentum

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C Newton s Laws & Equations of 09/27/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 In uniform circular motion (constant speed), what is the direction

More information

Things going in circles

Things going in circles Things going in circles Physics 211 Syracuse University, Physics 211 Spring 2019 Walter Freeman February 18, 2019 W. Freeman Things going in circles February 18, 2019 1 / 30 Announcements Homework 4 due

More information

As you come in today, pull out a piece of paper and respond to the following prompts:

As you come in today, pull out a piece of paper and respond to the following prompts: October 16, 2014 LB273 Prof. Vash: Sawtelle As you come in today, pull out a piece of paper and respond to the following prompts: 1. Write down 5 things that you value most in your life (these do not need

More information

Chapter 7. Rotational Motion and The Law of Gravity

Chapter 7. Rotational Motion and The Law of Gravity Chapter 7 Rotational Motion and The Law of Gravity 1 The Radian The radian is a unit of angular measure The radian can be defined as the arc length s along a circle divided by the radius r s θ = r 2 More

More information

Circular Motion Dynamics

Circular Motion Dynamics Circular Motion Dynamics 8.01 W04D2 Today s Reading Assignment: MIT 8.01 Course Notes Chapter 9 Circular Motion Dynamics Sections 9.1-9.2 Announcements Problem Set 3 due Week 5 Tuesday at 9 pm in box outside

More information

Classical Mechanics Lecture 13

Classical Mechanics Lecture 13 Classical Mechanics Lecture 13 Today s Concepts: a) More on Elas5c Collisions b) Average Force during Collisions Mechanics Lecture 13, Slide 1 Your comments: good I'd like to go over the energy of a system

More information

Review of Linear Momentum And Rotational Motion

Review of Linear Momentum And Rotational Motion Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 7 Review of Linear Momentum And Rotational Motion Slide 1 of 29 Physics 7B Lecture 7 17-Feb-2010 Slide 2 of 29 The Definition of Impulse Recall that

More information

Lecture 11: Conservation of Momentum

Lecture 11: Conservation of Momentum Lecture 11: Conservation of Momentum Today s Concept: Inelastic Collisions How did the chicken cross the frictionless road? It laid an egg and threw it backwards. Mechanics Lecture 11, Slide 1 Announcements

More information

Topic 6 Circular Motion and Gravitation

Topic 6 Circular Motion and Gravitation Topic 6 Circular Motion and Gravitation Exam-Style Questions 1 a) Calculate the angular velocity of a person standing on the Earth s surface at sea level. b) The summit of Mount Everest is 8848m above

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16

Table of Contents. Pg. # Momentum & Impulse (Bozemanscience Videos) 1 1/11/16 Table of Contents g. # 1 1/11/16 Momentum & Impulse (Bozemanscience Videos) 2 1/13/16 Conservation of Momentum 3 1/19/16 Elastic and Inelastic Collisions 4 1/19/16 Lab 1 Momentum 5 1/26/16 Rotational Dynamics

More information

PHYSICS 220 LAB #6: CIRCULAR MOTION

PHYSICS 220 LAB #6: CIRCULAR MOTION Name: Partners: PHYSICS 220 LAB #6: CIRCULAR MOTION The picture above is a copy of Copernicus drawing of the orbits of the planets which are nearly circular. It appeared in a book published in 1543. Since

More information

Exam 3--PHYS 101--F15

Exam 3--PHYS 101--F15 Name: Exam 3--PHYS 0--F5 Multiple Choice Identify the choice that best completes the statement or answers the question.. It takes 00 m to stop a car initially moving at 25.0 m/s. The distance required

More information

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket.

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket. Recap Classical rocket propulsion works because of momentum conservation. Exhaust gas ejected from a rocket pushes the rocket forwards, i.e. accelerates it. The bigger the exhaust speed, ve, the higher

More information

Concepts in Physics. Wednesday, September 23

Concepts in Physics. Wednesday, September 23 1206 - Concepts in Physics Wednesday, September 23 NOTES Additional Tutorial available: THURSDAY 16:30 to 18:00 F536 this is for all first year physics students, so bring specific questions you have Tutorial

More information

Classical Mechanics Lecture 11

Classical Mechanics Lecture 11 Classical Mechanics Lecture 11 Today s Examples Center of Mass Today s Concept: Conservation of Momentum Inelastic Collisions Mechanics Lecture 11, Slide 1 Unit 10 Homework Problems Mechanics Lecture 10,

