Topic 7: Filter types and structures

Size: px
Start display at page:

Download "Topic 7: Filter types and structures"

Transcription

1 ELEN E481: Digital Signal Processing Topic 7: Filter tpes and structures 1. Some filter tpes 2. Minimum and maximum phase 3. Filter implementation structures 1 1. Some Filter Tpes We have seen the basics of filters and a range of simple examples Now look at a couple of other classes: Comb filters - multiple pass/stop bands Allpass filters - onl modif signal phase 2

2 Comb Filters Replace all sstem delas with longer delas z -L x[n] z -L z -L [n] z -L z -L Sstem that behaves the same at a longer timescale 3 Comb Filters Parent filter impulse response h[n] becomes comb filter output as: g[n] = {h[] h[1] h[2]..} Thus, Gz L-1 zeros n (= gn [ ]z n = hn [ ]z nl n = Hz ( L 4

3 Comb Filters Thus, frequenc response: Ge ( jω = He ( jωl 2 parent frequenc response compressed & repeated L times H(e jω G(e jω π -π/2 π/2 π High-pass response pass ω = π/l, 3π/L, 5π/L... cut ω =, 2π/L, 4π/L... -π -π/2 π/2 π L copies of H(e jω useful to remove a harmonic series 5 Allpass Filters Allpass filter has A(e jω 2 = K ω i.e. spectral energ is not changed Phase response is not zero (else trivial phase correction special effects e.g. Magnitude (db Normalized Frequenc (π rad/sample Phase (degrees Normalized Frequenc (π rad/sample 6

4 Allpass Filters A M Allpass has special form of sstem fn: (=± z d M d M 1 z 1... d 1 z ( M 1 z M 1 d 1 z 1... d M 1 z ( M 1 d M z M =±z M D M D M ( z 1 ( z A M (z has poles λ where D M (λ = A M (z has zeros ζ = 1/λ = λ -1 = mirror-image polnomials 7 Allpass Filters A M An (stable D M can be used: reciprocal zeros from D M ( Im{z}.5 Phase is alwas decreasing: -Mπ at ω = π (=±z z D M M D M ( z 1 ( z poles from 1/D M (z 3π /π 8 arg{h(z} π 2π Re{z} peak group dela M

5 Allpass Filters Wh do mirror-img pol s give const gain? Conj-sm sstem fn can be factored as: A M * ( 1 i (= z K z λ i z λ i i ( i ( = K λ * 1 i z λ * i z 1 z λ i i ( z = e jω = e -jω also on u.circle... 9 ZP complex conjugate p/z λ i λ i * o * λ 1 i e jω e -jω 2. Minimum/Maximum Phase In AP filters, reciprocal roots have.. same effect on magnitude (modulo const. different effect on phase In normal filters, can tr substituting reciprocal roots reciprocal of stable pole will be unstable X reciprocals of zeros? Variants of filters with same magnitude response, different phase 1

6 Minimum/Maximum Phase Hence: H 1 (z = z - b z - a a H 2 (z = b(z - 1/b z - a a b 1/b reciprocal zero H(e j same mag.. (H(e j.5π -.5π -π /π.5π -.5π -π /π.. added phase lag 11 Minimum/Maximum Phase For a given magnitude response All zeros inside u.circle minimum phase All zeros outside u.c. maximum phase (greatest phase dispersion for that order Otherwise, mixed phase i.e. for a given magnitude response several filters & phase fns are possible; minimum phase is canonical, best 12

7 Minimum/Maximum Phase Note: Min. phase Allpass o o o = Max. phase o polezero cancl n ( z ζ ( z ζ * z λ ( * x = o ( z 1 ζ z 1 ζ ( z ζ z ζ * ( o ( z 1 ζ z 1 ζ ( * z λ 13 Inverse Sstems h i [n] is called the inverse of h f [n] iff h i [ n] h f [ n]= δ[ n] Z-transform: H f ( e jω H i ( e jω =1 x[n] [n] w[n] H f (z H i (z Wz (= H i (Y z (= z H i (H z f wn [ ]= xn [ ] (Xz z (= Xz ( i.e. H i (z recovers x[n] from o/p of H f (z 14

8 Inverse Sstems What is H i (z? H i (=1/H z f z H i (z is reciprocal polnomial of H f (z H f (= z Pz Dz Just swap poles and zeros: H i z (H f ( ( H i (= z Dz ( Pz ( H f (z (=1 z ( poles of fwd zeros of bwd zeros of fwd poles of bwd 15 o o H i (z o Inverse Sstems When does H i (z exist? Causalstable all H i (z poles inside u.c. all zeros of H f (z must be inside u.c. H f (z must be minimum phase H f (z zeros outside u.c. unstable H i (z H f (z zeros on u.c. unstable H i (z H i ( e jω =1/H f ( e jω lose... =1/ ω=ζ ω onl invert if min.phase, H f (e jω 16

