Blow-up on manifolds with symmetry for the nonlinear Schröding

Size: px
Start display at page:

Download "Blow-up on manifolds with symmetry for the nonlinear Schröding"

Transcription

1 Blow-up on manifolds with symmetry for the nonlinear Schrödinger equation March, Université de Nice

2 Euclidean L 2 -critical theory Consider the one dimensional equation i t u + u = u 4 u, t > 0, x R. Local well-posedness: This equation is well-posed in H 1 : if u 0 H 1 (R), there exists a maximal time T > 0 and a solution u C([0, T ), H 1 (R)) C 1 ([0, T ), H 1 (R)) with u(0) = u 0 and with the criteria T < implies u(t) L 2.

3 Goal Blow up problematic: Estimate blow-up rate u(t) L 2, Find singularities (points of concentration of mass), How much mass is concentrated?

4 Self-similar regime (in Ḣ 1 ): Blow-up regimes known u(t) L 2 (R) 1 (T t). Pseudo-conformal regime (in H 1 ): u(t) L 2 (R) 1 T t. Log-log regime (Merle-Raphaël, Perelman) (in H 1 ): ( ) log log(t t) 1/2 u(t) L 2 (R). T t

5 Classification near the ground state Let Q be the 1D ground state: yy Q + Q = Q 4 Q, x R. Theorem (Merle-Raphaël) There exists α > 0 such that for all u 0 H 1 (R) such that Q L 2 (R) u 0 L 2 (R) Q L 2 (R) + α and E(u 0 ) < 0, u(t) blows up in H 1 with the speed ( ) log log(t t) 1/2 u(t) L 2 (R). T t

6 Questions Do these regimes persist in other geometries? - lack of strong dispersion (losses in Strichartz estimates) - no smoothing effect - loss of symmetry (translation in space) and remarkable identity (Virial relation) We treat the log-log regime.

7 Quintic Schrödinger equation on surfaces i t u + u = u 4 u, t > 0, x M, where (M, g) is a two dimensional complete Riemannian manifold. Hamiltonian structure: L 2 and H 1 conservation laws: M(u(t)) := u(t) 2 = M(u(0)), E(u(t)) = 1 2 M M u(t) M u(t) 6 = E(u(0)). Local well-posedness in H 1 (Burq-Gérard-Tzvetkov): if u 0 H 1 (M), there exists a maximal time T > 0 and a solution u C([0, T ), H 1 (M)) C 1 ([0, T ), H 1 (M)) with u(0) = u 0 and with the criteria T < implies u(t) L 2.

8 Scaling lower bound Proposition If u 0 H 1 (M) is such that T (u 0 ) < then Key points: scaling symmetry u(t) L 2 (M) uniform Strichartz estimate C (T (u 0 ) t) 1/4.

9 Proof. Let L 1, M L = L.M and consider the equation on M L. 1) Uniform in L Strichartz estimates: if 1/q + 1/r = 1/2 and q > 2 then there exists C > 0 such that for all L 1 and u L 0 H1/q (M L ): e it M L u L 0 L q ([0,1])L r (M L ) C u L 0 H 1/q (M L ). if u0 L H1 (M L ) then T (u0 L) F ( ul 0 H1) for a function F independent of L. 2) Use of the scaling symmetry: if u is a solution on M then v τ (t, x) = λ 1/2 (τ)u(λ 2 (τ)t + τ, λ(τ)x) is a solution on M 1/λ(τ) for all τ and λ(τ). 3) Apply 1) to v τ with the good rescaling λ(τ) = u(τ) 2 L 2.

10 Log-log regime with radial symmetry Theorem Let (M, g) be a rotationally symmetric surface with g = dr 2 + h 2 (r)dθ 2, 0 < r < ρ. Assume in the non-compact case (ρ = ) h (r) Ch(r) for r large. Consider the equation on M (dim(m) = 2): i t u + u = u 4 u, t > 0. Then there exists an open set P of Hrad 2 (M) such that if u(0) P then u blows up with the log log speed on a set {x M, r(x) = r 0 } for some r 0 = r(pole) > 0. Prototypes. Compact: sphere Non-compact: hyperbolic space Euclidean space (treated in H 1 rad (R2 ) by P. Raphaël).

11 Heuristic In radial coordonates and for a radial solution, the equation becomes i t u + 2 r u + h (r) h(r) r u = u 4 u, u(t, x) = u(t, r), Outside poles h (r) h(r) r 2 r. The equation is almost L 2 -critical outside poles: we prove a radial Sobolev embedding on M: for a radial function u on M: u L p (ε<r(x)<ρ ε) C(ε) u H s (ε<r(x)<ρ ε), p p = 2 1 2s. Near poles: we are outside the blow-up set better estimates on u: good H 1/2 estimate.

12 Modulation Splitting the dynamic: we choose u 0 such that u 0 L 2 (M) Q L 2 (R) so that until a time t 1 > 0: u(t, r) = 1 ( ( ) r r(t) Q b(t) + ε λ(t) λ(t) ( t, r r(t) λ(t) )) e iγ(t), with if y = (r r(t))/λ(t) and for k = 0, 1, 2: y k ε(t) 2 µ(y)dy <, µ(y) = h(λ(t)y+r(t))1 { } r(t) ρ r(t) (y), y λ(t) λ(t) with orthogonality conditions: Re(ε(t), y 2 Q b(t) ) = Re(ε(t), yq b(t) ) = 0, Im(ε(t), ΛQ b(t) ) = Im(ε(t), Λ 2 Q b(t) ) = 0. where Λ = y y. Q b is a troncated version of refined profiles: 2 y Q b Q b + ibλq b + Q b 4 Q b = O(e π b ) 1.