More information

10/21/2003 PHY Lecture 14 1

10/21/2003 PHY Lecture 14 1 Announcements. Second exam scheduled for Oct. 8 th -- practice exams now available -- http://www.wfu.edu/~natalie/f03phy3/extrapractice/. Thursday review of Chapters 9-4 3. Today s lecture Universal law

More information

LECTURE 13- PROBLEMS. Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo

LECTURE 13- PROBLEMS. Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo LECTURE 13- PROBLEMS Chapter 1-9,13 Professor Noronha-Hostler Professor Montalvo FARADAY LECTURES! Physics Lecture Hall Friday Dec. 7 Demos: 6pm Show: 7-8:30pm Saturday Dec. 8 Demos: 2pm Show: 3-4:30pm

More information

Lecture 6. Circular Motion. Pre-reading: KJF 6.1 and 6.2. Please take a clicker CIRCULAR MOTION KJF

Lecture 6. Circular Motion. Pre-reading: KJF 6.1 and 6.2. Please take a clicker CIRCULAR MOTION KJF Lecture 6 Circular Motion Pre-reading: KJF 6.1 and 6.2 Please take a clicker CIRCULAR MOTION KJF 6.1 6.4 Angular position If an object moves in a circle of radius r, then after travelling a distance s

More information

Announcements 15 Oct 2013

Announcements 15 Oct 2013 Announcements 15 Oct 2013 1. While you re waiting for class to start, see how many of these blanks you can fill out. Tangential Accel.: Direction: Causes speed to Causes angular speed to Therefore, causes:

More information

Topic 6 The Killers LEARNING OBJECTIVES. Topic 6. Circular Motion and Gravitation

Topic 6 The Killers LEARNING OBJECTIVES. Topic 6. Circular Motion and Gravitation Topic 6 Circular Motion and Gravitation LEARNING OBJECTIVES Topic 6 The Killers 1. Centripetal Force 2. Newton s Law of Gravitation 3. Gravitational Field Strength ROOKIE MISTAKE! Always remember. the

More information

Rotation. EMU Physics Department. Ali ÖVGÜN.

Rotation. EMU Physics Department. Ali ÖVGÜN. Rotation Ali ÖVGÜN EMU Physics Department www.aovgun.com Rotational Motion Angular Position and Radians Angular Velocity Angular Acceleration Rigid Object under Constant Angular Acceleration Angular and

More information

Physics 1A, Lecture 2: Math Review and Intro to Mo;on Summer Session 1, 2011

Physics 1A, Lecture 2: Math Review and Intro to Mo;on Summer Session 1, 2011 Physics 1A, Lecture 2: Math Review and Intro to Mo;on Summer Session 1, 2011 Your textbook should be closed, though you may use any handwrieen notes that you have taken. You will use your clicker to answer

More information

ω = ω 0 θ = θ + ω 0 t αt ( ) Rota%onal Kinema%cs: ( ONLY IF α = constant) v = ω r ω ω r s = θ r v = d θ dt r = ω r + a r = a a tot + a t = a r

ω = ω 0 θ = θ + ω 0 t αt ( ) Rota%onal Kinema%cs: ( ONLY IF α = constant) v = ω r ω ω r s = θ r v = d θ dt r = ω r + a r = a a tot + a t = a r θ (t) ( θ 1 ) Δ θ = θ 2 s = θ r ω (t) = d θ (t) dt v = d θ dt r = ω r v = ω r α (t) = d ω (t) dt = d 2 θ (t) dt 2 a tot 2 = a r 2 + a t 2 = ω 2 r 2 + αr 2 a tot = a t + a r = a r ω ω r a t = α r ( ) Rota%onal

More information

Rotational Motion and the Law of Gravity 1

Rotational Motion and the Law of Gravity 1 Rotational Motion and the Law of Gravity 1 Linear motion is described by position, velocity, and acceleration. Circular motion repeats itself in circles around the axis of rotation Ex. Planets in orbit,

More information

Physics 121. March 18, Physics 121. March 18, Course Announcements. Course Information. Topics to be discussed today:

Physics 121. March 18, Physics 121. March 18, Course Announcements. Course Information. Topics to be discussed today: Physics 121. March 18, 2008. Physics 121. March 18, 2008. Course Information Topics to be discussed today: Variables used to describe rotational motion The equations of motion for rotational motion Course