9 Sstem Identification Inverse filtering = given and H, find x Sstem ID = given (and ~x, find H Just run convolution backwards? n [ ]= hk [ ]xn [ k] x[n] k= H(z [ ]= h[ ]x 1 []= h [ ]x 1 [n] [ ] h[ ] [] h[]x 1 [ ] h 1 deconvolution but: errors accumulate [] Sstem Identification x[n] H? (z [n] Better approach uses correlations; Cross-correlate input and output: r x []= l [] l x[ l]= h? [] l x[] l x l = h? [] l r xx [] l If r xx is simple, can recover h? [n]... e.g. (pseudo- white noise: r xx [] l δ[] l h? [ n] r x l [] [ ] 18

10 Sstem Identification Can also work in frequenc domain: S x z (= H? ( z S xx z ( make a const. x[n] is not observable S x unavailable, but S xx (e jω ma still be known, so: S ( e jω = Ye ( jω Y * ( e jω = He ( jω Xe ( jω H * ( e jω X * ( e jω = He jω ( 2 S xx ( e jω Use e.g. min.phase to rebuild H(e jω Filter Structures Man different implementations, representations of same filter Different costs, speeds, laouts, noise performance,... 2

11 x[n] Block Diagrams Useful wa to illustrate implementations Z-transform helps analsis: [n] Y(= z G 1 (Xz z [ ( G 2 (Y z ( z ] G 1 (z Y(1 z [ G 1 (G z 2 ( z ]= G 1 (Xz z G 2 (z Approach Hz (= Y ( z Xz ( = G 1 ( z 1 G 1 (G z 2 ( z Output of summers as dumm variables Everthing else is just multiplicative ( 21 Block Diagrams More complex example: w x[n] 1 w 2 -α β -δ ε [n] z γ -1 W 1 = X αz 1 W 3 W 2 = W 1 δz 1 W 2 w 3 W 3 = z 1 W 2 εw 2 Y = γz 1 W 3 βw 1 W W 2 = 1 1 δz 1 Y X = β z 1 ( βδ γε z 2 ( γ 1 z ( 1 W 3 = z 1 ε ( δ αε z 2 ( α W 1 1 δz 1 stackable 2nd order section 22

12 Dela-Free Loops Can t have them! x Β Α u v ( u = x ( ( = Bv Au = Bv Ax At time n =, setup inputs x and v ; need u for, also for u can t calculate Algebra: ( 1 BA= Bv BAx Bv BAx = 1 BA 23 x BA 1 BA 1 1 BA B 1 BA u B 1 BA v can simplif... Equivalent Structures Modifications to block diagrams that do not change the filter e.g. Commutation H = AB = BA A B B A Factoring ABCB = (AC B x 1 x 2 A(zB(z C(zB(z x 1 x 2 A(z C(z B(z fewer blocks less computation 24

13 Equivalent Structures Transpose reverse paths adders nodes input output Y = b 1 X b 2 z 1 X b 3 z 2 X ( = b 1 X z 1 b 2 X z 1 b 3 X x b 1 b 2 b 3 b 1 b 2 b 3 x 25 x x FIR Filter Structures Direct form Tapped Dela Line n [ ]= h xn [ ] h 1 xn 1 [ ]... h h 1 h 2 h 3 h 4 4 = h k xn [ k ] k= Transpose h 4 h 3 h 2 h 1 h Re-use dela line if several inputs x i for single output? 26

14 FIR Filter Structures Cascade factored into e.g. 2nd order sections Hz (= h h 1 z 1 h 2 z 2 h 3 z 3 = h ( 1 ζ z 1 1 ζ ( 1 z 1 1 ζ ( * 1 z 1 = h ( 1 ζ z 1 1 2Re{ ζ 1 }z 1 ζ 2 1 z 2 x h ζ ( 27-2Re{ζ 1 } ζ 1 2 FIR Filter Structures Linear Phase: Smmetric filters with h[n] = (-h[n - n] ( ( [ ] n [ ]= b xn [ ] xn [ 4] b 1 xn 1 [ ] xn 3 b 2 xn 2 [ ] Also Transpose form: gains first, feeding folded dela/sum line 28 x n b b 1 b 2... half as man multiplies

15 IIR Filter Structures IIR: numerator denominator Hz (= p p 1 z 1 p 2 z d 1 z 1 d 2 z 2... = Pz ( 1 Dz ( FIR p p 1 p 2 -d 1 -d 2 all-pole IIR 29 IIR Filter Structures Hence, Direct form I Commutation Direct form II (DF2 -d 1 -d 2 p p 1 p 2 -d 1 -d 2 p p 1 p 2 same signal dela lines merge canonical = min. memor usage 3

16 IIR Filter Structures Use Transpose on FIR/IIR/DF2 x p p 1 p 2 -d 1 -d 2 Direct Form II Transpose 31 real root Factored IIR Structures Real-output filters have α conjugate-smm roots: β 1 Hz (= ( 1 (α jβz 1 1 (α jβz 1 ( Can alwas group into 2nd order terms with real coefficients: Hz (= p ( 1 γ 1 z 1 1 ( 2γ 2 z 1 (γ 2 2 δ 2 2 z 2... ( 1 α 1 z 1 1 ( 2α 2 z 1 (α 2 2 β 2 2 z β

