A PAIR OF HIGHER ORDER SYMMETRIC NONDIFFERENTIABLE MULTIOBJECTIVE MINI-MAXMIXED PROGRAMMING PROBLEMS

Size: px
Start display at page:

Download "A PAIR OF HIGHER ORDER SYMMETRIC NONDIFFERENTIABLE MULTIOBJECTIVE MINI-MAXMIXED PROGRAMMING PROBLEMS"

Transcription

1 Iteatoal Joal of Cote Scece ad Cocato Vol. 3, No., Jaa-Je 0,. 9-5 A PAIR OF HIGHER ORDER SYMMERIC NONDIFFERENIABLE MULIOBJECIVE MINI-MAXMIXED PROGRAMMING PROBLEMS Aa Ka ath ad Gaat Dev Deatet of Matheatcs, det Acade of echolog, F/A, Chadaa Idstal Estate, Bhbaeswa-4, Odsha, Ida, E-al: a_tath06@edffal.co Deatet of Matheatcs, ABI, Cttac, Odsha, Ida, E-al: tath_ath@edffal.co ABSRAC A a of hghe ode setc o dffeetable a ed ogag oble whee each obectve fcto cotas sot fcto of coact cove set R, s folated. Ude hghe ode F-covet assto, wea, stog ad covese setc dalt theoes elated to a oel effcet solto ad selfdalt ae oved Kewods: effcet solto, self dalt, Fcovet, sot fcto, a-ed, Hghe-ode setc. INRODUCION Setc dalt olea ogag oble was fst todced b Do [] who defed a atheatcal ogag oble ad t s dal to be setc f the dal s the al obles. Late Datzg, Esbeg ad Cottle [] ad Mod [3] folated a a of setc dal ogas fo scala fcto f(, ) that s cove the fst vaable ad that s cocave the secod vaable esectvel. Balas[4] geealzed dalt fo lea ad olea ed tege ogag obles. Ude the weae covet asstos osed o f, Mod ad We [5] folated a a of a setc dal ogas. Chada ad Ka folated a a of setc dal a tege Pogas, whch soe al ad dal vaables ae costaed to belog to the set of teges fo abta coes. K ad Sog [6] also, folated two a of olea ltobectve ed tege ogas fo abta coes ad establshed the dalt theoes. Mod [7] fst folated secod ode setc dal odels, todced the cocet of secod ode cove fcto ad oved secod ode setc dalt theoes. Becto ad Chada [8] establshed the secod ode sedo covet ad sedo- cocavt asstos. Dev [9] folated a a of secod ode setc dal ogas ad establshed dalt eslts volvg secod ode ve fctos. Pade [0] todced secod ode -ve fcto fo ltobectve factoal ogag oble ad establshed wea ad stog dalt theoes. Mod ad Schecte [] costcted two ew setc dal as whch the obectve fcto cota a sot fctos of coact cove set R ad ae theefoe odffeetable. Ude the secod ode F-sedo covet asstos, Ho ad Yag [] gave the secod ode setc dalt. Hghe ode dalt olea ogas have bee stded b soe eseaches. Magasaa [3] folated a class of hghe ode dal obles fo olea ogag oble. Mod ad Zhag obtaed dalt eslts fo vaos hghe ode dal ogag obles de hghe ode vet assto, sch as hghe ode te-, hghe ode sedo te-, ad hghe ode qas te - codtos. Msha ad Reda [4] gave vaos dalt eslts whch clded Magasaa hghe ode dalt ad Mod- We hghe ode dalt. Che [5] also dscssed the dalt theoes de the hghe ode F-covet fo a a of odffeetable ogas. Che fst gave a a of odffeetable ltobectve fctos cotas a sot fcto of coact cove set R ad dscssed the setc dalt fo ltobectve a ed tege ogag obles.. PRESEN WORK I ths chate, a a of hghe ode setc odffeetable ltobectve -a ed ogag obles b todcg a dffeetable fcto s folated, whee each of obectve fctos cotas a sot fcto of a coact cove set R. Fo a dffeetable fcto h : R R R the deftos of the hghe ode F-covet (F-sedo covet, F-sedo covet) wth esect to h ae todced. he all ow othe geealzed vet, sch that, te- vet ad hghe ode te- vet ca be t to the catego of the hghe ode te- vet ca be t to the catego of the hghe ode F-ve fctos b tag ceta aoate tasfoatos of F ad h. Ude these the hghe-ode

2 0 Iteatoal Joal of Cote Scece ad Cocato (IJCSC) F-covet assto, the hghe ode wea, hghe ode stog ad hghe covese setc dalt theoes elated to a oel effcet solto ad self dalt ae oved. 3. NOAION AND DEFINIION hoghot ths chate R ad R ae -desoal ad -desoal Eclda saces esectvel. R + ad R + ae o egatve othats of R ad R esectvel. Let U ad V be two abta sets of teges R (0) ad R (0) esectvel ad C ad C ae closed cove coes R ad R. Let R ad R. Wthot loss of geealt, sose the fst cooets of ad the fst cooets of ae costaed to be tegesad wte (, ) = (,,, ) whee U ad V, C ad C. whee = + ad = +. Fo a eal-valed twce dffeetable fcto g(, ) defed o a oe set R R, deote b g(,) the gadet vecto of g wth esect to at (,),(,) g, the Hessa at wth esect to at (,), slal g (,) ad g (,) ae also defed. Let C be a coact cove set R. he sot fcto of C s defed b s( ) C = a{ } C A sot fcto, beg cove ad evewhee fte, has a sb dffeetal, that s thee ests z R sch that s( )( C )() ) s C + z C fo all C. he sb dffeetal of s( C) s gve b s( ) c = { z C z = s( )}. C Fo a set D R, the oal coe to D at a ot D ad s defed as () { () N = R 0, z }. z D D It s obvos that fo a coact cove set C, () NC ff s( ) C =, o eqvaletl, s( ) C Cosde the followg ltobectve ogag oble (MOP) Mze f () sbect to g() 0, X, whee f : R R, g : R R t ad X R. We deote the set of feasble soltos of (MOP) b P = { X g() 0}. Defto 3.: A ot P s sad to be a effcet solto of (MOP) f thee ests o othe P sch that f ()()\{0}, f R that s f()() f fo all {,, 3,... }, ad at least oe {,,3,... },()(); f f P s sad to be a wea effcet solto of (P) f thee ests o othe P sch that fo all {,,3,... },()(). f > f Defto 3.: P s sad to be a Geoffo oel effcet solto of (P), f s a effcet solto, ad thee ests a eal be M > 0 sch that fo all {,, 3,... }, P ad f ()(), < f the f () f () M[()()] f f fo soe {,,3,... } sch that f ()(). < f Lea 3.: If P s a oel effcet solto of (MOP), thee est a = ( a, a,...) a R ad β = ( β, β,...) β R sch that = = a f ()() + 0, β 0, g 0,( =,) a 0. β a β Defto 3.3: A fcto F : X X R R (whee X R ) s sblea wth esect to the thd vaable f fo all (, ) X X () F(, ; a + a ) F(, ; a ) + F(, ; a ), fo all a, a R. () F(, ; αa) = αf(, ; a), a 0, α 0, fo all a R. Defto 3.4: Sose that h : X R R s a dffeetable fcto, F s sb lea wth esect to the thd aget. We sa that () f s sad to be hghe ode F-covet X wth esect to h, f fo all (,)()() X R f f F(, ;()( f,)) + {( h,)} h () f s sad to be hghe ode F-sedo covet X wth esect to h, f, fo all (, ) X R. we have F(, ;()( f,)) + 0 h f ()()(,) f {( h,)} h () f s sad to be hghe -ode F-qas-cove X wth esect to h, f fo all (, ) X R, We have f ()()(,) f + {( h,)} h F(, ;()( f,)) + {( h,)} 0 h Defto 3.5: Let f : R R R ad h : X R R be dffeetable fcto whee X R, F : X X R R be sb lea wth esect to ts thd aget. We sa that () f(., ) s hghe-f-cove at X, wth esect to soe fcto h, f fo all (, ) X R ad fo fed Y R we have f (,)(,)( f, :(,)( F,)) f + h + h(,)(,). h () f (., ) s sad to be hghe-ode F-sedo-cove at X wth esect to h, f fo fed Y R ad fo all (, ) X R we have