13 Control of the finite dimensional part Modulation equations : Time rescaling: s = t dτ 0 λ 2 (τ). Then λ s λ + b + b s + r s CE(s) + Γ 1 λ b, γ s 1 (Re ε, L +(Λ 2 Q)) ΛQ 2 δe 1/2 (s) + Γ 1 b, L 2 where E(s) = δ 1, Γ b e π b, as b 0, y ε(s, y) 2 h(λ(s)y +r(s))dy + ε(s, y) 2 e y dy, y 10 b(s) and (L +, L ) is the linearized operator near Q: L = 2 y + 1 5Q 4, L + = 2 y + 1 Q 4. Extra terms due to h h r are controled by the smallness of λ(s): λ Γ b.

14 Control of the infinite dimensional part, I Goal: use a virial type argument to control the rest ε Heuristic: u satisfies: For the 1D Euclidean equation i t u + rr u u 4 u. i t u + u = u 4 u, x R, we have the Virial relation: if u Σ := {u H 1, xu L 2 } then d 2 dt 2 x 2 u 2 dx = 4 d dt Im ( ) x uu = 16E(u 0 ).

15 Control of the infinite dimensional part, II Thus, we expect: ( d dt Im ) φ(r)r r uu 4E 0, where φ is a cut-off function avoiding poles. We expand in term of ε and switch in (s, y) variables to obtain where A 0 d ds Im A 0 + A 1 + A 2 = 4λ 2 E 0, y y Q b Q b Db s, D > 0, A 1 = 2 d ds Im(ΛQ b, ε) = 0 (orthogonality condition), A 2 = d ds Im y εεψ(y)µ(y)dy, ψ(y) = φ(µ(y)). The symbol means modulo O(Γ b ) + o(e(s)).

16 Control of the infinite dimensional part, III Control of the A 2 term. The equation on ε is roughly: so that A 2 becomes i s ε + Lε = Ψ = O(Γ b ), A 2 H(ψε, ψε) for a quadratic form H. Finally, with λ 2 E 0 Γ b, we get with δ 1. Cb s H(ψε, ψε) Γ 1 b δe(s)

17 Control of the infinite dimensional part, IV The form H is almost coercive: ( H(ψε, ψε) C E(s) (Re(ψε), Q) 2 (Re(ψε), y 2 Q) 2 (Re(ψε), yq) 2 (Im(ψε), ΛQ) 2 (Im(ψε), Λ 2 Q) 2 (Im(ψε), y Q) 2). Control of negative directions. Linearization of conservation laws (energy (needs an H 1/2 control), localized momentum) Orthogonality conditions Conclusion. first Virial estimate: (ψε i,...) 2 δe(t), δ 1. Db s E(s) Γ 1 b. In particular, this is well defined in H 2 (M).

18 Control of the infinite dimensional part, V Refined virial estimate: Virial estimate in terms of ε = ε ζ b where ζ b is a troncated version of ζ b : 2 y ζ b ζ b + ibλζ b = Ψ b, lim y ζ b(y) 2 = Γ b, y implies ( ) d ds J cb(s) Γ b(s) + Ẽ(s) + ε 2, A y 2A with J (s) d 0 b 2 δb 2, δ 1. Once again, additional terms due to h /h r u controled by the smallness of λ: λ Γ b.

19 Smallness of the critical norm near poles, I To obtain a control from the conservation of energy, we need to prove: ũ 6 ũ(t) 2. ũ(t, r) = 1 ( e iγ(t) ε t, r r(t) ). λ(t) λ(t) Outside poles: this is the conservation of mass Near poles: H 1/2 control. Derivation of a pseudo-energy E 2 at level H 2 with u(t) 2 H 2 (M) CE 2(u(t)), and d dt E 2(u(t)) C( u(t) H 1/2, u(t) H 1, u(t) H 3/2)E 2 (u(t)) 1 θ, θ (0, 1)

20 Smallness of the critical norm near poles, II This implies an H 2 estimate u(t) H 2 (M) 1, for some η > 0. λ(t) 2+η Moreover, for all 0 < a 2 < a 1 < b 1 < b 2, and t > 0, D s u L [0,t) L 2 (a 1,b 1 ) C ( D s u(0) L 2 (a 2,b 2 ) + u L 2 [0,t) H max(1,s+ 1 2 ) (a 2,b 2 ) + D s (u u 4 ) L 1 [0,t) L 2 (a 2,b 2 )), we get u(t) H 1/2 ( r 1 >1/2) 1.

21 Integration of modulation equations The integration of gives with s = t 0 b s e π b, dτ λ 2 (τ) : 1 λ(t) u(t) L 2 λ s λ b, r s 1, λ ( ) T t 1/2 C, log log(t t) and r t integrable thus r(t) r(poles).

Sharp Upper Bound on the Blow up Rate for critical nonlinear Schrödinger Equation

Sharp Upper Bound on the Blow up Rate for critical nonlinear Schrödinger Equation Sharp Upper Bound on the Blow up Rate for critical nonlinear Schrödinger Equation Frank Merle,, Pierre Raphael Université de Cergy Pontoise Institut Universitaire de France Abstract We consider the critical

More information

THE INSTABILITY OF BOURGAIN-WANG SOLUTIONS FOR THE L 2 CRITICAL NLS FRANK MERLE, PIERRE RAPHAËL, AND JEREMIE SZEFTEL

THE INSTABILITY OF BOURGAIN-WANG SOLUTIONS FOR THE L 2 CRITICAL NLS FRANK MERLE, PIERRE RAPHAËL, AND JEREMIE SZEFTEL THE INSTABILITY OF BOURGAIN-WANG SOLUTIONS FOR THE L CRITICAL NLS FRANK MERLE, PIERRE RAPHAËL, AND JEREMIE SZEFTEL Abstract. We consider the two dimensional L critical nonlinear Schrödinger equation i

More information

The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation

The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation Annals of Mathematics, 6 005, 57 The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation By Frank Merle and Pierre Raphael Abstract We consider the critical

More information

CUTOFF RESOLVENT ESTIMATES AND THE SEMILINEAR SCHRÖDINGER EQUATION

CUTOFF RESOLVENT ESTIMATES AND THE SEMILINEAR SCHRÖDINGER EQUATION CUTOFF RESOLVENT ESTIMATES AND THE SEMILINEAR SCHRÖDINGER EQUATION HANS CHRISTIANSON Abstract. This paper shows how abstract resolvent estimates imply local smoothing for solutions to the Schrödinger equation.