17 Cascade IIR Structure Implement as cascade of second order sections (in DFII fwd gain factored out x p α 1 -γ 1 2α 2-2γ 2 (α 22 β 22 γ 22 δ 2 2 Second order sections (SOS: modular - an order from optimized block well-behaved, real coefficients (sensitive? 33 Second-Order Sections Free choices: grouping of pole pairs with zero pairs order of sections Optimize numerical properties: avoid ver large values (overflow avoid ver small values (quantization e.g. Matlab s zp2sos attempt to put close roots in same section intersperse gain & attenuation? 34

18 Second Order Sections Factorization affects intermediate values Original Sstem (2 pair poles, zeros Im{z} H(z / db Re{z} /π 2 H(z / db H(z / db /π 2 Factorization 1 Factorization 2 H(z / db H(z / db /π /π /π 35 Parallel IIR Structures Can express H(z as sum of terms (IZT H(z = consts ρ l l=1 1 λ l z 1 Or, second-order terms: γ H(z = γ k γ 1k z 1 k 1 α 1k z 1 α 2k z 2 N ρ l = ( 1 λ l z 1 Fz ( z=λl Suggests parallel realization... 36

19 x Parallel IIR Structures -α 11 -α 21 -α 12 -α 22 γ γ 1 γ 11 γ 2 γ 12 Sum terms become parallel paths Poles of each SOS are from full TF Sstem zeros arise from output sum Wh do this? stabilit/sensitivit reuse common terms 37

Topic 4: The Z Transform

Topic 4: The Z Transform ELEN E480: Digital Signal Processing Topic 4: The Z Transform. The Z Transform 2. Inverse Z Transform . The Z Transform Powerful tool for analyzing & designing DT systems Generalization of the DTFT: G(z)

More information

ECE503: Digital Signal Processing Lecture 6

ECE503: Digital Signal Processing Lecture 6 ECE503: Digital Signal Processing Lecture 6 D. Richard Brown III WPI 20-February-2012 WPI D. Richard Brown III 20-February-2012 1 / 28 Lecture 6 Topics 1. Filter structures overview 2. FIR filter structures

More information

z-transform Chapter 6

z-transform Chapter 6 z-transform Chapter 6 Dr. Iyad djafar Outline 2 Definition Relation Between z-transform and DTFT Region of Convergence Common z-transform Pairs The Rational z-transform The Inverse z-transform z-transform

More information

ECE503: Digital Signal Processing Lecture 5

ECE503: Digital Signal Processing Lecture 5 ECE53: Digital Signal Processing Lecture 5 D. Richard Brown III WPI 3-February-22 WPI D. Richard Brown III 3-February-22 / 32 Lecture 5 Topics. Magnitude and phase characterization of transfer functions

More information

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13)

LECTURE NOTES DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) LECTURE NOTES ON DIGITAL SIGNAL PROCESSING III B.TECH II SEMESTER (JNTUK R 13) FACULTY : B.V.S.RENUKA DEVI (Asst.Prof) / Dr. K. SRINIVASA RAO (Assoc. Prof) DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS

More information

Lecture 2 OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE

Lecture 2 OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE EEE 43 DIGITAL SIGNAL PROCESSING (DSP) 2 DIFFERENCE EQUATIONS AND THE Z- TRANSFORM FALL 22 Yrd. Doç. Dr. Didem Kivanc Tureli didemk@ieee.org didem.kivanc@okan.edu.tr

More information

Lecture 7 - IIR Filters

Lecture 7 - IIR Filters Lecture 7 - IIR Filters James Barnes (James.Barnes@colostate.edu) Spring 204 Colorado State University Dept of Electrical and Computer Engineering ECE423 / 2 Outline. IIR Filter Representations Difference

More information

Digital Filter Structures

Digital Filter Structures Chapter 8 Digital Filter Structures 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 8-1 Block Diagram Representation The convolution sum description of an LTI discrete-time system can, in principle, be used to

More information

ELEN E4810: Digital Signal Processing Topic 4: The Z Transform. 1. The Z Transform. 2. Inverse Z Transform

ELEN E4810: Digital Signal Processing Topic 4: The Z Transform. 1. The Z Transform. 2. Inverse Z Transform ELEN E480: Digital Signal Processing Topic 4: The Z Transform. The Z Transform 2. Inverse Z Transform . The Z Transform Powerful tool for analyzing & designing DT systems Generalization of the DTFT: G(z)

More information

( ) John A. Quinn Lecture. ESE 531: Digital Signal Processing. Lecture Outline. Frequency Response of LTI System. Example: Zero on Real Axis

( ) John A. Quinn Lecture. ESE 531: Digital Signal Processing. Lecture Outline. Frequency Response of LTI System. Example: Zero on Real Axis John A. Quinn Lecture ESE 531: Digital Signal Processing Lec 15: March 21, 2017 Review, Generalized Linear Phase Systems Penn ESE 531 Spring 2017 Khanna Lecture Outline!!! 2 Frequency Response of LTI System

More information

Subband Coding and Wavelets. National Chiao Tung University Chun-Jen Tsai 12/04/2014

Subband Coding and Wavelets. National Chiao Tung University Chun-Jen Tsai 12/04/2014 Subband Coding and Wavelets National Chiao Tung Universit Chun-Jen Tsai /4/4 Concept of Subband Coding In transform coding, we use N (or N N) samples as the data transform unit Transform coefficients are

More information

Lecture 19 IIR Filters

Lecture 19 IIR Filters Lecture 19 IIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/5/10 1 General IIR Difference Equation IIR system: infinite-impulse response system The most general class

More information

Z-Transform. 清大電機系林嘉文 Original PowerPoint slides prepared by S. K. Mitra 4-1-1

Z-Transform. 清大電機系林嘉文 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Chapter 6 Z-Transform 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 z-transform The DTFT provides a frequency-domain representation of discrete-time

More information

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5.