More information

Uniform Circular Motion AP

Uniform Circular Motion AP Uniform Circular Motion AP Uniform circular motion is motion in a circle at the same speed Speed is constant, velocity direction changes the speed of an object moving in a circle is given by v circumference

More information

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Physics 101: Lecture 8, Pg 1 Circular Motion Act B A

More information

Physics 1A, Lecture 3: One Dimensional Kinema:cs Summer Session 1, 2011

Physics 1A, Lecture 3: One Dimensional Kinema:cs Summer Session 1, 2011 Your textbook should be closed, though you may use any handwrieen notes that you have taken. You will use your clicker to answer these ques:ons. If you do not yet have a clicker, please turn in your answers

More information

Energy problems look like this: Momentum conservation problems. Example 8-1. Momentum is a VECTOR Example 8-2

Energy problems look like this: Momentum conservation problems. Example 8-1. Momentum is a VECTOR Example 8-2 Review Chp 7: Accounting with Mechanical Energy: the overall Bank Balance When we judge how much energy a system has, we must have two categories: Kinetic energy (K sys ), and potential energy (U sys ).

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

Exams will be returned on Tuesday. Apologies for the delay.

Exams will be returned on Tuesday. Apologies for the delay. Thursday February 21 Topics for this Lecture: Circular Motion Angular frequency Centripetal force/acceleration Fictitious (a.k.a. Inertial) forces: Centrifugal force Coriolis effect Gravity & orbits *Anything

More information

Circular motion. Announcements:

Circular motion. Announcements: Circular motion Announcements: Clicker scores through Wednesday are now posted on DL. Scoring is points for a wrong answer, 3 points for a right answer. 13 clicker questions so far, so max is 39 points.

More information

Physics 2514 Lecture 22

Physics 2514 Lecture 22 Physics 2514 Lecture 22 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/15 Information Information needed for the exam Exam will be in the same format as the practice

More information

Lecture PowerPoints. Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 8 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Midterm Grades Midterm HW and MidtermGrades in ecampus. Check clicker grades Check HW (WebAssign) grade HW and Reading Assignments

Midterm Grades Midterm HW and MidtermGrades in ecampus. Check clicker grades Check HW (WebAssign) grade HW and Reading Assignments Exam 2 Grades not in yet Midterm Grades Midterm HW and MidtermGrades in ecampus Check clicker grades Check HW (WebAssign) grade HW and Reading Assignments Today s Objectives Rotational Motion After today,

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Torque Rotational Dynamics Current assignments Prelecture Thursday, Nov 20th at 10:30am HW#13 due this Friday at 5 pm. Clicker.1 What is the center of mass of

More information

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 11 Physics, 4 th Edition James S. Walker Chapter 11 Rotational Dynamics and Static Equilibrium Units of Chapter 11 Torque Torque and Angular Acceleration Zero Torque and Static

More information

Physics 131: Lecture 21. Today s Agenda

Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

More information

AP Physics 1 Chapter 7 Circular Motion and Gravitation

AP Physics 1 Chapter 7 Circular Motion and Gravitation AP Physics 1 Chapter 7 Circular Motion and Gravitation Chapter 7: Circular Motion and Angular Measure Gravitation Angular Speed and Velocity Uniform Circular Motion and Centripetal Acceleration Angular

More information

Classical Mechanics Lecture 3

Classical Mechanics Lecture 3 Classical Mechanics Lecture 3 Today's Concepts: Newton s Laws a) Accelera=on is caused by forces b) Force changes momentum c) Forces always come in pairs d) Good reference frames Mechanics Lecture 3, Slide

More information

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0 F 1 m 2 F 2 x m 1 O z F 3 m 3 y Ma com = F net F F F net, x net, y net, z = = = Ma Ma Ma com, x com, y com, z p = mv - Linear Momentum F net = dp dt F net = d P dt = d p 1 dt +...+ d p n dt Δ P = 0 - Conservation

More information

PHYS 1441 Section 002 Lecture #19

PHYS 1441 Section 002 Lecture #19 PHYS 1441 Section 00 Lecture #19 Monday, April 8, 013 Fundamentals o the Rotational Motion Rotational Kinematics Equations o Rotational Kinematics Relationship Between Angular and Linear Quantities Rolling

More information