More information

Construction of concentrating bubbles for the energy-critical wave equation

Construction of concentrating bubbles for the energy-critical wave equation Construction of concentrating bubbles for the energy-critical wave equation Jacek Jendrej University of Chicago University of North Carolina February 13th 2017 Jacek Jendrej Energy-critical wave equations

More information

Recent developments on the global behavior to critical nonlinear dispersive equations. Carlos E. Kenig

Recent developments on the global behavior to critical nonlinear dispersive equations. Carlos E. Kenig Recent developments on the global behavior to critical nonlinear dispersive equations Carlos E. Kenig In the last 25 years or so, there has been considerable interest in the study of non-linear partial

More information

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED TAOUFIK HMIDI AND SAHBI KERAANI Abstract. In this note we prove a refined version of compactness lemma adapted to the blowup analysis

More information

Scattering for cubic-quintic nonlinear Schrödinger equation on R 3

Scattering for cubic-quintic nonlinear Schrödinger equation on R 3 Scattering for cubic-quintic nonlinear Schrödinger equation on R 3 Oana Pocovnicu Princeton University March 9th 2013 Joint work with R. Killip (UCLA), T. Oh (Princeton), M. Vişan (UCLA) SCAPDE UCLA 1

More information

Long-term dynamics of nonlinear wave equations

Long-term dynamics of nonlinear wave equations Long-term dynamics of nonlinear wave equations W. Schlag (University of Chicago) Recent Developments & Future Directions, September 2014 Wave maps Let (M, g) be a Riemannian manifold, and u : R 1+d t,x

More information

On Universality of Blow-up Profile for L 2 critical nonlinear Schrödinger Equation

On Universality of Blow-up Profile for L 2 critical nonlinear Schrödinger Equation On Universality of Blow-up Profile for L critical nonlinear Schrödinger Equation Frank Merle,, Pierre Raphael Université de Cergy Pontoise Institut Universitaire de France Astract We consider finite time

More information

Nonlinear Schrödinger Equation BAOXIANG WANG. Talk at Tsinghua University 2012,3,16. School of Mathematical Sciences, Peking University.

Nonlinear Schrödinger Equation BAOXIANG WANG. Talk at Tsinghua University 2012,3,16. School of Mathematical Sciences, Peking University. Talk at Tsinghua University 2012,3,16 Nonlinear Schrödinger Equation BAOXIANG WANG School of Mathematical Sciences, Peking University 1 1 33 1. Schrödinger E. Schrödinger (1887-1961) E. Schrödinger, (1887,

More information

The Schrödinger propagator for scattering metrics

The Schrödinger propagator for scattering metrics The Schrödinger propagator for scattering metrics Andrew Hassell (Australian National University) joint work with Jared Wunsch (Northwestern) MSRI, May 5-9, 2003 http://arxiv.org/math.ap/0301341 1 Schrödinger

More information

On the role of geometry in scattering theory for nonlinear Schrödinger equations

On the role of geometry in scattering theory for nonlinear Schrödinger equations On the role of geometry in scattering theory for nonlinear Schrödinger equations Rémi Carles (CNRS & Université Montpellier 2) Orléans, April 9, 2008 Free Schrödinger equation on R n : i t u + 1 2 u =

More information

Presenter: Noriyoshi Fukaya

Presenter: Noriyoshi Fukaya Y. Martel, F. Merle, and T.-P. Tsai, Stability and Asymptotic Stability in the Energy Space of the Sum of N Solitons for Subcritical gkdv Equations, Comm. Math. Phys. 31 (00), 347-373. Presenter: Noriyoshi

More information

Inégalités de dispersion via le semi-groupe de la chaleur

Inégalités de dispersion via le semi-groupe de la chaleur Inégalités de dispersion via le semi-groupe de la chaleur Valentin Samoyeau, Advisor: Frédéric Bernicot. Laboratoire de Mathématiques Jean Leray, Université de Nantes January 28, 2016 1 Introduction Schrödinger

More information

On the stochastic nonlinear Schrödinger equation

On the stochastic nonlinear Schrödinger equation On the stochastic nonlinear Schrödinger equation Annie Millet collaboration with Z. Brzezniak SAMM, Paris 1 and PMA Workshop Women in Applied Mathematics, Heraklion - May 3 211 Outline 1 The NL Shrödinger

More information

Growth of Sobolev norms for the cubic NLS

Growth of Sobolev norms for the cubic NLS Growth of Sobolev norms for the cubic NLS Benoit Pausader N. Tzvetkov. Brown U. Spectral theory and mathematical physics, Cergy, June 2016 Introduction We consider the cubic nonlinear Schrödinger equation

More information

Strichartz Estimates in Domains

Strichartz Estimates in Domains Department of Mathematics Johns Hopkins University April 15, 2010 Wave equation on Riemannian manifold (M, g) Cauchy problem: 2 t u(t, x) gu(t, x) =0 u(0, x) =f (x), t u(0, x) =g(x) Strichartz estimates:

More information

Scattering for the NLS equation

Scattering for the NLS equation Scattering for the NLS equation joint work with Thierry Cazenave (UPMC) Ivan Naumkin Université Nice Sophia Antipolis February 2, 2017 Introduction. Consider the nonlinear Schrödinger equation with the

More information

Solutions to the Nonlinear Schrödinger Equation in Hyperbolic Space

Solutions to the Nonlinear Schrödinger Equation in Hyperbolic Space Solutions to the Nonlinear Schrödinger Equation in Hyperbolic Space SPUR Final Paper, Summer 2014 Peter Kleinhenz Mentor: Chenjie Fan Project suggested by Gigliola Staffilani July 30th, 2014 Abstract In