3 A Pa of Hghe Ode Setc Nodffeetable Mltobectve M-aed Pogag Pobles () f(., ) s sad to be hghe-ode F-qas-cove at X wth esect to h f fo (, ) X R ad fo fed Y R we have f (,)(,)( f,)(,) h h F(, :(,)( f,)) + 0 h If f (., ) s hghe ode F cove (F sedo-cove o F qas-cove) at wth esect to h f fo all (, ) X R ad fo fed Y R the f(., ) s hghe ode F cocave (F sedo-cocave o F qas-cocave) at wth esect to h fo all (, ) X R ad fo fed Y R. Rea : ( ) Whe h(,) = {()} f ad F( ; ;)( a,) = η, a whee h : X X R, the hgheode F covet (hghe ode F-sedo-covet, hghe ode F-qas-covet) edces to η-bovet (η-sedo-bovet, η-qas-bovet) [9]. () Whe h(,) = {()}, f the hghe ode F covet (hghe-ode F-sedo-covet, hghe ode F-qas-covet) edces to the secod ode F sedo-vet, F qas-vet [7]. ( ) Whe h(,) {()( =,)} f + ad F( ; ;)( a,) = η, a whee a :\{0}, X X : R + η X X R ae ostve fctos ad : X R R s dffeetable fcto, the the hghe ode F covet (hghe ode F-sedo covet, hghe ode F-qascovet) fcto becoes the hghe-ode te (hghe ode sedo- te-, hghe ode qas-te-) fcto. Fo ow o, sose that the sb lea fcto F satsfes the followg codto F(; ; a) + a 0, fo all a R +. () Defto 3.6: A eal valed fcto φ(,,... l ) wll be called addtvel seaable wth esect to f thee est eal valed fctos ξ( ) deedet of,,... l ad (, 3,... l ) sch that φ(,,... l ) = ξ( ) + ξ(, 3,... l ) 4. HIGHER-ORDER SYMMERIC DUALIY I ths secto, we cosde twce dffeetable fctos f : R R R, g : R R R R, h : R R R R ad coact cove sets C R ad D R fo =,,. We folate the followg hghe ode setc odffeetable ltobectve Ma ed tege setc al ad dal obles. Pal oble (MOP). (( f,) + s ()( C,,)()(,.) z, + h h (( f,) ()(,,)()(,.) s C z h h + + a a,,... sbect to λ f(,)(, z,) + 0 h () = ()(,)(,,) 0f z h = λ + (3) U, V, R, R, z D, R, =,,..., λ > 0, λ e =, Dal Poble (MOD) (( f,) v s ()( v, D,)()(,,) w, + g v g v..., a v,..., (( f,) ()(,,)()(,.) v s v D + w + g v g v sbect to (4) λ f(,)( v, w,) + 0, g v (5) = ()(,)(,,) 0, f v w g v = λ + (6) U v V R v R w C,,,,,, =,,..., λ > 0, λ = (7) R = Sce the obectve fctos of (MOP) ad (MOD) cota the sot fcto s( C ) ad s(v D ), =,, 3,., the ae o-dffeetable ltobectve ogag obles. Rea : () If U = φ, V = φ the (MOP) ad (MOD) becoe the obles cosdeed b X. Che [5]. () If h (,,)()( =,),, f = g(, v,) = ()(,) f, v = ad =, the (MOP) ad (MOD) ca be chaged to the followg obles. Pal: a [(( f,) + s () C, ()( z +,) ] f Sbect to (( f,)(,) z + 0, f Dal: () [(,(,))] 0, f z + f U V z D R,, 0,,. a [(( f,) v s ()()( v D,))] + w f v v v,

4 Iteatoal Joal of Cote Scece ad Cocato (IJCSC) Sbect to (( f,)( v,) + w0, + f v () [(,)(,) ] 0, f v + w + f v U, v V, v 0, w D, R whch ae the geealzed fos Ho ad Yag []. I the seqel we shall establsh the wea stog ad covese dalt theoe de the hghe ode F- covet asstos. Fo ths we sose that the fcto F : R R R R ad G: R R R R ae sb lea ad satsf the codto (a) F(, ; :) a + a 0, a R, + (b) G( v, :) a + a 0, a R + Also sose that the followg codto ae satsfed: () he fcto f (., v) + (.) w ae hghe ode F-cove at wth esect to g (, v, ) ad () he fcto f (,.) + (.) z ae hghe ode G-cove at wth esect to h (,, ) fo =,,.... heoe 4. (Wea Dalt): Asse that ad f (, ) ad h (,, ) ae addtvel seaable wth esect to o ad g (, v, ) s addtvel seaable wth esect to o v. Fo each feasble solto (,, λ, z, z,... z,,,... ) of (MOP) ad each feasble solto (, v, λ, w, w,... w,,,... ) of (MOD), the the followg eqalt eqaltes caot hold sltaeosl. () Fo all {,, 3,... } f + s C Z + h h (,)( )()(,,)() [(,,)] f v s v D + w + g v v (A) (,)( )()(,,) [(,,)] g () Fo at least oe {,, 3,... } f + s C Z + h h (,)( )()(,,)() [(,,)] f v s v D + w + g v h (B) (,)( )()(,,) [(,,,)] Poof: Sce f (, ) ad h (,, ) ae addtvel seaable wth esect o (sa wth esect to ), t holds ad Z = f (,)()( = f,), + f h (,,)()( =, h,), + h f (,)( =,) f h = h = (,,)(,,),,, 3... hs (MMP) ca be ewtte as, (()()( f,)() + h + f + s C z + h (,,)()(,,),... h ()(, z,)()( + h,,) h a,...,(()()( f,) + + h + f + s C Sbect to λ f (,)(, z,) + 0, h (8) = = ()(,)( λ,,) f 0, z + h (9) U, V, R, R, z D, R, (0) =,,..., λ > 0, λ e =, So (MOP) ca be wtte as Z = a[(()()(),... f + h + φ...()()()] f + h + φ Sbect to (8), (9) ad (0) whee φ () {( = f,)(,,)( + h ) + s C, ()()( z,,)} g Slal, (MOD) ca also be wtte as Z = a[(()()(),... f + h + ψ v v...()()()] f + h + ψ v Sbect to λ (,)(,,) 0, f v + w + g v = = ()(,)( λ,,) f 0, v + w + g v U, V, R, v R, w C, R, =,,..., λ > 0, λ e =, () () (3) Fo a gve ad v, the obles (MOP) ad (MOD) ae eactl the a of hghe ode setc dal o-dffeetable ltobectve ogag obles b X. Che [5]. Hece vew of the asstos, heoe- b X. Che [5] becoes alcable ad theefoe, we have fo each feasble solto (,, λ, z, z,... z,,,...) of (MOP) ad each feasble solto (, v,, w, w,... w,,,...) λ of (MOD), {(( f,)()( v, s,)() v [( D,,,)] w g v g v } = λ + +, {(( f,)()(, s,)() [( C,,,)] z h h } λ + + = ths les that the coclso holds.