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5. . Typical Discrete-Time Systems.1. All-Pass Systems (5.5).. Minimum-Phase Systems (5.6).3. Generalized Linear-Phase Systems (5.7) .1. All-Pass Systems An all-pass system is defined as a system which has

More information

Basic Multi-rate Operations: Decimation and Interpolation

Basic Multi-rate Operations: Decimation and Interpolation 1 Basic Multirate Operations 2 Interconnection of Building Blocks 1.1 Decimation and Interpolation 1.2 Digital Filter Banks Basic Multi-rate Operations: Decimation and Interpolation Building blocks for

More information

# FIR. [ ] = b k. # [ ]x[ n " k] [ ] = h k. x[ n] = Ae j" e j# ˆ n Complex exponential input. [ ]Ae j" e j ˆ. ˆ )Ae j# e j ˆ. y n. y n.

# FIR. [ ] = b k. # [ ]x[ n  k] [ ] = h k. x[ n] = Ae j e j# ˆ n Complex exponential input. [ ]Ae j e j ˆ. ˆ )Ae j# e j ˆ. y n. y n. [ ] = h k M [ ] = b k x[ n " k] FIR k= M [ ]x[ n " k] convolution k= x[ n] = Ae j" e j ˆ n Complex exponential input [ ] = h k M % k= [ ]Ae j" e j ˆ % M = ' h[ k]e " j ˆ & k= k = H (" ˆ )Ae j e j ˆ ( )

More information

Discrete Time Systems

Discrete Time Systems Discrete Time Systems Valentina Hubeika, Jan Černocký DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz 1 LTI systems In this course, we work only with linear and time-invariant systems. We talked about

More information

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything.

UNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 9th, 011 Examination hours: 14.30 18.30 This problem set

More information

Digital Filter Structures. Basic IIR Digital Filter Structures. of an LTI digital filter is given by the convolution sum or, by the linear constant

Digital Filter Structures. Basic IIR Digital Filter Structures. of an LTI digital filter is given by the convolution sum or, by the linear constant Digital Filter Chapter 8 Digital Filter Block Diagram Representation Equivalent Basic FIR Digital Filter Basic IIR Digital Filter. Block Diagram Representation In the time domain, the input-output relations

More information

EE 225a Digital Signal Processing Supplementary Material

EE 225a Digital Signal Processing Supplementary Material EE 225A DIGITAL SIGAL PROCESSIG SUPPLEMETARY MATERIAL EE 225a Digital Signal Processing Supplementary Material. Allpass Sequences A sequence h a ( n) ote that this is true iff which in turn is true iff

More information

ECE4270 Fundamentals of DSP Lecture 20. Fixed-Point Arithmetic in FIR and IIR Filters (part I) Overview of Lecture. Overflow. FIR Digital Filter

ECE4270 Fundamentals of DSP Lecture 20. Fixed-Point Arithmetic in FIR and IIR Filters (part I) Overview of Lecture. Overflow. FIR Digital Filter ECE4270 Fundamentals of DSP Lecture 20 Fixed-Point Arithmetic in FIR and IIR Filters (part I) School of ECE Center for Signal and Information Processing Georgia Institute of Technology Overview of Lecture

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA November 1, 2009 1 / 27 1 The z-transform 2 Linear Time-Invariant System 3 Filter Design IIR Filters FIR Filters

More information

Use: Analysis of systems, simple convolution, shorthand for e jw, stability. Motivation easier to write. Or X(z) = Z {x(n)}

Use: Analysis of systems, simple convolution, shorthand for e jw, stability. Motivation easier to write. Or X(z) = Z {x(n)} 1 VI. Z Transform Ch 24 Use: Analysis of systems, simple convolution, shorthand for e jw, stability. A. Definition: X(z) = x(n) z z - transforms Motivation easier to write Or Note if X(z) = Z {x(n)} z

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. Fall Solutions for Problem Set 2 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Issued: Tuesday, September 5. 6.: Discrete-Time Signal Processing Fall 5 Solutions for Problem Set Problem.

More information

Detailed Solutions to Exercises

Detailed Solutions to Exercises Detailed Solutions to Exercises Digital Signal Processing Mikael Swartling Nedelko Grbic rev. 205 Department of Electrical and Information Technology Lund University Detailed solution to problem E3.4 A

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #21 Friday, October 24, 2003 Types of causal FIR (generalized) linear-phase filters: Type I: Symmetric impulse response: with order M an even

More information

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

MULTIRATE SYSTEMS. work load, lower filter order, lower coefficient sensitivity and noise,

MULTIRATE SYSTEMS. work load, lower filter order, lower coefficient sensitivity and noise, MULIRAE SYSEMS ransfer signals between two systems that operate with different sample frequencies Implemented system functions more efficiently by using several sample rates (for example narrow-band filters).