More information

STRONGLY INTERACTING BLOW UP BUBBLES FOR THE MASS CRITICAL NLS

STRONGLY INTERACTING BLOW UP BUBBLES FOR THE MASS CRITICAL NLS STRONGLY INTERACTING BLOW UP BUBBLES FOR THE MASS CRITICAL NLS YVAN MARTEL AND PIERRE RAPHAËL Abstract. We consider the mass critical two dimensional nonlinear Schrödinger equation (NLS) i tu + u + u u

More information

Multisolitons for NLS

Multisolitons for NLS Multisolitons for NLS Stefan LE COZ Beijing 2007-07-03 Plan 1 Introduction 2 Existence of multi-solitons 3 (In)stability NLS (NLS) { iut + u + g( u 2 )u = 0 u t=0 = u 0 u : R t R d x C (A0) (regular) g

More information

Local smoothing and Strichartz estimates for manifolds with degenerate hyperbolic trapping

Local smoothing and Strichartz estimates for manifolds with degenerate hyperbolic trapping Local smoothing and Strichartz estimates for manifolds with degenerate hyperbolic trapping H. Christianson partly joint work with J. Wunsch (Northwestern) Department of Mathematics University of North

More information

Scattering theory for nonlinear Schrödinger equation with inverse square potential

Scattering theory for nonlinear Schrödinger equation with inverse square potential Scattering theory for nonlinear Schrödinger equation with inverse square potential Université Nice Sophia-Antipolis Based on joint work with: Changxing Miao (IAPCM) and Junyong Zhang (BIT) February -6,

More information

Dynamics of energy-critical wave equation

Dynamics of energy-critical wave equation Dynamics of energy-critical wave equation Carlos Kenig Thomas Duyckaerts Franke Merle September 21th, 2014 Duyckaerts Kenig Merle Critical wave 2014 1 / 22 Plan 1 Introduction Duyckaerts Kenig Merle Critical

More information

TYPE II BLOW UP FOR THE ENERGY SUPERCRITICAL NLS FRANK MERLE, PIERRE RAPHAËL, AND IGOR RODNIANSKI

TYPE II BLOW UP FOR THE ENERGY SUPERCRITICAL NLS FRANK MERLE, PIERRE RAPHAËL, AND IGOR RODNIANSKI TYPE II BLOW UP FOR THE ENERGY SUPERCRITICAL NLS FRANK MERLE, PIERRE RAPHAËL, AND IGOR RODNIANSKI Abstract. We consider the energy super critical nonlinear Schrödinger equation i tu u u u p = in large

More information

Ancient solutions to geometric flows

Ancient solutions to geometric flows Columbia University Banff May 2014 Outline We will discuss ancient or eternal solutions to geometric flows, that is solutions that exist for all time < t < T where T (, + ]. Such solutions appear as blow

More information

Separation for the stationary Prandtl equation

Separation for the stationary Prandtl equation Separation for the stationary Prandtl equation Anne-Laure Dalibard (UPMC) with Nader Masmoudi (Courant Institute, NYU) February 13th-17th, 217 Dynamics of Small Scales in Fluids ICERM, Brown University

More information

Global well-posedness for semi-linear Wave and Schrödinger equations. Slim Ibrahim

Global well-posedness for semi-linear Wave and Schrödinger equations. Slim Ibrahim Global well-posedness for semi-linear Wave and Schrödinger equations Slim Ibrahim McMaster University, Hamilton ON University of Calgary, April 27th, 2006 1 1 Introduction Nonlinear Wave equation: ( 2

More information

Ancient solutions to Geometric Flows Lecture No 2

Ancient solutions to Geometric Flows Lecture No 2 Ancient solutions to Geometric Flows Lecture No 2 Panagiota Daskalopoulos Columbia University Frontiers of Mathematics and Applications IV UIMP 2015 July 20-24, 2015 Topics to be discussed In this lecture

More information

Bound-state solutions and well-posedness of the dispersion-managed nonlinear Schrödinger and related equations

Bound-state solutions and well-posedness of the dispersion-managed nonlinear Schrödinger and related equations Bound-state solutions and well-posedness of the dispersion-managed nonlinear Schrödinger and related equations J. Albert and E. Kahlil University of Oklahoma, Langston University 10th IMACS Conference,

More information

A PHYSICAL SPACE PROOF OF THE BILINEAR STRICHARTZ AND LOCAL SMOOTHING ESTIMATES FOR THE SCHRÖDINGER EQUATION

A PHYSICAL SPACE PROOF OF THE BILINEAR STRICHARTZ AND LOCAL SMOOTHING ESTIMATES FOR THE SCHRÖDINGER EQUATION A PHYSICAL SPACE PROOF OF THE BILINEAR STRICHARTZ AND LOCAL SMOOTHING ESTIMATES FOR THE SCHRÖDINGER EQUATION TERENCE TAO Abstract. Let d 1, and let u, v : R R d C be Schwartz space solutions to the Schrödinger

More information

A CLASS OF SOLUTIONS TO THE 3D CUBIC NONLINEAR SCHRÖDINGER EQUATION THAT BLOW-UP ON A CIRCLE

A CLASS OF SOLUTIONS TO THE 3D CUBIC NONLINEAR SCHRÖDINGER EQUATION THAT BLOW-UP ON A CIRCLE A CLASS OF SOLUTIONS TO THE 3D CUBIC NONLINEAR SCHRÖDINGER EQUATION THAT BLOW-UP ON A CIRCLE JUSTIN HOLMER AND SVETLANA ROUDENKO Astract. We consider the 3d cuic focusing nonlinear Schrödinger equation

More information

TADAHIRO OH 0, 3 8 (T R), (1.5) The result in [2] is in fact stated for time-periodic functions: 0, 1 3 (T 2 ). (1.4)

TADAHIRO OH 0, 3 8 (T R), (1.5) The result in [2] is in fact stated for time-periodic functions: 0, 1 3 (T 2 ). (1.4) PERIODIC L 4 -STRICHARTZ ESTIMATE FOR KDV TADAHIRO OH 1. Introduction In [], Bourgain proved global well-posedness of the periodic KdV in L T): u t + u xxx + uu x 0, x, t) T R. 1.1) The key ingredient