5 A Pa of Hghe Ode Setc Nodffeetable Mltobectve M-aed Pogag Pobles 3 Rea 3: () Fo ow o, wthot loss of geealt we ca asse that f (, ), h (,, ), ad g (,, ) ae addtvel seaable wth esect to, =,,. () Fo the ocess of the oof theoe-, we ca also obta that ( A) ad ( B) caot hold sltaeosl f sb lea fctos F ad G satsf the codto (a) ad (b) ad fo each feasble solto (,, λ, z, z,... z,,,... ) of (MOP) ad each feasble solto (, v, λ, w, w,... w,,,... ) of (MOD), oe of the followg codtos holds. () f (,., v) + (.) w s hghe ode F-sedo cove at wth esect to g (, v, ) ad f (,,.) (.) z s hghe ode G-sedo-cocave at wth esect to h (,,). () f (,..,)(.) v + w s hghe ode F-qas-cove at wth esect to g (, v, ) ad f (,,.) (.) z s hghe ode G-qas-cocave at wth esect to h (,, ). he followg eslt dcates that de soe codtos, a oel effcet solto of (MOP) s also the oes of (MOD) ad the two obectve vales ae coesodgl eqal. heoe 4. (Stog Dalt): Let (,, λ, z, z,... z,,,...) be a effcet solto of (MMP), f : R R R s twce dffeetable at (,), h: R R R R, : g R R R R, s twce dffeetable at (,,), s twce dffeetable at (,,), fo =,, 3,.... Asse that the followg codtos hold; h (,, 0) = 0,( g,, 0) 0, = h () (,, 0) = 0,(, h, 0) 0 = h (,, 0)( =, h, 0),,, 3... = ; () fo all {,, 3,... }, we have the Hessa at h (,,), s ostve defte o egatve defte; () the set of vectos { f (,)(, z,) + } h s leal deedet, = (v) Fo soe a R ( a > 0) ad R, 0, =,,3,... we have = a ()(,)(, f,) 0. z + h he = 0, =,, 3... ; Ad thee ests sch that w C (,,,,,... λ w w w, = 0, = 0... = 0) s a feasble solto of (MOD). Ftheoe, f the hotheses heoe 3. ae satsfed ad ()(), h = g =,, 3,..., the (,,,,,... λ w w w, = 0, = 0... = 0) s a effcet solto of MOD), ad the two obectve vales ae eqal. Poof: If (,, λ, z, z,... z,,,...) a oel effcet fo (MMP) the (,, λ, z, z,... z,,,...) s also effcet fo (MP). hs, de the codto ths theoe we obta fo theoe- X. Che[5] that thee est w C, =,, 3,..., sch that (,, λ, w, w,.... w, = =...) = 0 = s a feasble solto of (MD). It s obvos that t s also feasble fo (MMD). Ftheoe, f the hotheses of hghe ode F-covet theoe- ae satsfed, the the obectve vales of (MP) ad (MD) ae eqal b [5], that s f (,)()( + s,,)() C [(,,,)] z + h h, = (( f,)()(, s,)() [( D, +,)] w + g g, =,, 3, 4... Note that h()(),() = g0, h = = 0, we have f (,)()( + s,,)() C [(,,)] z + h h, ((,)()(,,)() [(,,)],,,... g () = f s D + w + g g = Fo theoe-, (,, λ, w, w,... w, =, =... =.) 0= s a effcet solto of (MMD). It s sla to the ethod of the oof of theoe X. Che-004[5] that t s also a oel effcet solto of (MMD). Slal, we have the followg covese Dalt. heoe 4.3: (Covese Dalt): Let (, v, λ, w, w,.... w, =... =.) 0= be a oel effcet solto of (MMD), f : R R R s twce dffeetable at (,), v g: R R R R s twce dffeetable at (, v,), h: R R R R s dffeetable at (, v,) f the followg codtos hold () h (, v, 0) = 0,( g,, 0) v 0, = v, 0) g (, = 0, g (, v, 0)( =, h, 0), v,, 3,... = ; () Fo all {,, 3,... }, the Hessa at s ostve defte o egatve defte. (,,) g v () he set of vectos { f (,)( v +, w,) + g v } s leal deedet. =

6 4 Iteatoal Joal of Cote Scece ad Cocato (IJCSC) (v) Fo soe α R ( α > 0) ad R, 0 ( =,,3,...) les that = { (,)(,,) 0 } α f v + w + g v he () = 0, =,, 3,... ; () hee ests z C sch that (, v, λ, z, z,,.... z, =, =... =.) 0= s feasble solto of (MMP). Ftheoe, f the hotheses heoe 3. ae satsfed ad g ()(), = h,,... = the (, v, λ, z, z,,.... z, =, =... =.) 0= s oel effcet solto of (MMP), ad the two obectve vales ae coesodgl eqal. 5. HIGHER-ORDER SELF DUALIY A atheatcal ogag oble s sad to be selfdal, f whe the al s ecast the fo of the dal, the ew oble obtaed s the sae as the dal oble. Fst, we gve the followg defto. Defto 5.: he fcto h : I R R R R R s sad to be sew-setc wth esect to ad f fo all ad the doa of h sch that h(,,, ) = h (,,, ) whee U, R ad R ad U s a abta sets of teges R, + = heoe 5. (Self-dalt): If f ad h (MMP) ae sew setc fcto wth esect to ad ad =, U = V, C = D, z = w, = ad h(,, ) = g(,, ), =,, 3,.... he (MMP) s self-dal, that s, the dal oble of (MMP) s tself, ad the oe effcec of (,, λ, z, z,... z,,,...) fo (MMD), ad the covese. Ftheoe, de the codtos of theoe (4.) ad (4.3), f (,, λ, z, z,... z, = =... = 0) s a oel effcet solto of (MMP ), the (,,,,,,... λ z z z, = =... = 0) a oel effcet solto of (MMD), the coo otal vales s zeo ad the ovese. Poof: he oble (MMP)a be eeseted as a a- oble (( f,)()(,,)()( s C,.) +, z h z + h z a,,, z,...,(( f,)()(,,)()( s, C.),.. + z h z + h z sbect to λ f(,,)(, z,) + 0, h = ()(,)(,,) 0, f z h = λ + U V R R z D,,,,, R e, =,,..., λ > 0, λ =, Sce f ad h s sew-setc fcto wth esect to ad C = D, z = w, = ad h(,, ) = g(,, ) = g(,, ), =,, 3,.... t holds (( f,)()(, s,)()( D,,) +,, w + g g a,,, z,...,((,)()(,,)()(,.),.. f s D + w + g g Sbect to λ f(,)( +, w,) + 0, g = ()(,)( λ,,) f0, + w + g = U V R R w D,,,,, R, =,,..., λ > 0, λ e =, whch s the dal oble (MMD). hs (MMP) s self dal. It s obvos that the oe effcec of (,, λ, z, z,... z,,,...) fo (MMP) les the oe effcec of (,, λ, z, z,... z,,,...) fo (MMD),ad the covese. Net, we show that f (,)()( + s,,) C z + h, () [(,,)] h 0 = B theoe (4.), (4.3) ad (5.) we have =,, 3, (8) f (,)()( + s,,)() C [(,,)] z + h h, = (( f,)()(, s,)() [( D, +,)] w + g g = f (,)()( s,,)() C [( +,,)] z h + h, Whee the eqalt s fo the codtos. hs les that (8) holds. 6. CONCLUSION I the above, we folate a a of the hghe-ode setc o-dffeetable ltobectve -a ed ogag oble whch the obectve fctos cota a sot fcto of a coact cove set R o R. Ude the hghe-ode F-covet (hghe-ode F-sedo-covet, hghe-ode F-qas-covet) assto, we gve the hghe-ode wea., hgheode stog, hghe-ode covese dalt, ad self dalt. I o odels, U = φ, V = φ, the (MMP) ad (MMD) becoe the obles cosdeed b X. Che[5]. If h (,, ) = (,)(,,)(, f g v = f v) ad =, U = φ, V = φ the (MMP) ad (MMD) edce to the secod-ode setc odels of Ho ad Yag[].