More information

Discrete Time Systems

Discrete Time Systems 1 Discrete Time Systems {x[0], x[1], x[2], } H {y[0], y[1], y[2], } Example: y[n] = 2x[n] + 3x[n-1] + 4x[n-2] 2 FIR and IIR Systems FIR: Finite Impulse Response -- non-recursive y[n] = 2x[n] + 3x[n-1]

More information

Multirate Digital Signal Processing

Multirate Digital Signal Processing Multirate Digital Signal Processing Basic Sampling Rate Alteration Devices Up-sampler - Used to increase the sampling rate by an integer factor Down-sampler - Used to decrease the sampling rate by an integer

More information

Solutions: Homework Set # 5

Solutions: Homework Set # 5 Signal Processing for Communications EPFL Winter Semester 2007/2008 Prof. Suhas Diggavi Handout # 22, Tuesday, November, 2007 Solutions: Homework Set # 5 Problem (a) Since h [n] = 0, we have (b) We can

More information

Filter Banks II. Prof. Dr.-Ing. G. Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany

Filter Banks II. Prof. Dr.-Ing. G. Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany Filter Banks II Prof. Dr.-Ing. G. Schuller Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany Page Modulated Filter Banks Extending the DCT The DCT IV transform can be seen as modulated

More information

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems.

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 1th, 016 Examination hours: 14:30 18.30 This problem set

More information

Voiced Speech. Unvoiced Speech

Voiced Speech. Unvoiced Speech Digital Speech Processing Lecture 2 Homomorphic Speech Processing General Discrete-Time Model of Speech Production p [ n] = p[ n] h [ n] Voiced Speech L h [ n] = A g[ n] v[ n] r[ n] V V V p [ n ] = u [

More information

Analog LTI system Digital LTI system

Analog LTI system Digital LTI system Sampling Decimation Seismometer Amplifier AAA filter DAA filter Analog LTI system Digital LTI system Filtering (Digital Systems) input output filter xn [ ] X ~ [ k] Convolution of Sequences hn [ ] yn [

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture : Design of Digital IIR Filters (Part I) Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner (Univ.

More information

Poles and Zeros in z-plane

Poles and Zeros in z-plane M58 Mixed Signal Processors page of 6 Poles and Zeros in z-plane z-plane Response of discrete-time system (i.e. digital filter at a particular frequency ω is determined by the distance between its poles

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 3 Signals & Systems Prof. ark Fowler Note Set #28 D-T Systems: DT Filters Ideal & Practical /4 Ideal D-T Filters Just as in the CT case we can specify filters. We looked at the ideal filter for the

More information

Implementation of Discrete-Time Systems

Implementation of Discrete-Time Systems EEE443 Digital Signal Processing Implementation of Discrete-Time Systems Dr. Shahrel A. Suandi PPKEE, Engineering Campus, USM Introduction A linear-time invariant system (LTI) is described by linear constant

More information

Discrete-time signals and systems

Discrete-time signals and systems Discrete-time signals and systems 1 DISCRETE-TIME DYNAMICAL SYSTEMS x(t) G y(t) Linear system: Output y(n) is a linear function of the inputs sequence: y(n) = k= h(k)x(n k) h(k): impulse response of the

More information

Lecture 11 FIR Filters

Lecture 11 FIR Filters Lecture 11 FIR Filters Fundamentals of Digital Signal Processing Spring, 2012 Wei-Ta Chu 2012/4/12 1 The Unit Impulse Sequence Any sequence can be represented in this way. The equation is true if k ranges

More information

Multirate signal processing

Multirate signal processing Multirate signal processing Discrete-time systems with different sampling rates at various parts of the system are called multirate systems. The need for such systems arises in many applications, including

More information

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF INFORMATION TECHNOLOGY. Academic Year VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur- 603 203 DEPARTMENT OF INFORMATION TECHNOLOGY Academic Year 2016-2017 QUESTION BANK-ODD SEMESTER NAME OF THE SUBJECT SUBJECT CODE SEMESTER YEAR

More information

Ch. 7: Z-transform Reading

Ch. 7: Z-transform Reading c J. Fessler, June 9, 3, 6:3 (student version) 7. Ch. 7: Z-transform Definition Properties linearity / superposition time shift convolution: y[n] =h[n] x[n] Y (z) =H(z) X(z) Inverse z-transform by coefficient

More information

Digital Signal Processing Lecture 8 - Filter Design - IIR

Digital Signal Processing Lecture 8 - Filter Design - IIR Digital Signal Processing - Filter Design - IIR Electrical Engineering and Computer Science University of Tennessee, Knoxville October 20, 2015 Overview 1 2 3 4 5 6 Roadmap Discrete-time signals and systems

More information

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals

! Introduction. ! Discrete Time Signals & Systems. ! Z-Transform. ! Inverse Z-Transform. ! Sampling of Continuous Time Signals ESE 531: Digital Signal Processing Lec 25: April 24, 2018 Review Course Content! Introduction! Discrete Time Signals & Systems! Discrete Time Fourier Transform! Z-Transform! Inverse Z-Transform! Sampling