More information

Diffraction by Edges. András Vasy (with Richard Melrose and Jared Wunsch)

Diffraction by Edges. András Vasy (with Richard Melrose and Jared Wunsch) Diffraction by Edges András Vasy (with Richard Melrose and Jared Wunsch) Cambridge, July 2006 Consider the wave equation Pu = 0, Pu = D 2 t u gu, on manifolds with corners M; here g 0 the Laplacian, D

More information

Strichartz Estimates for the Schrödinger Equation in Exterior Domains

Strichartz Estimates for the Schrödinger Equation in Exterior Domains Strichartz Estimates for the Schrödinger Equation in University of New Mexico May 14, 2010 Joint work with: Hart Smith (University of Washington) Christopher Sogge (Johns Hopkins University) The Schrödinger

More information

Very Weak Turbulence for Certain Dispersive Equations

Very Weak Turbulence for Certain Dispersive Equations Very Weak Turbulence for Certain Dispersive Equations Gigliola Staffilani Massachusetts Institute of Technology December, 2010 Gigliola Staffilani (MIT) Very weak turbulence and dispersive PDE December,

More information

The NLS on product spaces and applications

The NLS on product spaces and applications October 2014, Orsay The NLS on product spaces and applications Nikolay Tzvetkov Cergy-Pontoise University based on joint work with Zaher Hani, Benoit Pausader and Nicola Visciglia A basic result Consider

More information

Energy transfer model and large periodic boundary value problem for the quintic NLS

Energy transfer model and large periodic boundary value problem for the quintic NLS Energy transfer model and large periodic boundary value problem for the quintic NS Hideo Takaoka Department of Mathematics, Kobe University 1 ntroduction This note is based on a talk given at the conference

More information

Stability and Instability of Standing Waves for the Nonlinear Fractional Schrödinger Equation. Shihui Zhu (joint with J. Zhang)

Stability and Instability of Standing Waves for the Nonlinear Fractional Schrödinger Equation. Shihui Zhu (joint with J. Zhang) and of Standing Waves the Fractional Schrödinger Equation Shihui Zhu (joint with J. Zhang) Department of Mathematics, Sichuan Normal University & IMS, National University of Singapore P1 iu t ( + k 2 )

More information

SCATTERING FOR THE NON-RADIAL 3D CUBIC NONLINEAR SCHRÖDINGER EQUATION

SCATTERING FOR THE NON-RADIAL 3D CUBIC NONLINEAR SCHRÖDINGER EQUATION SCATTERING FOR THE NON-RADIAL 3D CUBIC NONLINEAR SCHRÖDINGER EQUATION THOMAS DUYCKAERTS, JUSTIN HOLMER, AND SVETLANA ROUDENKO Abstract. Scattering of radial H 1 solutions to the 3D focusing cubic nonlinear

More information

Dispersive Equations and Hyperbolic Orbits

Dispersive Equations and Hyperbolic Orbits Dispersive Equations and Hyperbolic Orbits H. Christianson Department of Mathematics University of California, Berkeley 4/16/07 The Johns Hopkins University Outline 1 Introduction 3 Applications 2 Main

More information

The Sine-Gordon regime of the Landau-Lifshitz equation with a strong easy-plane anisotropy

The Sine-Gordon regime of the Landau-Lifshitz equation with a strong easy-plane anisotropy The Sine-Gordon regime of the Landau-Lifshitz equation with a strong easy-plane anisotropy André de Laire 1 and Philippe Gravejat March, 18 Abstract It is well-known that the dynamics of biaxial ferromagnets

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

ON BLOW-UP SOLUTIONS TO THE 3D CUBIC NONLINEAR SCHRÖDINGER EQUATION

ON BLOW-UP SOLUTIONS TO THE 3D CUBIC NONLINEAR SCHRÖDINGER EQUATION ON BOW-UP SOUTIONS TO THE 3D CUBIC NONINEAR SCHRÖDINGER EQUATION JUSTIN HOMER AND SVETANA ROUDENKO Abstract. For the 3d cubic nonlinear Schrödinger (NS) equation, which has critical (scaling) norms 3 and

More information

Singularity formation in critical parabolic problems II

Singularity formation in critical parabolic problems II Singularity formation in critical parabolic problems II Manuel del Pino DIM and CMM Universidad de Chile Rivière-Fabes Symposium 2017 University of Minnesota, April 28-30, 2017 The harmonic map flow from

More information

arxiv: v1 [math.ap] 25 Jun 2008

arxiv: v1 [math.ap] 25 Jun 2008 On the existence of smooth self-similar blow-up profiles for the wave-map equation arxiv:86.4148v1 [math.ap] 5 Jun 8 Pierre Germain October, 17 Abstract Consider the equivariant wave map equation from

More information

M ath. Res. Lett. 15 (2008), no. 6, c International Press 2008 SCATTERING FOR THE NON-RADIAL 3D CUBIC NONLINEAR SCHRÖDINGER EQUATION

M ath. Res. Lett. 15 (2008), no. 6, c International Press 2008 SCATTERING FOR THE NON-RADIAL 3D CUBIC NONLINEAR SCHRÖDINGER EQUATION M ath. Res. Lett. 15 (2008), no. 6, 1233 1250 c International Press 2008 SCATTERING FOR THE NON-RADIAL 3D CUBIC NONLINEAR SCHRÖDINGER EQUATION Thomas Duyckaerts, Justin Holmer, and Svetlana Roudenko Abstract.

More information

Free energy estimates for the two-dimensional Keller-Segel model

Free energy estimates for the two-dimensional Keller-Segel model Free energy estimates for the two-dimensional Keller-Segel model dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine in collaboration with A. Blanchet (CERMICS, ENPC & Ceremade) & B.