7 A Pa of Hghe Ode Setc Nodffeetable Mltobectve M-aed Pogag Pobles 5 REFERENCE [] W.S. Do, A Setc Dal heoe fo Qadatc Pogas, Joal of Oeato Reseach Socet of Jaa,, (960), [] G.B. Datg, E. Esebeg, R.W. Cottle, Setc Dal Nolea Pogas, Pacfc Joal of Matheatcs 5, (965), [3] B. Mod, A Setc Dal heoe fo Nolea Pogag, Qatel Joal of Aled Matheatcs, 3, (965), [4] E. Balas, Ma ad Dalt fo Lea ad No Lea Med Itege Pogag, J. Abade(ed), Itege ad Nolea Pogag, Noth Hollad, Asteda (99). [5] B. Mod,. We, A Setc Dal heoe fo Nolea Mltobectve Pogag, : S Ka(ed), Recet Develoet Matheatcal Pogag, Godo ad Beach Scece Lodo., (99), [6] D.S. K, Y.R. Sog, Ma ad Setc Dalt fo Nolea Mltobectve Med Itege Pogag, Eoea Joal of Oeatoal Reseach, 8, (00), [7] B. Mod, Secod Ode Dalt fo Nolea Pogas, Oseach,, (974) [8] C.R. Becto, S. Chada, Secod Ode Setc ad Self Dal Pogas, Oseach, 3, (986), [9] G. Dev, Setc Dalt fo Nolea Pogag Poble Ivolvg -cove Fcto, Eoea Joal of Oeatoal Reseach, 04, (998), [0] S. Pade., Dalt fo Mltobectve Factoal Pogag Ivolvg Geealzed -bove Fcto, Oseach, 8(), (99), [] B. Mod., M. Schechte, No-dffeetal Setc Dalt, Bllet of the Astala Matheatcal Socet, 53, (9996), [] S.H How, X. M. Yag, O Secod Ode Setc Dalt Nodffeetableogag, Joal of Matheatcal Aalss ad Alcato, 55, (00), [3] O.L. Magasaa, Secod ad Hghe Ode Dalt Nolea Pogag, Joal of Matheatcal Aalss ad Alcato, 5, (975), [4] S.K. Msha, Eoea Joal of Oeatoal Reseach, 7, (000), [5] X. Che, Hghe-ode Setc Dalt Nodffeetable, Mltobectve Pogag Poble, Joal of Matheatcal Aalss ad Alcato, 90, (004), [6] S.K. Msha et al./ Eoea Joal of Oeatoal Reseach, 8, (007) -9.

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMANIAN ACADEMY, See A, OF HE ROMANIAN ACADEMY Volue 9, Nube 3/8,. NONDIFFERENIABLE MAHEMAICAL PROGRAMS. OPIMALIY AND HIGHER-ORDER DUALIY RESULS Vale PREDA Uvety

More information

Generalized Duality for a Nondifferentiable Control Problem

Generalized Duality for a Nondifferentiable Control Problem Aeca Joal of Appled Matheatcs ad Statstcs, 4, Vol., No. 4, 93- Avalable ole at http://pbs.scepb.co/aas//4/3 Scece ad Edcato Pblsh DO:.69/aas--4-3 Geealzed Dalty fo a Nodffeetable Cotol Poble. Hsa,*, Vkas

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures.

are positive, and the pair A, B is controllable. The uncertainty in is introduced to model control failures. Lectue 4 8. MRAC Desg fo Affe--Cotol MIMO Systes I ths secto, we cosde MRAC desg fo a class of ult-ut-ult-outut (MIMO) olea systes, whose lat dyacs ae lealy aaetezed, the ucetates satsfy the so-called

More information

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE

SUBSEQUENCE CHARACTERIZAT ION OF UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCE Reseach ad Coucatos atheatcs ad atheatcal ceces Vol 9 Issue 7 Pages 37-5 IN 39-6939 Publshed Ole o Novebe 9 7 7 Jyot cadec Pess htt//yotacadecessog UBEQUENCE CHRCTERIZT ION OF UNIFOR TTITIC CONVERGENCE

More information

Fractional Integrals Involving Generalized Polynomials And Multivariable Function

Fractional Integrals Involving Generalized Polynomials And Multivariable Function IOSR Joual of ateatcs (IOSRJ) ISSN: 78-578 Volue, Issue 5 (Jul-Aug 0), PP 05- wwwosoualsog Factoal Itegals Ivolvg Geealzed Poloals Ad ultvaable Fucto D Neela Pade ad Resa Ka Deatet of ateatcs APS uvest

More information

University of Pavia, Pavia, Italy. North Andover MA 01845, USA

University of Pavia, Pavia, Italy. North Andover MA 01845, USA Iteatoal Joual of Optmzato: heoy, Method ad Applcato 27-5565(Pt) 27-6839(Ole) wwwgph/otma 29 Global Ifomato Publhe (HK) Co, Ltd 29, Vol, No 2, 55-59 η -Peudoleaty ad Effcecy Gogo Gog, Noma G Rueda 2 *

More information

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS THE PUBLIHING HOUE PROCEEDING OF THE ROMANIAN ACADEMY, eres A OF THE ROMANIAN ACADEMY Volue 8, Nuber /27,.- MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEM INVOLVING GENERALIZED d - TYPE-I -ET

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

Overview. Review Superposition Solution. Review Superposition. Review x and y Swap. Review General Superposition

Overview. Review Superposition Solution. Review Superposition. Review x and y Swap. Review General Superposition ylcal aplace Soltos ebay 6 9 aplace Eqato Soltos ylcal Geoety ay aetto Mechacal Egeeg 5B Sea Egeeg Aalyss ebay 6 9 Ovevew evew last class Speposto soltos tocto to aal cooates Atoal soltos of aplace s eqato

More information

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces *

A Family of Non-Self Maps Satisfying i -Contractive Condition and Having Unique Common Fixed Point in Metrically Convex Spaces * Advaces Pure Matheatcs 0 80-84 htt://dxdoorg/0436/a04036 Publshed Ole July 0 (htt://wwwscrporg/oural/a) A Faly of No-Self Mas Satsfyg -Cotractve Codto ad Havg Uque Coo Fxed Pot Metrcally Covex Saces *

More information

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1

such that for 1 From the definition of the k-fibonacci numbers, the firsts of them are presented in Table 1. Table 1: First k-fibonacci numbers F 1 Scholas Joual of Egeeg ad Techology (SJET) Sch. J. Eg. Tech. 0; (C):669-67 Scholas Academc ad Scetfc Publshe (A Iteatoal Publshe fo Academc ad Scetfc Resouces) www.saspublshe.com ISSN -X (Ole) ISSN 7-9