More information

REAL TIME DIGITAL SIGNAL PROCESSING

REAL TIME DIGITAL SIGNAL PROCESSING REAL TIME DIGITAL SIGNAL PROCESSING www.electron.frba.utn.edu.ar/dplab Digital Filters FIR and IIR. Design parameters. Implementation types. Constraints. Filters: General classification Filters: General

More information

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by

/ (2π) X(e jω ) dω. 4. An 8 point sequence is given by x(n) = {2,2,2,2,1,1,1,1}. Compute 8 point DFT of x(n) by Code No: RR320402 Set No. 1 III B.Tech II Semester Regular Examinations, Apr/May 2006 DIGITAL SIGNAL PROCESSING ( Common to Electronics & Communication Engineering, Electronics & Instrumentation Engineering,

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

Digital Signal Processing Lecture 10 - Discrete Fourier Transform

Digital Signal Processing Lecture 10 - Discrete Fourier Transform Digital Signal Processing - Discrete Fourier Transform Electrical Engineering and Computer Science University of Tennessee, Knoxville November 12, 2015 Overview 1 2 3 4 Review - 1 Introduction Discrete-time

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 18: Applications of FFT Algorithms & Linear Filtering DFT Computation; Implementation of Discrete Time Systems Kenneth E. Barner Department of Electrical and

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Solution Manual for Theory and Applications of Digital Speech Processing by Lawrence Rabiner and Ronald Schafer Click here to Purchase full Solution Manual at http://solutionmanuals.info Link download

More information

Digital Filter Structures

Digital Filter Structures Digital Filter Structures Te convolution sum description of an LTI discrete-time system can, in principle, be used to implement te system For an IIR finite-dimensional system tis approac is not practical

More information

Lecture 7 Discrete Systems

Lecture 7 Discrete Systems Lecture 7 Discrete Systems EE 52: Instrumentation and Measurements Lecture Notes Update on November, 29 Aly El-Osery, Electrical Engineering Dept., New Mexico Tech 7. Contents The z-transform 2 Linear

More information

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform

Signals and Systems. Problem Set: The z-transform and DT Fourier Transform Signals and Systems Problem Set: The z-transform and DT Fourier Transform Updated: October 9, 7 Problem Set Problem - Transfer functions in MATLAB A discrete-time, causal LTI system is described by the

More information

z-transforms Definition of the z-transform Chapter

z-transforms Definition of the z-transform Chapter z-transforms Chapter 7 In the study of discrete-time signal and systems, we have thus far considered the time-domain and the frequency domain. The z- domain gives us a third representation. All three domains

More information

Very useful for designing and analyzing signal processing systems

Very useful for designing and analyzing signal processing systems z-transform z-transform The z-transform generalizes the Discrete-Time Fourier Transform (DTFT) for analyzing infinite-length signals and systems Very useful for designing and analyzing signal processing

More information

Lecture 14: Minimum Phase Systems and Linear Phase

Lecture 14: Minimum Phase Systems and Linear Phase EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 14: Minimum Phase Systems and Linear Phase Nov 19, 2001 Prof: J. Bilmes

More information

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver Stochastic Signals Overview Definitions Second order statistics Stationarity and ergodicity Random signal variability Power spectral density Linear systems with stationary inputs Random signal memory Correlation

More information

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR Digital Signal Processing - Design of Digital Filters - FIR Electrical Engineering and Computer Science University of Tennessee, Knoxville November 3, 2015 Overview 1 2 3 4 Roadmap Introduction Discrete-time

More information

Topics: Discrete transforms; 1 and 2D Filters, sampling, and scanning

Topics: Discrete transforms; 1 and 2D Filters, sampling, and scanning EE 637 Study Solutions - Assignment 3 Topics: Discrete transforms; and D Filters, sampling, and scanning Spring 00 Exam : Problem 3 (sampling Consider a sampling system were the input, s(t = sinc(t, is

More information

Oversampling Converters

Oversampling Converters Oversampling Converters David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 56 Motivation Popular approach for medium-to-low speed A/D and D/A applications requiring

More information

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches Difference Equations (an LTI system) x[n]: input, y[n]: output That is, building a system that maes use of the current and previous

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Chapter 2 Review of Fundamentals of Digital Signal Processing 2.1 (a) This system is not linear (the constant term makes it non linear) but is shift-invariant (b) This system is linear but not shift-invariant

More information

Discrete-Time Systems

Discrete-Time Systems FIR Filters With this chapter we turn to systems as opposed to signals. The systems discussed in this chapter are finite impulse response (FIR) digital filters. The term digital filter arises because these

More information

FINITE PRECISION EFFECTS 1. FLOATING POINT VERSUS FIXED POINT 3. TYPES OF FINITE PRECISION EFFECTS 4. FACTORS INFLUENCING FINITE PRECISION EFFECTS

FINITE PRECISION EFFECTS 1. FLOATING POINT VERSUS FIXED POINT 3. TYPES OF FINITE PRECISION EFFECTS 4. FACTORS INFLUENCING FINITE PRECISION EFFECTS FINITE PRECISION EFFECTS 1. FLOATING POINT VERSUS FIXED POINT 2. WHEN IS FIXED POINT NEEDED? 3. TYPES OF FINITE PRECISION EFFECTS 4. FACTORS INFLUENCING FINITE PRECISION EFFECTS 5. FINITE PRECISION EFFECTS:

More information

EE 3054: Signals, Systems, and Transforms Spring A causal discrete-time LTI system is described by the equation. y(n) = 1 4.