More information

Global solutions for the cubic non linear wave equation

Global solutions for the cubic non linear wave equation Global solutions for the cubic non linear wave equation Nicolas Burq Université Paris-Sud, Laboratoire de Mathématiques d Orsay, CNRS, UMR 8628, FRANCE and Ecole Normale Supérieure Oxford sept 12th, 2012

More information

Nonlinear Modulational Instability of Dispersive PDE Models

Nonlinear Modulational Instability of Dispersive PDE Models Nonlinear Modulational Instability of Dispersive PDE Models Jiayin Jin, Shasha Liao, and Zhiwu Lin Georgia Tech ICERM workshop on water waves, 4/28/2017 Jiayin Jin, Shasha Liao, and Zhiwu Lin Georgia Tech

More information

The Geometrization Theorem

The Geometrization Theorem The Geometrization Theorem Matthew D. Brown Wednesday, December 19, 2012 In this paper, we discuss the Geometrization Theorem, formerly Thurston s Geometrization Conjecture, which is essentially the statement

More information

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds A local characterization for constant curvature metrics in -dimensional Lorentz manifolds Ivo Terek Couto Alexandre Lymberopoulos August 9, 8 arxiv:65.7573v [math.dg] 4 May 6 Abstract In this paper we

More information

Long time existence of space periodic water waves

Long time existence of space periodic water waves Long time existence of space periodic water waves Massimiliano Berti SISSA, Trieste IperPV2017, Pavia, 7 Settembre 2017 XVII Italian Meeting on Hyperbolic Equations Water Waves equations for a fluid in

More information

1D Quintic NLS with White Noise Dispersion

1D Quintic NLS with White Noise Dispersion 2011 年 1 月 7 日 1D Quintic NLS with White Noise Dispersion Yoshio TSUTSUMI, Kyoto University, Arnaud DEBUSSCHE, ENS de Cachan, Bretagne 1D quintic NLS with white noise dispersion idu + xu 2 dβ(t) =λ u 4

More information

Dyson series for the PDEs arising in Mathematical Finance I

Dyson series for the PDEs arising in Mathematical Finance I for the PDEs arising in Mathematical Finance I 1 1 Penn State University Mathematical Finance and Probability Seminar, Rutgers, April 12, 2011 www.math.psu.edu/nistor/ This work was supported in part by

More information

Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds

Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds Raphael Hora UFSC rhora@mtm.ufsc.br 29/04/2014 Raphael Hora (UFSC) Inverse Scattering with Partial data on AH Manifolds 29/04/2014

More information

Almost sure global existence and scattering for the one-dimensional NLS

Almost sure global existence and scattering for the one-dimensional NLS Almost sure global existence and scattering for the one-dimensional NLS Nicolas Burq 1 Université Paris-Sud, Université Paris-Saclay, Laboratoire de Mathématiques d Orsay, UMR 8628 du CNRS EPFL oct 20th

More information

Wave operators with non-lipschitz coefficients: energy and observability estimates

Wave operators with non-lipschitz coefficients: energy and observability estimates Wave operators with non-lipschitz coefficients: energy and observability estimates Institut de Mathématiques de Jussieu-Paris Rive Gauche UNIVERSITÉ PARIS DIDEROT PARIS 7 JOURNÉE JEUNES CONTRÔLEURS 2014

More information

DISPERSIVE EQUATIONS: A SURVEY

DISPERSIVE EQUATIONS: A SURVEY DISPERSIVE EQUATIONS: A SURVEY GIGLIOLA STAFFILANI 1. Introduction These notes were written as a guideline for a short talk; hence, the references and the statements of the theorems are often not given

More information

LECTURE NOTES : INTRODUCTION TO DISPERSIVE PARTIAL DIFFERENTIAL EQUATIONS

LECTURE NOTES : INTRODUCTION TO DISPERSIVE PARTIAL DIFFERENTIAL EQUATIONS LECTURE NOTES : INTRODUCTION TO DISPERSIVE PARTIAL DIFFERENTIAL EQUATIONS NIKOLAOS TZIRAKIS Abstract. The aim of this manuscript is to provide a short and accessible introduction to the modern theory of

More information

Sharp blow-up criteria for the Davey-Stewartson system in R 3

Sharp blow-up criteria for the Davey-Stewartson system in R 3 Dynamics of PDE, Vol.8, No., 9-60, 011 Sharp blow-up criteria for the Davey-Stewartson system in R Jian Zhang Shihui Zhu Communicated by Y. Charles Li, received October 7, 010. Abstract. In this paper,

More information

THE QUINTIC NONLINEAR SCHRÖDINGER EQUATION ON THREE-DIMENSIONAL ZOLL MANIFOLDS

THE QUINTIC NONLINEAR SCHRÖDINGER EQUATION ON THREE-DIMENSIONAL ZOLL MANIFOLDS THE QUINTIC NONLINEAR SCHRÖDINGER EQUATION ON THREE-DIMENSIONAL ZOLL MANIFOLDS SEBASTIAN HERR Abstract. Let (M, g) be a three-dimensional smooth compact Riemannian manifold such that all geodesics are

More information

The Gaussian free field, Gibbs measures and NLS on planar domains

The Gaussian free field, Gibbs measures and NLS on planar domains The Gaussian free field, Gibbs measures and on planar domains N. Burq, joint with L. Thomann (Nantes) and N. Tzvetkov (Cergy) Université Paris Sud, Laboratoire de Mathématiques d Orsay, CNRS UMR 8628 LAGA,

More information

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS Electronic Journal of Differential Equations, Vol. 017 (017), No. 15, pp. 1 7. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC

More information

Bielefeld Course on Nonlinear Waves - June 29, Department of Mathematics University of North Carolina, Chapel Hill. Solitons on Manifolds

Bielefeld Course on Nonlinear Waves - June 29, Department of Mathematics University of North Carolina, Chapel Hill. Solitons on Manifolds Joint work (on various projects) with Pierre Albin (UIUC), Hans Christianson (UNC), Jason Metcalfe (UNC), Michael Taylor (UNC), Laurent Thomann (Nantes) Department of Mathematics University of North Carolina,

More information

On the Cauchy problem of 3-D energy-critical Schrödinger equations with subcritical perturbations

On the Cauchy problem of 3-D energy-critical Schrödinger equations with subcritical perturbations J. Differential Equations 30 (006 4 445 www.elsevier.com/locate/jde On the Cauchy problem of 3-D energy-critical Schrödinger equations with subcritical perturbations Xiaoyi Zhang Academy of Mathematics

More information

BIHARMONIC WAVE MAPS INTO SPHERES

BIHARMONIC WAVE MAPS INTO SPHERES BIHARMONIC WAVE MAPS INTO SPHERES SEBASTIAN HERR, TOBIAS LAMM, AND ROLAND SCHNAUBELT Abstract. A global weak solution of the biharmonic wave map equation in the energy space for spherical targets is constructed.