More information

A Deterministic Model for Channel Capacity with Utility

A Deterministic Model for Channel Capacity with Utility CAPTER 6 A Detestc Model fo Chel Cct wth tlt 6. todcto Chel cct s tl oeto ssocted wth elble cocto d defed s the hghest te t whch foto c be set ove the chel wth btl sll obblt of eo. Chel codg theoes d the

More information

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES

FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL SEQUENCES Joual of Appled Matheatcs ad Coputatoal Mechacs 7, 6(), 59-7 www.ac.pcz.pl p-issn 99-9965 DOI:.75/jac.7..3 e-issn 353-588 FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH K-PELL, K-PELL-LUCAS AND MODIFIED K-PELL

More information

χ be any function of X and Y then

χ be any function of X and Y then We have show that whe we ae gve Y g(), the [ ] [ g() ] g() f () Y o all g ()() f d fo dscete case Ths ca be eteded to clude fuctos of ay ube of ado vaables. Fo eaple, suppose ad Y ae.v. wth jot desty fucto,

More information

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi Assgmet /MATH 47/Wte Due: Thusday Jauay The poblems to solve ae umbeed [] to [] below Fst some explaatoy otes Fdg a bass of the colum-space of a max ad povg that the colum ak (dmeso of the colum space)

More information

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen Vol No : Joural of Facult of Egeerg & echolog JFE Pages 9- Uque Coo Fed Pot of Sequeces of Mags -Metrc Sace M. Ara * Noshee * Deartet of Matheatcs C Uverst Lahore Pasta. Eal: ara7@ahoo.co Deartet of Matheatcs

More information

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx

On EPr Bimatrices II. ON EP BIMATRICES A1 A Hence x. is said to be EP if it satisfies the condition ABx Iteatoal Joual of Mathematcs ad Statstcs Iveto (IJMSI) E-ISSN: 3 4767 P-ISSN: 3-4759 www.jms.og Volume Issue 5 May. 4 PP-44-5 O EP matces.ramesh, N.baas ssocate Pofesso of Mathematcs, ovt. ts College(utoomous),Kumbakoam.

More information

Some Integrals Pertaining Biorthogonal Polynomials and Certain Product of Special Functions

Some Integrals Pertaining Biorthogonal Polynomials and Certain Product of Special Functions Global Joual o Scece Fote Reeach atheatc ad Deco Scece Volue Iue Veo Te : Double Bld ee Reewed Iteatoal Reeach Joual ublhe: Global Joual Ic SA Ole ISSN: 49-466 & t ISSN: 975-5896 Soe Itegal etag Bothogoal

More information

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle

Consumer theory. A. The preference ordering B. The feasible set C. The consumption decision. A. The preference ordering. Consumption bundle Thomas Soesso Mcoecoomcs Lecte Cosme theoy A. The efeece odeg B. The feasble set C. The cosmto decso A. The efeece odeg Cosmto bdle x ( 2 x, x,... x ) x Assmtos: Comleteess 2 Tastvty 3 Reflexvty 4 No-satato

More information

DUALITY FOR MINIMUM MATRIX NORM PROBLEMS

DUALITY FOR MINIMUM MATRIX NORM PROBLEMS HE PUBLISHING HOUSE PROCEEDINGS OF HE ROMNIN CDEMY, Seres, OF HE ROMNIN CDEMY Vole 6, Nber /2005,. 000-000 DULIY FOR MINIMUM MRI NORM PROBLEMS Vasle PRED, Crstca FULG Uverst of Bcharest, Faclt of Matheatcs

More information

SOME ASPECTS ON SOLVING A LINEAR FRACTIONAL TRANSPORTATION PROBLEM

SOME ASPECTS ON SOLVING A LINEAR FRACTIONAL TRANSPORTATION PROBLEM Qattate Methods Iqres SOME ASPECTS ON SOLVING A LINEAR FRACTIONAL TRANSPORTATION PROBLEM Dora MOANTA PhD Deartet of Matheatcs Uersty of Ecoocs Bcharest Roaa Ma blshed boos: Three desoal trasort robles

More information

Difference Sets of Null Density Subsets of

Difference Sets of Null Density Subsets of dvces Pue Mthetcs 95-99 http://ddoog/436/p37 Pulshed Ole M (http://wwwscrpog/oul/p) Dffeece Sets of Null Dest Susets of Dwoud hd Dsted M Hosse Deptet of Mthetcs Uvest of Gul Rsht I El: hd@gulc h@googlelco

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

Exponential Generating Functions - J. T. Butler

Exponential Generating Functions - J. T. Butler Epoetal Geeatg Fuctos - J. T. Butle Epoetal Geeatg Fuctos Geeatg fuctos fo pemutatos. Defto: a +a +a 2 2 + a + s the oday geeatg fucto fo the sequece of teges (a, a, a 2, a, ). Ep. Ge. Fuc.- J. T. Butle

More information

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω.

2. Sample Space: The set of all possible outcomes of a random experiment is called the sample space. It is usually denoted by S or Ω. Ut: Rado expeet saple space evets classcal defto of pobablty ad the theoes of total ad copoud pobablty based o ths defto axoatc appoach to the oto of pobablty potat theoes based o ths appoach codtoal pobablty

More information

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S

RECAPITULATION & CONDITIONAL PROBABILITY. Number of favourable events n E Total number of elementary events n S Fomulae Fo u Pobablty By OP Gupta [Ida Awad We, +91-9650 350 480] Impotat Tems, Deftos & Fomulae 01 Bascs Of Pobablty: Let S ad E be the sample space ad a evet a expemet espectvely Numbe of favouable evets

More information

XII. Addition of many identical spins

XII. Addition of many identical spins XII. Addto of may detcal sps XII.. ymmetc goup ymmetc goup s the goup of all possble pemutatos of obects. I total! elemets cludg detty opeato. Each pemutato s a poduct of a ceta fte umbe of pawse taspostos.

More information

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent

A Convergence Analysis of Discontinuous Collocation Method for IAEs of Index 1 Using the Concept Strongly Equivalent Appled ad Coputatoal Matheatcs 27; 7(-): 2-7 http://www.scecepublshggoup.co//ac do:.648/.ac.s.287.2 ISSN: 2328-565 (Pt); ISSN: 2328-563 (Ole) A Covegece Aalyss of Dscotuous Collocato Method fo IAEs of

More information

On Eigenvalues of Nonlinear Operator Pencils with Many Parameters

On Eigenvalues of Nonlinear Operator Pencils with Many Parameters Ope Scece Joual of Matheatc ad Applcato 5; 3(4): 96- Publhed ole Jue 5 (http://wwwopececeoleco/oual/oa) O Egevalue of Nolea Opeato Pecl wth May Paaete Rakhhada Dhabaadeh Guay Salaova Depatet of Fuctoal

More information

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming ppled Matheatcal Sceces Vol 008 o 50 7-80 New Method for Solvg Fuzzy Lear Prograg by Solvg Lear Prograg S H Nasser a Departet of Matheatcs Faculty of Basc Sceces Mazadara Uversty Babolsar Ira b The Research

More information

DATA ENVELOPMENT ANALYSIS WITH FUZZY RANDOM INPUTS AND OUTPUTS: A CHANCE-CONSTRAINED PROGRAMMING APPROACH. 1. Introduction