EE 3054: Signals, Systems, and Transforms Spring A causal discrete-time LTI system is described by the equation. y(n) = 1 4. EE : Signals, Systems, and Transforms Spring 7. A causal discrete-time LTI system is described by the equation Test y(n) = X x(n k) k= No notes, closed book. Show your work. Simplify your answers.. A discrete-time

More information

Hilbert Transformator IP Cores

Hilbert Transformator IP Cores Introduction Hilbert Transformator IP Cores Martin Kumm December 27, 28 The Hilbert Transform is an important component in communication systems, e.g. for single sideband modulation/demodulation, amplitude

More information

Quadrature-Mirror Filter Bank

Quadrature-Mirror Filter Bank Quadrature-Mirror Filter Bank In many applications, a discrete-time signal x[n] is split into a number of subband signals { v k [ n]} by means of an analysis filter bank The subband signals are then processed

More information

APPLIED SIGNAL PROCESSING

APPLIED SIGNAL PROCESSING APPLIED SIGNAL PROCESSING DIGITAL FILTERS Digital filters are discrete-time linear systems { x[n] } G { y[n] } Impulse response: y[n] = h[0]x[n] + h[1]x[n 1] + 2 DIGITAL FILTER TYPES FIR (Finite Impulse

More information

III. Time Domain Analysis of systems

III. Time Domain Analysis of systems 1 III. Time Domain Analysis of systems Here, we adapt properties of continuous time systems to discrete time systems Section 2.2-2.5, pp 17-39 System Notation y(n) = T[ x(n) ] A. Types of Systems Memoryless

More information

Filter structures ELEC-E5410

Filter structures ELEC-E5410 Filter structures ELEC-E5410 Contents FIR filter basics Ideal impulse responses Polyphase decomposition Fractional delay by polyphase structure Nyquist filters Half-band filters Gibbs phenomenon Discrete-time

More information

Transform Analysis of Linear Time-Invariant Systems

Transform Analysis of Linear Time-Invariant Systems Transform Analysis of Linear Time-Invariant Systems Discrete-Time Signal Processing Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC Transform

More information

Z Transform (Part - II)

Z Transform (Part - II) Z Transform (Part - II). The Z Transform of the following real exponential sequence x(nt) = a n, nt 0 = 0, nt < 0, a > 0 (a) ; z > (c) for all z z (b) ; z (d) ; z < a > a az az Soln. The given sequence

More information

2. CONVOLUTION. Convolution sum. Response of d.t. LTI systems at a certain input signal

2. CONVOLUTION. Convolution sum. Response of d.t. LTI systems at a certain input signal 2. CONVOLUTION Convolution sum. Response of d.t. LTI systems at a certain input signal Any signal multiplied by the unit impulse = the unit impulse weighted by the value of the signal in 0: xn [ ] δ [

More information

Z-Transform. x (n) Sampler

Z-Transform. x (n) Sampler Chapter Two A- Discrete Time Signals: The discrete time signal x(n) is obtained by taking samples of the analog signal xa (t) every Ts seconds as shown in Figure below. Analog signal Discrete time signal

More information

Transform Representation of Signals

Transform Representation of Signals C H A P T E R 3 Transform Representation of Signals and LTI Systems As you have seen in your prior studies of signals and systems, and as emphasized in the review in Chapter 2, transforms play a central

More information

FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL

FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL FILTER DESIGN FOR SIGNAL PROCESSING USING MATLAB AND MATHEMATICAL Miroslav D. Lutovac The University of Belgrade Belgrade, Yugoslavia Dejan V. Tosic The University of Belgrade Belgrade, Yugoslavia Brian

More information

8. z-domain Analysis of Discrete-Time Signals and Systems

8. z-domain Analysis of Discrete-Time Signals and Systems 8. z-domain Analysis of Discrete-Time Signals and Systems 8.. Definition of z-transform (0.0-0.3) 8.2. Properties of z-transform (0.5) 8.3. System Function (0.7) 8.4. Classification of a Linear Time-Invariant

More information

EEL3135: Homework #4

EEL3135: Homework #4 EEL335: Homework #4 Problem : For each of the systems below, determine whether or not the system is () linear, () time-invariant, and (3) causal: (a) (b) (c) xn [ ] cos( 04πn) (d) xn [ ] xn [ ] xn [ 5]

More information

DSP Configurations. responded with: thus the system function for this filter would be

DSP Configurations. responded with: thus the system function for this filter would be DSP Configurations In this lecture we discuss the different physical (or software) configurations that can be used to actually realize or implement DSP functions. Recall that the general form of a DSP

More information

Digital Wideband Integrators with Matching Phase and Arbitrarily Accurate Magnitude Response (Extended Version)

Digital Wideband Integrators with Matching Phase and Arbitrarily Accurate Magnitude Response (Extended Version) Digital Wideband Integrators with Matching Phase and Arbitrarily Accurate Magnitude Response (Extended Version) Ça gatay Candan Department of Electrical Engineering, METU, Ankara, Turkey ccandan@metu.edu.tr

More information

Cast of Characters. Some Symbols, Functions, and Variables Used in the Book

Cast of Characters. Some Symbols, Functions, and Variables Used in the Book Page 1 of 6 Cast of Characters Some s, Functions, and Variables Used in the Book Digital Signal Processing and the Microcontroller by Dale Grover and John R. Deller ISBN 0-13-081348-6 Prentice Hall, 1998

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

7.17. Determine the z-transform and ROC for the following time signals: Sketch the ROC, poles, and zeros in the z-plane. X(z) = x[n]z n.