More information

Relation between Distributional and Leray-Hopf Solutions to the Navier-Stokes Equations

Relation between Distributional and Leray-Hopf Solutions to the Navier-Stokes Equations Relation between Distributional and Leray-Hopf Solutions to the Navier-Stokes Equations Giovanni P. Galdi Department of Mechanical Engineering & Materials Science and Department of Mathematics University

More information

at time t, in dimension d. The index i varies in a countable set I. We call configuration the family, denoted generically by Φ: U (x i (t) x j (t))

at time t, in dimension d. The index i varies in a countable set I. We call configuration the family, denoted generically by Φ: U (x i (t) x j (t)) Notations In this chapter we investigate infinite systems of interacting particles subject to Newtonian dynamics Each particle is characterized by its position an velocity x i t, v i t R d R d at time

More information

Rigidity and Non-rigidity Results on the Sphere

Rigidity and Non-rigidity Results on the Sphere Rigidity and Non-rigidity Results on the Sphere Fengbo Hang Xiaodong Wang Department of Mathematics Michigan State University Oct., 00 1 Introduction It is a simple consequence of the maximum principle

More information

A GLOBAL COMPACT ATTRACTOR FOR HIGH-DIMENSIONAL DEFOCUSING NON-LINEAR SCHRÖDINGER EQUATIONS WITH POTENTIAL TERENCE TAO

A GLOBAL COMPACT ATTRACTOR FOR HIGH-DIMENSIONAL DEFOCUSING NON-LINEAR SCHRÖDINGER EQUATIONS WITH POTENTIAL TERENCE TAO A GLOBAL COMPACT ATTRACTOR FOR HIGH-DIMENSIONAL DEFOCUSING NON-LINEAR SCHRÖDINGER EQUATIONS WITH POTENTIAL TERENCE TAO arxiv:85.1544v2 [math.ap] 28 May 28 Abstract. We study the asymptotic behavior of

More information

Brownian Motion on Manifold

Brownian Motion on Manifold Brownian Motion on Manifold QI FENG Purdue University feng71@purdue.edu August 31, 2014 QI FENG (Purdue University) Brownian Motion on Manifold August 31, 2014 1 / 26 Overview 1 Extrinsic construction

More information

Global well-posedness and scattering for the defocusing quintic nonlinear Schrödinger equation in two dimensions

Global well-posedness and scattering for the defocusing quintic nonlinear Schrödinger equation in two dimensions University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses 08 Global well-posedness and scattering for the defocusing quintic nonlinear Schrödinger equation

More information

Large data local solutions for the derivative NLS equation

Large data local solutions for the derivative NLS equation J. Eur. Math. Soc. 1, 957 985 c European Mathematical Society 8 Ioan Bejenaru Daniel Tataru Large data local solutions for the derivative NLS equation Received May 9, 7 Abstract. We consider the derivative

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

Variational and Topological methods : Theory, Applications, Numerical Simulations, and Open Problems 6-9 June 2012, Northern Arizona University

Variational and Topological methods : Theory, Applications, Numerical Simulations, and Open Problems 6-9 June 2012, Northern Arizona University Variational and Topological methods : Theory, Applications, Numerical Simulations, and Open Problems 6-9 June 22, Northern Arizona University Some methods using monotonicity for solving quasilinear parabolic

More information

Singular solutions for vibration control problems

Singular solutions for vibration control problems Journal of Physics: Conference Series PAPER OPEN ACCESS Singular solutions for vibration control problems To cite this article: Larisa Manita and Mariya Ronzhina 8 J. Phys.: Conf. Ser. 955 3 View the article

More information

Perturbations of singular solutions to Gelfand s problem p.1

Perturbations of singular solutions to Gelfand s problem p.1 Perturbations of singular solutions to Gelfand s problem Juan Dávila (Universidad de Chile) In celebration of the 60th birthday of Ireneo Peral February 2007 collaboration with Louis Dupaigne (Université

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 00 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

ON SOME RESULTS FOR QUANTUM HYDRODYNAMICAL MODELS

ON SOME RESULTS FOR QUANTUM HYDRODYNAMICAL MODELS ON SOME RESULTS FOR QUANTUM HYDRODYNAMICAL MODELS PAOLO ANTONELLI, LARS ERIC HIENTZSCH, PIERANGELO MARCATI, AND HAO ZHENG Abstract. In this paper we review some recent results on the existence of finite

More information

Wave equation on manifolds and finite speed of propagation

Wave equation on manifolds and finite speed of propagation Wave equation on manifolds and finite speed of propagation Ethan Y. Jaffe Let M be a Riemannian manifold (without boundary), and let be the (negative of) the Laplace-Beltrami operator. In this note, we

More information

MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF PROBLEMS WITH SIGN-CHANGING POTENTIAL

MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF PROBLEMS WITH SIGN-CHANGING POTENTIAL Electronic Journal of Differential Equations, Vol. 015 015), No. 0, pp. 1 10. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MULTIPLE POSITIVE SOLUTIONS

More information

Blowup dynamics of an unstable thin-film equation

Blowup dynamics of an unstable thin-film equation Blowup dynamics of an unstable thin-film equation IMA Summer Program Geometrical Singularities and Singular Geometries July 15, 2008. (IMA, July 15, 2008.) 1 / 12 Thin-film equations (TFE) u t = (u n u