DATA ENVELOPMENT ANALYSIS WITH FUZZY RANDOM INPUTS AND OUTPUTS: A CHANCE-CONSTRAINED PROGRAMMING APPROACH. 1. Introduction Iaa Joa of Fzz Sstes Vo. No. 5. -9 DAA ENVEOPMEN ANAYSIS WIH FUZZY ANDOM INPUS AND OUPUS: A CHANCE-CONSAINED POGAMMING APPOACH S. AMEZANZADEH M. MEMAIANI AND S. SAAI ABSAC. I ths ae we dea wth fzz ado

More information

21(2007) Adílson J. V. Brandão 1, João L. Martins 2

21(2007) Adílson J. V. Brandão 1, João L. Martins 2 (007) 30-34 Recuece Foulas fo Fboacc Sus Adílso J. V. Badão, João L. Mats Ceto de Mateátca, Coputa cão e Cog cão, Uvesdade Fedeal do ABC, Bazl.adlso.badao@ufabc.edu.b Depataeto de Mateátca, Uvesdade Fedeal

More information

ANGULAR COMPLEX MELLIN TRANSFORM

ANGULAR COMPLEX MELLIN TRANSFORM Sc. Revs. Che. Co.: 3 0 99-304 ISSN 77-669 ANGULAR COMPLEX MELLIN TRANSFORM V. N. MAHALLE * A. S. GUDADHE a a R. D. TAYWADE b Ba. R. D. I.. N.. D. College Baea Ralway BADNERA M.S. INDIA a Deptt. o Matheatcs

More information

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM

PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM Joual o Mathematcal Sceces: Advaces ad Applcatos Volume 6 Numbe 00 Pages 77-9 PENALTY FUNCTIONS FOR THE MULTIOBJECTIVE OPTIMIZATION PROBLEM DAU XUAN LUONG ad TRAN VAN AN Depatmet o Natual Sceces Quag Nh

More information

Optimality Criteria for a Class of Multi-Objective Nonlinear Integer Programs

Optimality Criteria for a Class of Multi-Objective Nonlinear Integer Programs Coucatos Appled Sceces ISSN -77 Volue, Nube,, 7-77 Optalty Ctea o a Class o Mult-Obectve Nolea Itege Pogas Shal Bhagava Depatet o Matheatcs, Babu Shvath Agawal College, Mathua (UP) Ida Abstact hs pape

More information

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof

The Linear Probability Density Function of Continuous Random Variables in the Real Number Field and Its Existence Proof MATEC Web of Cofeeces ICIEA 06 600 (06) DOI: 0.05/mateccof/0668600 The ea Pobablty Desty Fucto of Cotuous Radom Vaables the Real Numbe Feld ad Its Estece Poof Yya Che ad Ye Collee of Softwae, Taj Uvesty,

More information

ˆ SSE SSE q SST R SST R q R R q R R q

ˆ SSE SSE q SST R SST R q R R q R R q Bll Evas Spg 06 Sggested Aswes, Poblem Set 5 ECON 3033. a) The R meases the facto of the vaato Y eplaed by the model. I ths case, R =SSM/SST. Yo ae gve that SSM = 3.059 bt ot SST. Howeve, ote that SST=SSM+SSE

More information

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017

International Journal of Mathematics Trends and Technology (IJMTT) Volume 47 Number 1 July 2017 Iteatioal Joual of Matheatics Teds ad Techology (IJMTT) Volue 47 Nube July 07 Coe Metic Saces, Coe Rectagula Metic Saces ad Coo Fixed Poit Theoes M. Sivastava; S.C. Ghosh Deatet of Matheatics, D.A.V. College

More information

Compactness in Multiset Topology

Compactness in Multiset Topology opatess ultset Topolog Sougata ahata S K Saata Depatet of atheats Vsva-haat Satketa-7335 Ida Abstat The pupose of ths pape s to todue the oept of opatess ultset topologal spae e vestgate soe bas esults

More information

DISTURBANCE TERMS. is a scalar and x i

DISTURBANCE TERMS. is a scalar and x i DISTURBANCE TERMS I a feld of research desg, we ofte have the qesto abot whether there s a relatoshp betwee a observed varable (sa, ) ad the other observed varables (sa, x ). To aswer the qesto, we ma

More information

Journal Of Inequalities And Applications, 2008, v. 2008, p

Journal Of Inequalities And Applications, 2008, v. 2008, p Ttle O verse Hlbert-tye equaltes Authors Chagja, Z; Cheug, WS Ctato Joural Of Iequaltes Ad Alcatos, 2008, v. 2008,. 693248 Issued Date 2008 URL htt://hdl.hadle.et/0722/56208 Rghts Ths work s lcesed uder

More information

Discrete Pseudo Almost Periodic Solutions for Some Difference Equations

Discrete Pseudo Almost Periodic Solutions for Some Difference Equations Advaces Pue Matheatcs 8-7 do:46/ a44 Publshed Ole July (htt://wwwscrpog/joual/a) Dscete Pseudo Alost Peodc Solutos fo Soe Dffeece Equatos Abstact Elhad At Dads * Khall Ezzb Lahce Lhach Uvesty Cad Ayyad

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

Topology optimization method applied to the design of electromagnetic devices: focus on convexity issues

Topology optimization method applied to the design of electromagnetic devices: focus on convexity issues oolog otzato ethod aled to the desg of electoagetc devces: focus o covet ssues h. Labbé* F. Gleu** B. Dehez*** * F.R.S.-FNRS fellow Uvesté Catholque de Louva/Cete fo Reseach Mechatocs Louva-la-Neuve BELGIUM

More information

Structure and Some Geometric Properties of Nakano Difference Sequence Space

Structure and Some Geometric Properties of Nakano Difference Sequence Space Stuctue ad Soe Geoetic Poeties of Naao Diffeece Sequece Sace N Faied ad AA Baey Deatet of Matheatics, Faculty of Sciece, Ai Shas Uivesity, Caio, Egyt awad_baey@yahooco Abstact: I this ae, we exted the

More information

Duality for a Control Problem Involving Support Functions

Duality for a Control Problem Involving Support Functions Appled Matheatcs, 24, 5, 3525-3535 Pblshed Ole Deceber 24 ScRes. http://www.scrp.org/oral/a http://d.do.org/.4236/a.24.5233 Dalty for a Cotrol Proble volvg Spport Fctos. Hsa, Abdl Raoof Shah 2, Rsh K.

More information

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection Theoretcal Mathematcs & Applcatos vol. 4 o. 4 04-7 ISS: 79-9687 prt 79-9709 ole Scepress Ltd 04 O Submafolds of a Almost r-paracotact emaa Mafold Edowed wth a Quarter Symmetrc Metrc Coecto Mob Ahmad Abdullah.

More information

Fairing of Parametric Quintic Splines

Fairing of Parametric Quintic Splines ISSN 46-69 Eglad UK Joual of Ifomato ad omputg Scece Vol No 6 pp -8 Fag of Paametc Qutc Sples Yuau Wag Shagha Isttute of Spots Shagha 48 ha School of Mathematcal Scece Fuda Uvesty Shagha 4 ha { P t )}

More information

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index

Minimum Hyper-Wiener Index of Molecular Graph and Some Results on Szeged Related Index Joual of Multdscplay Egeeg Scece ad Techology (JMEST) ISSN: 359-0040 Vol Issue, Febuay - 05 Mmum Hype-Wee Idex of Molecula Gaph ad Some Results o eged Related Idex We Gao School of Ifomato Scece ad Techology,

More information

An Expansion of the Derivation of the Spline Smoothing Theory Alan Kaylor Cline

An Expansion of the Derivation of the Spline Smoothing Theory Alan Kaylor Cline A Epaso of the Derato of the Sple Smoothg heory Ala Kaylor Cle he classc paper "Smoothg by Sple Fctos", Nmersche Mathematk 0, 77-83 967) by Chrsta Resch showed that atral cbc sples were the soltos to a

More information

Lecture 2: The Simple Regression Model

Lecture 2: The Simple Regression Model Lectre Notes o Advaced coometrcs Lectre : The Smple Regresso Model Takash Yamao Fall Semester 5 I ths lectre we revew the smple bvarate lear regresso model. We focs o statstcal assmptos to obta based estmators.