7.17. Determine the z-transform and ROC for the following time signals: Sketch the ROC, poles, and zeros in the z-plane. X(z) = x[n]z n. Solutions to Additional Problems 7.7. Determine the -transform and ROC for the following time signals: Sketch the ROC, poles, and eros in the -plane. (a) x[n] δ[n k], k > 0 X() x[n] n n k, 0 Im k multiple

More information

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS Contents: 3.1 Introduction IIR Filters 3.2 Transformation Function Derivation 3.3 Review of Analog IIR Filters 3.3.1 Butterworth

More information

Analysis of Finite Wordlength Effects

Analysis of Finite Wordlength Effects Analysis of Finite Wordlength Effects Ideally, the system parameters along with the signal variables have infinite precision taing any value between and In practice, they can tae only discrete values within

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 4: Inverse z Transforms & z Domain Analysis Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner

More information

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE 0: Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem. Hz z 7 z +/9, causal ROC z > contains the unit circle BIBO

More information

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn

x[n] = x a (nt ) x a (t)e jωt dt while the discrete time signal x[n] has the discrete-time Fourier transform x[n]e jωn Sampling Let x a (t) be a continuous time signal. The signal is sampled by taking the signal value at intervals of time T to get The signal x(t) has a Fourier transform x[n] = x a (nt ) X a (Ω) = x a (t)e

More information

ELEN E4810: Digital Signal Processing Topic 2: Time domain

ELEN E4810: Digital Signal Processing Topic 2: Time domain ELEN E4810: Digital Signal Processing Topic 2: Time domain 1. Discrete-time systems 2. Convolution 3. Linear Constant-Coefficient Difference Equations (LCCDEs) 4. Correlation 1 1. Discrete-time systems

More information

Recursive, Infinite Impulse Response (IIR) Digital Filters:

Recursive, Infinite Impulse Response (IIR) Digital Filters: Recursive, Infinite Impulse Response (IIR) Digital Filters: Filters defined by Laplace Domain transfer functions (analog devices) can be easily converted to Z domain transfer functions (digital, sampled

More information

E : Lecture 1 Introduction

E : Lecture 1 Introduction E85.2607: Lecture 1 Introduction 1 Administrivia 2 DSP review 3 Fun with Matlab E85.2607: Lecture 1 Introduction 2010-01-21 1 / 24 Course overview Advanced Digital Signal Theory Design, analysis, and implementation

More information

Tunable IIR Digital Filters

Tunable IIR Digital Filters Tunable IIR Digital Filters We have described earlier two st-order and two nd-order IIR digital transfer functions with tunable frequency response characteristics We shall show now that these transfer

More information

There are two main classes of digital lter FIR (Finite impulse response) and IIR (innite impulse reponse).

There are two main classes of digital lter FIR (Finite impulse response) and IIR (innite impulse reponse). FIR Filters I There are two main classes of digital lter FIR (Finite impulse response) and IIR (innite impulse reponse). FIR Digital Filters These are described by dierence equations of the type: y[n]

More information

Universiti Malaysia Perlis EKT430: DIGITAL SIGNAL PROCESSING LAB ASSIGNMENT 5: DIGITAL FILTER STRUCTURES

Universiti Malaysia Perlis EKT430: DIGITAL SIGNAL PROCESSING LAB ASSIGNMENT 5: DIGITAL FILTER STRUCTURES Universiti Malaysia Perlis EKT430: DIGITAL SIGAL PROCESSIG LAB ASSIGMET 5: DIGITAL FILTER STRUCTURES Pusat Pengajian Kejuruteraan Komputer Dan Perhubungan Universiti Malaysia Perlis Digital Filter Structures

More information

Final Exam January 31, Solutions

Final Exam January 31, Solutions Final Exam January 31, 014 Signals & Systems (151-0575-01) Prof. R. D Andrea & P. Reist Solutions Exam Duration: Number of Problems: Total Points: Permitted aids: Important: 150 minutes 7 problems 50 points

More information

Digital Signal Processing. Outline. Hani Mehrpouyan, The Z-Transform. The Inverse Z-Transform

Digital Signal Processing. Outline. Hani Mehrpouyan, The Z-Transform. The Inverse Z-Transform Digital Signal Processing Hani Mehrpouyan, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture (Digital Signal Processing) Feb 9 th, 206 The following references

More information

Advanced Signals and Systems

Advanced Signals and Systems TECHNISCHE FAKULTÄT DER CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITALE SIGNALVERARBEITUNG UND SYSTEMTHEORIE DSS Advanced Signals and Systems Exam SS 08 Examiner: Prof. Dr.-Ing. Gerhard Schmidt Date:

More information