More information

PERSISTENCE PROPERTIES AND UNIQUE CONTINUATION OF SOLUTIONS OF THE CAMASSA-HOLM EQUATION

PERSISTENCE PROPERTIES AND UNIQUE CONTINUATION OF SOLUTIONS OF THE CAMASSA-HOLM EQUATION PERSISTENCE PROPERTIES AND UNIQUE CONTINUATION OF SOLUTIONS OF THE CAMASSA-HOLM EQUATION A. ALEXANDROU HIMONAS, GERARD MISIO LEK, GUSTAVO PONCE, AND YONG ZHOU Abstract. It is shown that a strong solution

More information

On Schrödinger equations with inverse-square singular potentials

On Schrödinger equations with inverse-square singular potentials On Schrödinger equations with inverse-square singular potentials Veronica Felli Dipartimento di Statistica University of Milano Bicocca veronica.felli@unimib.it joint work with Elsa M. Marchini and Susanna

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A QUASILINEAR KDV EQUATION WITH DEGENERATE DISPERSION

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A QUASILINEAR KDV EQUATION WITH DEGENERATE DISPERSION EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A QUASILINEAR KDV EQUATION WITH DEGENERATE DISPERSION PIERRE GERMAIN, BENJAMIN HARROP-GRIFFITHS, AND JEREMY L. MARZUOLA Abstract. We consider a quasilinear KdV

More information

Some Variations on Ricci Flow. Some Variations on Ricci Flow CARLO MANTEGAZZA

Some Variations on Ricci Flow. Some Variations on Ricci Flow CARLO MANTEGAZZA Some Variations on Ricci Flow CARLO MANTEGAZZA Ricci Solitons and other Einstein Type Manifolds A Weak Flow Tangent to Ricci Flow The Ricci flow At the end of 70s beginning of 80s the study of Ricci and

More information

ON THE PROBABILISTIC CAUCHY THEORY FOR NONLINEAR DISPERSIVE PDES

ON THE PROBABILISTIC CAUCHY THEORY FOR NONLINEAR DISPERSIVE PDES ON THE PROBABILISTIC CAUCHY THEORY FOR NONLINEAR DISPERSIVE PDES ÁRPÁD BÉNYI, TADAHIRO OH, AND OANA POCOVNICU Abstract. In this note, we review some of the recent developments in the well-posedness theory

More information

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS Electronic Journal of Differential Equations, Vol. 16 16, No. 7, pp. 1 11. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu UNIFORM DECAY OF SOLUTIONS

More information

Spaces with oscillating singularities and bounded geometry

Spaces with oscillating singularities and bounded geometry Spaces with oscillating singularities and bounded geometry Victor Nistor 1 1 Université de Lorraine (Metz), France Potsdam, March 2019, Conference in Honor of B.-W. Schulze ABSTRACT Rabinovich, Schulze

More information

A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets

A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets A Minimal Uncertainty Product for One Dimensional Semiclassical Wave Packets George A. Hagedorn Happy 60 th birthday, Mr. Fritz! Abstract. Although real, normalized Gaussian wave packets minimize the product

More information

1D Quintic NLS with White Noise Dispersion

1D Quintic NLS with White Noise Dispersion 2011 年 8 月 8 日 1D Quintic NLS with White Noise Dispersion Yoshio TSUTSUMI, Kyoto University, Arnaud DEBUSSCHE, ENS de Cachan, Bretagne 1D quintic NLS with white noise dispersion idu + xu 2 dβ(t) =λ u 4

More information

Microlocal analysis and inverse problems Lecture 4 : Uniqueness results in admissible geometries

Microlocal analysis and inverse problems Lecture 4 : Uniqueness results in admissible geometries Microlocal analysis and inverse problems Lecture 4 : Uniqueness results in admissible geometries David Dos Santos Ferreira LAGA Université de Paris 13 Wednesday May 18 Instituto de Ciencias Matemáticas,

More information

The harmonic map flow

The harmonic map flow Chapter 2 The harmonic map flow 2.1 Definition of the flow The harmonic map flow was introduced by Eells-Sampson in 1964; their work could be considered the start of the field of geometric flows. The flow

More information

On the Asymptotic Behavior of Large Radial Data for a Focusing Non-Linear Schrödinger Equation

On the Asymptotic Behavior of Large Radial Data for a Focusing Non-Linear Schrödinger Equation Dynamics of PDE, Vol.1, No.1, 1-47, 2004 On the Asymptotic Behavior of Large adial Data for a Focusing Non-Linear Schrödinger Equation Terence Tao Communicated by Charles Li, received December 15, 2003.

More information

Almost Sure Well-Posedness of Cubic NLS on the Torus Below L 2

Almost Sure Well-Posedness of Cubic NLS on the Torus Below L 2 Almost Sure Well-Posedness of Cubic NLS on the Torus Below L 2 J. Colliander University of Toronto Sapporo, 23 November 2009 joint work with Tadahiro Oh (U. Toronto) 1 Introduction: Background, Motivation,

More information

Exponential Energy Decay for the Kadomtsev-Petviashvili (KP-II) equation

Exponential Energy Decay for the Kadomtsev-Petviashvili (KP-II) equation São Paulo Journal of Mathematical Sciences 5, (11), 135 148 Exponential Energy Decay for the Kadomtsev-Petviashvili (KP-II) equation Diogo A. Gomes Department of Mathematics, CAMGSD, IST 149 1 Av. Rovisco

More information

Energy-critical semi-linear shifted wave equation on the hyperbolic spaces

Energy-critical semi-linear shifted wave equation on the hyperbolic spaces Energy-critical semi-linear shifted wave equation on the hyperbolic spaces Ruipeng Shen Center for Applied Mathematics Tianjin University Tianjin, P.R.China January 1, 16 Abstract In this paper we consider

More information

Boundary layers for Navier-Stokes equations with slip boundary conditions

Boundary layers for Navier-Stokes equations with slip boundary conditions Boundary layers for Navier-Stokes equations with slip boundary conditions Matthew Paddick Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie (Paris 6) Séminaire EDP, Université Paris-Est

More information