More information

Sebastián Martín Ruiz. Applications of Smarandache Function, and Prime and Coprime Functions

Sebastián Martín Ruiz. Applications of Smarandache Function, and Prime and Coprime Functions Sebastá Martí Ruz Alcatos of Saradache Fucto ad Pre ad Core Fuctos 0 C L f L otherwse are core ubers Aerca Research Press Rehoboth 00 Sebastá Martí Ruz Avda. De Regla 43 Choa 550 Cadz Sa Sarada@telele.es

More information

Inequalities for Dual Orlicz Mixed Quermassintegrals.

Inequalities for Dual Orlicz Mixed Quermassintegrals. Advaces Pue Mathematcs 206 6 894-902 http://wwwscpog/joual/apm IN Ole: 260-0384 IN Pt: 260-0368 Iequaltes fo Dual Olcz Mxed Quemasstegals jua u chool of Mathematcs ad Computatoal cece Hua Uvesty of cece

More information

Debabrata Dey and Atanu Lahiri

Debabrata Dey and Atanu Lahiri RESEARCH ARTICLE QUALITY COMPETITION AND MARKET SEGMENTATION IN THE SECURITY SOFTWARE MARKET Debabrata Dey ad Atau Lahr Mchael G. Foster School of Busess, Uersty of Washgto, Seattle, Seattle, WA 9895 U.S.A.

More information

Some Different Perspectives on Linear Least Squares

Some Different Perspectives on Linear Least Squares Soe Dfferet Perspectves o Lear Least Squares A stadard proble statstcs s to easure a respose or depedet varable, y, at fed values of oe or ore depedet varables. Soetes there ests a deterstc odel y f (,,

More information

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA

Strong Result for Level Crossings of Random Polynomials. Dipty Rani Dhal, Dr. P. K. Mishra. Department of Mathematics, CET, BPUT, BBSR, ODISHA, INDIA Iteatioal Joual of Reseach i Egieeig ad aageet Techology (IJRET) olue Issue July 5 Available at http://wwwijetco/ Stog Result fo Level Cossigs of Rado olyoials Dipty Rai Dhal D K isha Depatet of atheatics

More information

A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming

A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming Aerca Joural of Operatos Research, 4, 4, 33-339 Publshed Ole Noveber 4 ScRes http://wwwscrporg/oural/aor http://ddoorg/436/aor4463 A Pealty Fucto Algorth wth Obectve Paraeters ad Costrat Pealty Paraeter

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Consider two masses m 1 at x = x 1 and m 2 at x 2.

Consider two masses m 1 at x = x 1 and m 2 at x 2. Chapte 09 Syste of Patcles Cete of ass: The cete of ass of a body o a syste of bodes s the pot that oes as f all of the ass ae cocetated thee ad all exteal foces ae appled thee. Note that HRW uses co but

More information

Fig. 1 Initial Iteration of RSFC

Fig. 1 Initial Iteration of RSFC Jeyabhaath et al. Iteatoal Joal of vace Egeeg Techology E-ISSN 09-9 Reseach Pae YERS-LM STBILITY OF PRIK VECTORS FOR FINITE WORDS IN RECTNGLR SPCE FILLING CRVE Jeyabhaath S # Thagaaja K # Navaeetha K #

More information

Entropy, Relative Entropy and Mutual Information

Entropy, Relative Entropy and Mutual Information Etro Relatve Etro ad Mutual Iformato rof. Ja-Lg Wu Deartmet of Comuter Scece ad Iformato Egeerg Natoal Tawa Uverst Defto: The Etro of a dscrete radom varable s defed b : base : 0 0 0 as bts 0 : addg terms

More information

Introducing Sieve of Eratosthenes as a Theorem

Introducing Sieve of Eratosthenes as a Theorem ISSN(Ole 9-8 ISSN (Prt - Iteratoal Joural of Iovatve Research Scece Egeerg ad echolog (A Hgh Imact Factor & UGC Aroved Joural Webste wwwrsetcom Vol Issue 9 Setember Itroducg Seve of Eratosthees as a heorem

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Joura of Mathematca Sceces: Advaces ad Appcatos Voume 4 umber 2 2 Pages 33-34 COVERGECE OF HE PROJECO YPE SHKAWA ERAO PROCESS WH ERRORS FOR A FE FAMY OF OSEF -ASYMPOCAY QUAS-OEXPASVE MAPPGS HUA QU ad S-SHEG

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

Harmonic Curvatures in Lorentzian Space

Harmonic Curvatures in Lorentzian Space BULLETIN of the Bull Malaya Math Sc Soc Secod See 7-79 MALAYSIAN MATEMATICAL SCIENCES SOCIETY amoc Cuvatue Loetza Space NEJAT EKMEKÇI ILMI ACISALIOĞLU AND KĀZIM İLARSLAN Aaa Uvety Faculty of Scece Depatmet

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE

ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE O The Covegece Theoems... (Muslm Aso) ON THE CONVERGENCE THEOREMS OF THE McSHANE INTEGRAL FOR RIESZ-SPACES-VALUED FUNCTIONS DEFINED ON REAL LINE Muslm Aso, Yosephus D. Sumato, Nov Rustaa Dew 3 ) Mathematcs

More information

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A WEYL SPACE

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A WEYL SPACE Jou of Eee d Ntu Scece Mühed e Fe Be De S 5/4 SOME PROPERTIES CONCERNING THE HYPERSURFACES OF A EYL SPACE N KOFOĞLU M S Güze St Üete, Fe-Edeyt Füte, Mtet Böüü, Beştş-İSTANBUL Geş/Receed:..4 Ku/Accepted:

More information

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles.

VECTOR MECHANICS FOR ENGINEERS: Vector Mechanics for Engineers: Dynamics. In the current chapter, you will study the motion of systems of particles. Seeth Edto CHPTER 4 VECTOR MECHNICS FOR ENINEERS: DYNMICS Fedad P. ee E. Russell Johsto, J. Systems of Patcles Lectue Notes: J. Walt Ole Texas Tech Uesty 003 The Mcaw-Hll Compaes, Ic. ll ghts eseed. Seeth

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Sandwich Theorems for Mcshane Integration

Sandwich Theorems for Mcshane Integration It Joual of Math alyss, Vol 5, 20, o, 23-34 adwch Theoems fo Mcshae Itegato Ismet Temaj Pshta Uvesty Educato Faculty, Pshta, Kosovo temaj63@yahoocom go Tato Taa Polytechc Uvesty Mathematcs Egeeg Faculty,

More information

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING

A GENERAL CLASS OF ESTIMATORS UNDER MULTI PHASE SAMPLING TATITIC IN TRANITION-ew sees Octobe 9 83 TATITIC IN TRANITION-ew sees Octobe 9 Vol. No. pp. 83 9 A GENERAL CLA OF ETIMATOR UNDER MULTI PHAE AMPLING M.. Ahed & Atsu.. Dovlo ABTRACT Ths pape deves the geeal

More information

Department of Mathematics UNIVERSITY OF OSLO. FORMULAS FOR STK4040 (version 1, September 12th, 2011) A - Vectors and matrices

Department of Mathematics UNIVERSITY OF OSLO. FORMULAS FOR STK4040 (version 1, September 12th, 2011) A - Vectors and matrices Deartet of Matheatcs UNIVERSITY OF OSLO FORMULAS FOR STK4040 (verso Seteber th 0) A - Vectors ad atrces A) For a x atrx A ad a x atrx B we have ( AB) BA A) For osgular square atrces A ad B we have ( )

More information

Trace of Positive Integer Power of Adjacency Matrix

Trace of Positive Integer Power of Adjacency Matrix Global Joual of Pue ad Appled Mathematcs. IN 097-78 Volume, Numbe 07), pp. 079-087 Reseach Ida Publcatos http://www.publcato.com Tace of Postve Itege Powe of Adacecy Matx Jagdsh Kuma Pahade * ad Mao Jha

More information

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. Super-efficiency infeasibility and zero data in DEA: An alternative approach

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. Super-efficiency infeasibility and zero data in DEA: An alternative approach [Type text] [Type text] [Type text] ISSN : 0974-7435 Volue 0 Iue 7 BoTechology 204 A Ida Joual FULL PAPER BTAIJ, 0(7), 204 [773-779] Supe-effcecy feablty ad zeo data DEA: A alteatve appoach Wag Q, Guo

More information

K-Even Edge-Graceful Labeling of Some Cycle Related Graphs

K-Even Edge-Graceful Labeling of Some Cycle Related Graphs Iteratoal Joural of Egeerg Scece Iveto ISSN (Ole): 9 7, ISSN (Prt): 9 7 www.jes.org Volume Issue 0ǁ October. 0 ǁ PP.0-7 K-Eve Edge-Graceful Labelg of Some Cycle Related Grahs Dr. B. Gayathr, S. Kousalya

More information

Polyphase Filters. Section 12.4 Porat

Polyphase Filters. Section 12.4 Porat Polyphase Flters Secto.4 Porat .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful buldg

More information

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences Appl Math If Sc 7, No 6, 59-53 03 59 Appled Matheatcs & Iforato Sceces A Iteratoal Joural http://dxdoorg/0785/as/070647 Háje-Réy Type Iequaltes ad Strog Law of Large Nuers for NOD Sequeces Ma Sogl Departet

More information

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Sees A, OF THE ROMANIAN ACADEMY Volume 8, Numbe 3/27,. - L-MOMENTS EVALUATION FOR IDENTICALLY AND NONIDENTICALLY WEIBULL DISTRIBUTED RANDOM VARIABLES

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

Bounds for the Connective Eccentric Index

Bounds for the Connective Eccentric Index It. J. Cotemp. Math. Sceces, Vol. 7, 0, o. 44, 6-66 Bouds for the Coectve Eccetrc Idex Nlaja De Departmet of Basc Scece, Humates ad Socal Scece (Mathematcs Calcutta Isttute of Egeerg ad Maagemet Kolkata,

More information

CE 504 Computational Hydrology Introduction to Finite Difference Methods Fritz R. Fiedler

CE 504 Computational Hydrology Introduction to Finite Difference Methods Fritz R. Fiedler CE 504 Comptatoal Hydology Itodcto to Fte Dffeece Methods Ftz R. Fedle Itodcto a Taylo Sees Cosstecy, Covegece ad Stablty 3 Ital ad Boday Codtos 4 Methods ad Popetes a Classc Methods paabolc eqatos: fte

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions

A Conventional Approach for the Solution of the Fifth Order Boundary Value Problems Using Sixth Degree Spline Functions Appled Matheatcs, 1, 4, 8-88 http://d.do.org/1.4/a.1.448 Publshed Ole Aprl 1 (http://www.scrp.org/joural/a) A Covetoal Approach for the Soluto of the Ffth Order Boudary Value Probles Usg Sth Degree Sple

More information

φ (x,y,z) in the direction of a is given by

φ (x,y,z) in the direction of a is given by UNIT-II VECTOR CALCULUS Dectoal devatve The devatve o a pot ucto (scala o vecto) a patcula decto s called ts dectoal devatve alo the decto. The dectoal devatve o a scala pot ucto a ve decto s the ate o

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

A Characterization of Jacobson Radical in Γ-Banach Algebras

A Characterization of Jacobson Radical in Γ-Banach Algebras Advaces Pure Matheatcs 43-48 http://dxdoorg/436/ap66 Publshed Ole Noveber (http://wwwscrporg/joural/ap) A Characterzato of Jacobso Radcal Γ-Baach Algebras Nlash Goswa Departet of Matheatcs Gauhat Uversty

More information

An Enhanced Russell Measure of Super-Efficiency for Ranking Efficient Units in Data Envelopment Analysis

An Enhanced Russell Measure of Super-Efficiency for Ranking Efficient Units in Data Envelopment Analysis Aeca Joual of Appled Sceces 8 (): 92-96, 20 ISSN 546-9239 200 Scece Publcatos A Ehaced Russell Measue of Supe-Effcecy fo Rakg Effcet Uts Data Evelopet Aalyss,2 Al Ashaf,,3 Az B Jaafa,,4 La Soo Lee ad,4

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Lecture 11: Introduction to nonlinear optics I.

Lecture 11: Introduction to nonlinear optics I. Lectue : Itoducto to olea optcs I. Pet Kužel Fomulato of the olea optcs: olea polazato Classfcato of the olea pheomea Popagato of wea optc sgals stog quas-statc felds (descpto usg eomalzed lea paametes)!

More information

Strong Result for Level Crossings of Random Polynomials

Strong Result for Level Crossings of Random Polynomials IOSR Joual of haacy ad Biological Scieces (IOSR-JBS) e-issn:78-8, p-issn:19-7676 Volue 11, Issue Ve III (ay - Ju16), 1-18 wwwiosjoualsog Stog Result fo Level Cossigs of Rado olyoials 1 DKisha, AK asigh

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

AN ALGORITHM FOR CALCULATING THE CYCLETIME AND GREENTIMES FOR A SIGNALIZED INTERSECTION

AN ALGORITHM FOR CALCULATING THE CYCLETIME AND GREENTIMES FOR A SIGNALIZED INTERSECTION AN AGORITHM OR CACUATING THE CYCETIME AND GREENTIMES OR A SIGNAIZED INTERSECTION Henk Taale 1. Intoducton o a snalzed ntesecton wth a fedte contol state the cclete and eentes ae the vaables that nfluence

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

ON TOTAL TIME ON TEST TRANSFORM ORDER ABSTRACT

ON TOTAL TIME ON TEST TRANSFORM ORDER ABSTRACT V M Chacko E CONVE AND INCREASIN CONVE OAL IME ON ES RANSORM ORDER R&A # 4 9 Vol. Decembe ON OAL IME ON ES RANSORM ORDER V. M. Chacko Depame of Sascs S. homas Collee hss eala-68 Emal: chackovm@mal.com

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

Chapter 8. Linear Momentum, Impulse, and Collisions

Chapter 8. Linear Momentum, Impulse, and Collisions Chapte 8 Lnea oentu, Ipulse, and Collsons 8. Lnea oentu and Ipulse The lnea oentu p of a patcle of ass ovng wth velocty v s defned as: p " v ote that p s a vecto that ponts n the sae decton as the velocty

More information